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Abstract: A graph G is said to be claw-free if G does not contain K1,3 as an induced subgraph. For an
integer s ≥ 0, G is s-Hamiltonian if for any vertex subset S ⊂ V(G) with |S | ≤ s, G−S is Hamiltonian.
Lai et al. in [On s-Hamiltonian line graphs of claw-free graphs, Discrete Math., 342 (2019)] proved
that for a connected claw-free graph G and any integer s ≥ 2, its line graph L(G) is s-Hamiltonian if
and only if L(G) is (s + 2)-connected.
Motivated by above result, we in this paper propose the following conjecture. Let G be a claw-free
connected graph such that L(G) is 3-connected and let s ≥ 1 be an integer. If one of the following
holds:

(i) s ∈ {1, 2, 3, 4} and L(G) is essentially (s + 3)-connected,
(ii) s ≥ 5 and L(G) is essentially (s + 2)-connected,

then for any subset S ⊆ V(L(G)) with |S | ≤ s, |D≤1(L(G) − S )| ≤
⌊

s
2

⌋
and L(G) − S − D≤1(L(G) − S )

is Hamiltonian. Here, D≤1(L(G) − S ) denotes the set of vertices of degree at most 1 in L(G) − S .
Furthermore, we in this paper deal with the cases s ∈ {1, 2, 3, 4} and L(G) is essentially (s+3)-connected
about this conjecture.
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1. Introduction

For the notation or terminology not defined here, see [1]. A graph is called trivial if it has only one
vertex, nontrivial otherwise. Let κ′(G) represent the edge-connectivity of a graph G. An edge (vertex)
cut X is essential if G − X has at least two non-trivial components. A graph G is essentially k-edge-
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connected (or essentially k-connected) if G does not have an essential edge cut X (or an essential vertex
cut X) with |X| < k. For a connected graph, define ess(G) = max{k : G is essentially k-connected}.
For any u ∈ V(G), we use NG(u) to denote the set of vertices which are adjacent to u in the graph G
and define dG(u) = |NG(u)|, NG[u] = NG(u) ∪ {u}. For an integer i ≥ 0, define D≥i(G) = {v ∈ V(G) :
dG(v) ≥ i}, D≤i(G) = {v ∈ V(G) : dG(v) ≤ i}, Di(G) = {v ∈ V(G) : dG(v) = i} and di(G) = |Di(G)|.
We use H ⊆ G (H � G) to denote the fact that H is a subgraph of G (H and G are isomorphic).
Define G[S ] is the subgraph induced in G by S for S ⊆ V(G) or S ⊆ E(G). For H1,H2 ⊆ G, two
disjoint sets S 1, S 2 ⊆ V(G) and X ⊆ E(G), define G − S 1 = G[V(G) − S 1], G − X = G[E(G) − X],
[S 1, S 2]G = {uv ∈ E(G) : u ∈ S 1, v ∈ S 2}, [H1,H2]G = [V(H1),V(H2)]G. We use v for {v} and e for
{e}. Throughout this paper, for an integer n ≥ 1, Pn denotes a path of order n, Cn denotes a cycle on n
vertices, Wn denotes the graph obtained from an n-cycle by adding a new vertex and connecting it to
every vertex of the n-cycle, and K5 − e denotes the graph obtained from K5 by deleting an edge. We
call a bipartite graph K1,n a star.

A graph is k-triangular if each edge is in at least k triangles. The line graph of a given graph G,
denoted by L(G), is a graph with vertex set E(G) such that two vertices in L(G) are adjacent if and only
if the corresponding edges in G are incident to a common vertex in G. For an integer s ≥ 0, a graph G
is s-Hamiltonian if for any vertex subset S ⊂ V(G) such that |S | ≤ s, G − S is Hamiltonian. Broersma
and Veldman in [2] raised the following question.

Problem 1. (Broersma and Veldman, [2]) For an integer k ≥ 0, determine the value s such that the
line graph L(G) of a k-triangular graph G is s-Hamiltonian if and only if L(G) is (s + 2)-connected.

