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1. Introduction

Symmetry analysis method by Lie has been used extensively in the recent literature to study
diverse forms of nonlinear evolution equations. However, as the determination of the symmetries
is computationally demanding most at times, the present study resort to using a mixture of an integral
transform method, and an iterative procedure. Integral transform method is an old efficient analytical
method that is used to solve linear differential and integral equations. Thus, in favor of its amazing
applications in tackling different mathematical physics problems, various integral transforms starting
with the notable works of P. S. Laplace in the 1780s and J. Fourier in 1822 [1], respectively, have
been continuously introduced till today. More so, recent years have witnessed the emergence of
various integral transforms like the Sumudu transform in 1993 [2], Natural transform in 2008 [3],
Elzaki transform in 2011 [4], Aboodh transform in 2013 [5], M-transform in 2015 [6], ZZ [7] and
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Ramadan group transforms [8] in 2016, and the Gα transform in 2017 [9], just to mention a few.
However, of particular concern in this study is to further demonstrate the application of the Gα

transform [9], which is alternatively called the generalized Laplace transform [10