They commented in [2] that Problem 1 holds for 0 ≤ s ≤ k and conjectured that it holds if 0 ≤ s ≤
2k. Chen, Lai, Shiu and Li in [7] confirmed it holds when 0 ≤ s ≤ max{2k, 6k − 16}. Then Lai et
al. gave some attempt to characterize s-Hamiltonian line graph. A graph G is claw-free if it does not
contain K1,3 as an induced subgraph.

Theorem 2. Let G be a graph and s ≥ 2 be an integer.

(1) (Lai and Shao, [9]) For s ≥ 5, L(G) is s-Hamiltonian if and only if L(G) is (s + 2)-connected.
(2) (Lai, Zhan, Zhang and Zhou, [11]) For s ≥ 2, if G is claw-free, then L(G) is s-Hamiltonian if and

only if L(G) is (s + 2)-connected.

In fact, the authors mainly proved the cases s ∈ {2, 3, 4} of Theorem 2(2) in [11]. Motivated by
Theorem 2(2), we propose the following conjecture.

Conjecture 3. Let G be a claw-free connected graph such that L(G) is 3-connected and let s ≥ 1 be
an integer. If one of the following holds:

(i) s ∈ {1, 2, 3, 4} and L(G) is essentially (s + 3)-connected, or
(ii) s ≥ 5 and L(G) is essentially (s + 2)-connected,

then for any subset S ⊆ V(L(G)) with |S | ≤ s, |D≤1(L(G) − S )| ≤
⌊

s
2

⌋
and L(G) − S − D≤1(L(G) − S ) is

Hamiltonian.

Define the core of G, denoted by G0, to be the graph obtained from G by deleting all the vertices
of degree 1, and replacing each path xyz with y ∈ D2(G) by an edge xz. It is easy to see that if G
is claw-free, then the core G0 is claw-free. Our main result of this paper is as follows, which settles
Conjecture 3(i).
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Theorem 4. Let s ∈ {1, 2, 3, 4} and G be a connected graph such that L(G) is 3-connected and
essentially (s + 3)-connected and the core G0 is claw-free. Then for any S ⊆ V(L(G)) with |S | ≤ s,
|D≤1(L(G) − S )| ≤

⌊
s
2

⌋
and L(G) − S − D≤1(L(G) − S ) is Hamiltonian.

A dominating closed trail (abbreviated DCT) in a graph G is a closed trail (or, equivalently, an
Eulerian subgraph) T in G such that every edge of G has at least one vertex on T . The following
result by Harary and Nash-Williams relates the existence of a DCT in a graph G and the existence of a
Hamiltonian cycle in its line graph L(G).

Theorem 5. (Harary and Nash-Williams, [8]) Let G be a graph with at least three edges. Then L(G)
is Hamiltonian if and only if G has a DCT.

Remark 1. For integer i ∈ {0, 1, 2, 3, 4} and the graph Hi depicted in Figure 1, let H′i be the graph
obtained from Hi by deleting the bold lines. Then H′i has no DCT and by Theorem 5, L(H′i ) is non
Hamiltonian. Since κ(L(H0)) = 2 and ess(L(H0)) = s + 5, the condition “L(G) is 3-connected” in
Theorem 4 is sharp. Furthermore, for i ∈ {1, 2, 3, 4}, ess(L(Hi)) = i + 2 and L(Hi) is not i-Hamiltonian,
then the condition “L(G) is essentially (s + 3)-connected” in Theorem 4 is sharp.

Figure 1. Some special graphs.

2. Proof of Theorem 4

Before starting the proof, we need some definitions and additional results. For X ⊆ E(G), define the
contraction G/X is the graph obtained from G by identifying the two ends of each edge in X and then
deleting the resulting loops. If H is a subgraph of G, we write G/H for G/E(H). If vH is the contraction
image of H in G/H, then H is called the preimage of v, and denoted by PI(v). Call v is non-trivial
if |V(PI(v))| ≥ 2; trivial, otherwise. Let O(G) denote the set of odd degree vertices in G. A graph G
is eulerian if O(G) = ∅ and G is connected. A graph G is supereulerianif G has a spanning Eulerian
subgraph. Catlin in [3] defined collapsible graphs. A graph G is collapsible if for any even subset R
of V(G), G has a connected spanning subgraph ΓR with O(ΓR) = R. The reduction of G is obtained
from G by contracting all maximal collapsible subgraphs of G. Let τ(G) denote the maximum number
of edge-disjoint spanning trees of G. Let F(G) be the minimum number of additional edges that must
be added to G so that the resulting graph has two edge-disjoint spanning trees. We summarize some
results on Catlin’s reduction method and other related facts below.
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Theorem 6. Let G be a connected graph and H, G′ be a collapsible subgraph and the reduction of G,
respectively. Then each of the following holds.

(1) (Catlin, [3]) G is collapsible if and only if G/H is collapsible. And G is collapsible if and only if
G′ is K1.

(2) (Catlin, [4]) F(G′) = 2|V(G′)| − 2 − |E(G′)|.
(3) (Catlin, Han and Lai, [5]) If F(G) ≤ 2, then G′ ∈ {K1,K2,K2,t} for some t ≥ 1.
(4) (Catlin, Lai and Shao, [6]) Let k ≥ 1 be an integer. Then κ′(G) ≥ 2k if and only if for any edge

subset X ⊆ E(G) with |X| < k, τ(G − X) ≥ k.

An edge cut X of G is a P2-edge-cut of G if at least two components of G − X contain P3. Define
κ′2(G) = min{|X| : X is a P2-edge-cut of G}.

Lemma 7. If G is 3-edge-connected with κ′2(G) ≥ 4, then G is essentially 4-edge-connected.

Proof. For any edge cut X of G such that G − X has two non-trivial components G1,G2, if both G1

and G2 contain P3, then X is a P2-edge-cut and hence |X| ≥ 4; otherwise, at least one of G1,G2 is
isomorphic to K2 and then |X| ≥ 4. �

The graphs Pi, j,k,Ki, j,k ⊆ G are two subgraphs isomorphic to a P3 and a K3 such that three vertices
have degree i, j, k in G, respectively.

Lemma 8. Let G be a 3-edge-connected graph and G < {K4,W4,K5 − e,K5}. Then

(1) G has no K3,3,3 if κ′2(G) ≥ 4 and G has no K3,3,4 if κ′2(G) ≥ 4,
(2) G has no P3,3,3, K3,4,4 and K3,3,k for k ≤ 5 if κ′2(G) ≥ 6,
(3) G has no P3,3,3, P3,3,4, K3,4,l and K3,3,k for l ≤ 5, k ≤ 6 if κ′2(G) ≥ 7.

Proof. Let x1x2x3 ⊆ G and X = [{x1, x2, x3},V(G) − {x1, x2, x3}]G. We assume that |X| < min{κ′2(G), 7}.
LetD be the set of components of G − X. Then each component of G − {x1, x2, x3} belongs to {K1,K2}

and hence |D| ≤ 2 and |D| = 1 if P2 ∈ D. Then |V(G)| ≤ 5 and hence G ∈ {K4,W4,K5,K5 − e}, a
contradiction. So |X| ≥ κ′2(G) and lemma holds. �

Lemma 9. Let G be a claw-free graph of order at least 6 such that κ′(G) ≥ 3 and κ′2(G) ≥ 4. Then
there is a set of edge-disjoint triangles 4(G) such that D3(G) ⊆ V(4(G)) and D3(G) ∩ V(K) , ∅ for
each K ∈ 4(G).

Proof. Since G is claw-free with κ′(G) ≥ 3, each vertex with degree 3 is in a triangle. Then we can
choose a set of triangles 4(G) such that D3(G) ⊆ V(4(G)), D3(G) ∩ V(K) , ∅ for each K ∈ 4(G), and
then

|
⋃

K1,K2∈4(G)

E(K1) ∩ E(K2)| is as small as possible.

Suppose that there are two triangles w1u1u2w1, w2u1u2w2 ∈ 4(G), then dG(w1) = dG(w2) =

3; for otherwise, delete the triangle wiu1u2wi in 4(G) if dG(wi) ≥ 4 for any i ∈ {1, 2}.
Besides, w1w2 < E(G); for otherwise, replace w1u1u2w1, w2u1u2w2 by w1w2u2w1 in 4(G).
By Lemma 8, max{dG(u1), dG(u2)} ≥ 4. Without loss of generality, assume that dG(u2) ≥ 4 and
there is a vertex x1 ∈ NG(u2). Since G[{u2,w1,w2, x1}] � K1,3, [x1, {w1,w2}]G , ∅. By symmetry,
assume that x1w1 ∈ E(G).
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If there is a vertex x2 ∈ NG(u2)\{w1,w2, x1}, then, by symmetry, x2w2 ∈ E(G). So 4 ≤ dG(u2) ≤ 5
and we can delete the triangle w1u1u2w1 and add the triangle x1w1u2x1 in 4(G) if x1w1u2x1 < 4(G), a
contradiction. Hence any two triangles of 4(G) are edge-disjoint. �

Theorem 10. Let G be a connected graph such that L(G) is 3-connected, essentially k-connected for
some integer k ≥ 1. Then

(1) (Shao, [12]) the core G0 of G is uniquely defined and κ′(G0) ≥ 3,
(2) (Lai, Shao, Wu and Zhou, [10]) κ′2(G0) ≥ κ′2(G) ≥ k.

For a connected graph G and an Eulerian subgraph T , define D[T ] = {uv : {u, v} ∩ V(T ) , ∅}.
Proof of Theorem 4. We first have |D≤1(L(G) − S )| ≤

⌊
s
2

⌋
as L(G) is 3-connected. For any X =

{e1, · · · , es} ⊆ E(G), let E1 = NG−X[D1(G − X)], S 2 = V(E1) ∩ D2(G − X). Then E1 = (G − X)[V(E1)]
and |E1| ≤

⌊
s
2

⌋
. By Theorem 5, it suffices to prove that

G − X has an Eulerian subgraph T such that E(G)\D[T ] ⊆ E1. (2.1)

Let G0 be the core of G. By Theorem 10, G0 is 3-edge-connected with κ′2(G0) ≥ s + 3 and D3(G0) ⊆
D3(G). It suffices to prove that for any X = {e1, · · · , es} ⊆ E(G0)

G0 − X has a spanning Eulerian subgraph T such that D≥2(G0 − X) ⊆ V(T ). (2.2)

(Since then for any u < V(T ), either u ∈ S 2 or u ∈ V(G) has no neighbor in D1(G) and hence T can be
extended to an Eulerian subgraph T ′ of G satisfying (2.1).)

By Lemma 7, G0 is essentially 4-edge-connected. By Lemma 9, G0 has a set of edge-disjoint
triangles 4(G) such that D3(G) ⊆ V(4(G)) and D3(G) ∩ V(K) , ∅ for each K ∈ 4(G). Let 4′(G) =

{K ∈ 4(G) : E(K) ∩ X = ∅} and G1 = G0/4
′(G). Then G1 is 3-edge-connected, essentially 4-edge-

connected and κ′2(G1) ≥ s + 3. Besides, D3(G1) ⊆ D3(G0) since G0 is essentially 4-edge-connected.
We first assume that |V(G1)| ≤ 5. If G1 − X has no cycle, then it is isomorphic to the graph obtained

from a star and some isolated vertices by subdividing some edges of star exactly once, respectively,
and then the preimage of the center of the star is an Eulerian subgraph of G satisfying (2.1). Then we
assume that G1−X contains a longest cycle C. If for any 1-component x0 of G1−X−C, |[x,V(C)]G1 | ≤ 1,
then (2.3) holds. We then assume that |[x0,V(C)]G1 | ≥ 2 for some 1-component x0 of G1 − X −C, then
|V(C)| = 4, |V(G1)| = 5. Let C = ux1vx2u. Then E(G1) = E(C) ∪ {x0u, x0v} ∪ X. Then at least one
vertex u0 ∈ {x0, x1, x2} is non-adjacent to one vertex of degree at most 2. Suppose otherwise. Then
{x0, x1, x2} ⊆ D4(G1) and s ∈ {3, 4}. If s = 3, then X = {x0x1, x0x2, x1x2} and G1 � K5 − e. If s = 4,
then G1 � K5. However, there is a P2-edge-cut with order at most s + 2, a contradiction. By symmetry,
assume u0 = x0. Then C is a dominating trail of G − X.

Thus we assume that |V(G1)| ≥ 6 in the proof below. Note that a triangle is collapsible. Thus it
suffices to prove that

G1 − X has an Eulerian subgraph T such that D≥2(G1 − X) ⊆ V(T ). (2.3)
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Case 1. G1 − X is disconnected.
In this case, if edges e1, · · · , es have same end vertices u, v for any u, v ∈ V(G1) and s ≥ 2, then

e1, · · · es are actually parallel edges. Since G1 is 3-edge-connected, there are vertices v, x1, · · · xs such
that either dG1(v) = s and {vx1, · · · , vxs} = {e1, · · · , es} or s = 4, dG1(v) = 3 and {vx1, vx2, vx3} =

{e1, e2, e3}. Then D3(G1) ⊆ {v} ⊆ V(G) and hence G1[NG1[v]] is claw-free.
Subcase 1.1. dG1(v) = s.

Let (d1, · · · , ds) = (dG1(x1), · · · , dG1(xs)) and (d′1, · · · , d
′
s) = (dG1−v(x1), · · · , dG1−v(xs)). If s = 3,

then κ′2(G1) ≥ 6. By symmetry, assume that x1x2 ∈ E(G1) and dG1(x1) ≤ dG1(x2). By Lemma 8(2),
(d1, d2, d3) ∈ {(3,m, n) : m ≥ 6, n ≥ 4} ∪ {(4,m, n) : m ≥ 5, n ≥ 3} ∪ {(m, n, t) : m ≥ 5, n ≥ 5, t ≥ 3} and
then (d′1, d

′
2, d

′
3) ∈ {(2,m, n) : m ≥ 5, n ≥ 3} ∪ {(3,m, n) : m ≥ 4, n ≥ 2} ∪ {(m, n, t) : m ≥ 4, n ≥ 4, t ≥ 2}.

Let

E′ =

{x1x2, x1x3}, if (d′1, d
′
2, d

′
3) ∈ {(2,m, n) : m ≥ 5, n ≥ 3},

{x1x3, x2x3}, if (d′1, d
′
2, d

′
3) ∈ {(m, n, l) : m ≥ 3, n ≥ 4, l ≥ 2}.

If dG1(x1) = 4, then κ′2(G1) ≥ 7. By symmetry, either {x1x2, x2x3} ⊆ E(G1) and dG1(x1) ≤ dG1(x2) ≤
dG1(x3) or {x1x2, x3x4} ⊆ E(G1), dG1(x1) ≤ dG1(x2) and dG1(x3) ≤ dG1(x4). We firstly assume that
{x1x2, x2x3} ⊆ E(G1). By Lemma 8(3), (d1, d2, d3, d4) ∈ {(3,m, n, l) : m ≥ 6, n ≥ 6, l ≥ 4} ∪ {(m, n, l, p) :
m ≥ 4, n ≥ 4, l ≥ 4, p ≥ 4} ∪ {(4,m, n, 3) : m ≥ 5, n ≥ 5} ∪ {(m, n, l, 3) : m ≥ 5, n ≥ 5, l ≥ 5}. Let

E′ =


{x1x2, x1x4}, if (d′1, d

′
2, d

′
3, d

′
4) ∈ {(2,m, n, l) : m ≥ 5, n ≥ 5, l ≥ 3},

{x1x2, x3x4}, if (d′1, d
′
2, d

′
3, d

′
4) ∈ {(m, n, l, p) : m ≥ 3, n ≥ 3, l ≥ 3, p ≥ 3},

{x2x4, x3x4}, if (d′1, d
′
2, d

′
3, d

′
4) ∈ {(m, n, l, 2) : m ≥ 3, n ≥ 4, l ≥ 4}.

We then assume that {x1x2, x3x4} ⊆ E(G1). By Lemma 8(3), (d1, d2, d3, d4) ∈ {(3,m, 3, n) : m ≥ 6, n ≥
6}∪ {(3,m, 4, n) : m ≥ 6, n ≥ 5}∪ {(4,m, 4, n) : m ≥ 5, n ≥ 5}∪ {(m, n, l, p) : m ≥ 5, n ≥ 5, l ≥ 5, p ≥ 5}.
Let

E′ =

{x1x2, x1x2}, if (d′1, d
′
2, d

′
3, d

′
4) ∈ {(2,m, n, l) : m ≥ 5, n ≥ 2, l ≥ 4},

{x1x3}, if (d′1, d
′
2, d

′
3, d

′
4) ∈ {(m, n, l, p) : m ≥ 3, n ≥ 4, l ≥ 3, p ≥ 4}.

Note that D≤3(G1 − v) ⊆ {x1, · · · , xs}. Let Q1 be the graph obtained from G1 − v by adding the edge set
E′. Then Q1 is 4-edge-connected. By Theorem 6(4), τ(Q1 − E′) = τ(G1 − v) ≥ 2. Therefore, G1 − v is
collapsible and then is supereulerian. Hence G1 − X has a dominating Eulerian subgraph T1 such that
V(G1)\V(T1) = {v}. Hence (2.3) holds.
Subcase 1.2. s = 4 and dG1(v) = 3.

Then κ′2(G1) ≥ 7. By Subcase 1.1, τ(G1−v) ≥ 2. Then F(G1−v−X) ≤ 1. Note that κ′(G1−v−X) ≥ 2
since G1 is essentially 4-edge-connected. By Theorem 6(3), G1 − v − X is collapsible and hence it has
a dominating Eulerian subgraph T2 such that V(G1)\V(T2) = {v}. Hence (2.3) holds.
Case 2. G1 − X is connected.

Let G′ be the reduction of G1 − X.

Claim 1. If F(G′) ≤ 2, then (2.3) holds.

Proof. By Theorem 6(3), G′ ∈ {K1,K2,K2,t} for some integer t ≥ 2. If G′ � K2,t for some odd integer
t ≥ 3, then each vertex of degree 2 in G′ is trivial; for otherwise, assume that |PI(u)| ≥ 3, then PI(u) has
a P3 and there is a P2-edge-cut X′ = [V(PI(u)),V(G1)−V(PI(u))]G1 with |X′| ≤ |X|+2, a contradiction.
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If one vertex u of degree 3 in G′ is non-trivial, then X ⊆ [V(PI(u)),V(G1) − V(PI(u))]G1 . If s ≤ 2, then
there is a vertex of degree 2, a contradiction. If s = 3, then there is a P3,3,3, a contradiction. If s = 4,
there is a P3,3,4, a contradiction. Hence G′ ⊆ G1 − X. If s = 3, then either G′ � K2,5 and G′ has a K3,3,5

or G′ � K2,3 and G1 � K5 − e, a contradiction. If s = 4, then G′ either has a P3,3,4 (if t ≥ 7) or has a
K3,3,5 (if t ≤ 5), a contradiction.

If G′ ∈ {K1,K2,t} for some even integer t ≥ 2, then G′ is supereulerian and then G1 − X is
supereulerian by Theorem 6(1). If G′ � K2 = uv, then at least one of u, v is trivial; for otherwise,
X ∪ {uv} is a P2-edge-cut of G1 with |X ∪ {uv}| ≤ s + 1, a contradiction. By symmetry, assume that u is
trivial and PI(v) is collapsible. Then u ∈ D1(G1 − X) and G1 − X has a dominating Eulerian subgraph
T3 such that V(G1)\V(T3) = {u} and (2.3) holds.

If G′ � v1uv2, then v1, v2 are trivial and PI(u) is collapsible. Then v1, v2 ∈ D1(G1 − X) and G1 − X
has a dominating Eulerian subgraph T4 such that V(G1)\V(T4) = {v1, v2} and (2.3) holds. �

Let G2 = G′∪X and define φ(G2) = 2|V(G2)|−|E(G2)|−2. Then G2 is 3-edge-connected, essentially
4-edge-connected with κ′2(G2) ≥ s + 3. By Theorem 6(2), F(G′) ≤ φ(G2) + s = 1

2 (d3(G2) −
∑

i≥5(i −
4)di(G2)) + (s − 2). By Claim 1, it suffices to prove that F(G′) ≤ 2, that is,

d3(G2) −
∑
i≥5

(i − 4)di(G2) ≤ 8 − 2s. (2.4)

If |D3(G2)| ≤ 2 when s = 3, then add at most one edge e such that D3(G2) ⊆ V(e) and the resulting
graph, say G′2, is 4-edge-connected. Then τ(G2) = τ(G′2 − {e, f }) ≥ 2 for any edge f ∈ E(G′2) by
Theorem 6(4) and hence F(G′) ≤ F(G2 − X) ≤ 2. By the same argument, F(G′) ≤ 2 if |D3(G2)| ≤ 6
when s = 1, |D3(G2)| ≤ 4 when s = 2 and |D3(G2)| = 0 when s = 4. Hence we only consider the cases
|D3(G2)| ≥ 3 when s = 3 and |D3(G2)| ≥ 1 when s = 4.

Note that D3(G2) ⊆ V(G). Then G2[NG2[u]] is claw-free for any u ∈ D3(G2) and then u is in a
triangle of G2. Recall G2 is obtained from G′ by adding X, then each vertex of degree 3 is in a triangle
of G2 which contains at least one edge of X. Then G2 has at most s edge-disjoint triangles containing
all vertices of degree 3 and each of them must contain at least one edge of X. Since κ′2(G2) ≥ 5, G2 has
no K3,3,3. Then |D3(G2)| ≤ 2s.

Besides, for any vertex u ∈ V(G2) with degree less than s + 2,

if G2 − u contains P3, then u ∈ V(G0) and G2[NG2[u]] is claw-free. (2.5)

(For otherwise, [V(PI(u)),V(G1) − V(PI(u))]G1 is a P2-edge-cut of G1, a contradiction.) We then
consider the following two subcases to finish our proof.
Subcase 2.1. s = 3 and 3 ≤ |D3(G2)| ≤ 6.

Then κ′2(G2) ≥ 6 and it suffices to prove that

d3(G2) −
∑
i≥5

(i − 4)di(G2) ≤ 2. (2.6)

By Lemma 8(2), there is a triangle x1x2x3x1 such that max{dG2(x1), dG2(x2), dG2(x3)} ≥ 5 if |D3(G2)| = 3
and dG2(x1) = dG2(x2) = 3, dG2(x3) ≥ 6 if |D3(G2)| = 4, and hence (2.6) holds.

If |D3(G2)| = 5, then there are three edge-disjoint triangles u1x1x2u1, u2y1y2u2, u3z1z2u3 such that
{x1, x2, y1, y2, z1} = D3(G2) and dG2(u1) ≥ 6, dG2(u2) ≥ 6 and dG2(u3) ≥ 5. So (2.6) holds if at least
two of u1, u2, u3 are distinct or dG2(z2) ≥ 5. Otherwise, G2[NG2[z2]] is claw-free and hence either both
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x1 and x2 or both y1 and y2 are nonadjacent to z1. By symmetry, say x1, x2. If x1, x2 have a common
neighbor x12 outside {u1}with dG2(x12) ≥ 6 or x′1 ∈ NG2(x1), x′2 ∈ NG2(x2) with max{dG2(x′1), dG2(x′2)} ≥ 5,
then (2.6) holds. If dG2(x′1) = dG2(x′2) = 4, then {x′1u1, x′1u2} ⊆ E(G2), dG2(u1) ≥ 8 and (2.6) holds.

If |D3(G2)| = 6, the discussion is similar to the case when |D3(G2)| = 5, then we omit it here.
Subcase 2.2. s = 4 and 1 ≤ |D3(G2)| ≤ 8.

Then κ′2(G2) ≥ 7. For a vertex v of degree 5 or 6, G2[NG2[v]] is claw-free by (2.5). Then there
are at most two vertices of degree 3 in NG2(v); for otherwise, there is a K3,3,5 or K3,3,6, contradicting
Lemma 8(3).

For a vertex w of degree 7, if {x1, · · · , x7} = NG2(w) ⊆ D3(G2) and {x1x2, x3x4, x5x6} ⊆ E(G2),
then x7 has two neighbors y1, y2 such that y1y2 ∈ E(G2) and dG2(y1) ≤ dG2(y2) since G2 has no P3,3,3.
Assume that |D3(G2)| = 8. Then dG2(y1) = 3, dG2(y2) ≥ 7 and y1 has a neighbor y3 with dG2(y3) ≥ 5.
If dG2(y3) ≥ 7 or NG2{x1, · · · , x6} * {y2, y3}, then (2.4) holds. Otherwise, note that 5 ≤ dG2(y3) ≤ 6,
then y2y3 ∈ E(G2) and at least 5 vertices of {x1, · · · , x6} are adjacent to y2. Then dG2(y2) ≥ 8 and (2.4)
holds. Assume that |D3(G2)| = 7. If dG2(y1) ≥ 7, then (2.4) holds. Otherwise, G2[NG2[y1]] is claw-free
and then |NG2(y1) ∩ {x1, · · · , x7}| = 1 and hence there are at least two vertices u1, u2 ∈ NG2(y1) with
u1u2 ∈ E(G2). Then there are 5 edge-disjoint triangles, a contradiction.

Thus we consider the case when w has at most six neighbors of degree 3. Define a function l(u) = 1
2 , if dG2(u) ≥ 5;
0, otherwise.

For a vertex u of degree 3 and its neighbors x1, x2, x3, at least two of them have

degree at least 5 by the argument in Subcase 1.1. Then l(x1) + l(x2) + l(x3) ≥ 1. So

d3(G2) =
∑

u∈D3(G2)

1 ≤
∑

u∈D3(G2)

∑
v∈NG2 (u)

l(v)

≤
∑

v∈D5(G2)∪D6(G2)

2 ×
1
2

+
∑

v∈D7(G2)

6 ×
1
2

+
∑

v∈D≥8(G2)

dG2(v) ×
1
2

≤
∑
i≥5

(i − 4)di(G2).

Then (2.4) holds. This completes the proof of Theorem 4. �

3. Conclusions

Note that Conjecture 3(ii) is a generalization of Theorem 2 when s ≥ 5. By dealing with Conjecture
3(i), we know that how the connectivity effects the s-hamiltonicity of claw-free graphs. By comparing
them, for a 3-connected line graph L(G) with ess(L(G)) ≥ s condition other than L(G) is s-connected,
graph G may have essential l-edge-cut for some 3 ≤ l ≤ s, which leads to L(G)− X is disconnected for
some vertex set X ⊆ V(L(G)) with |X| ≤ s. There are still many properties for us to further explore.
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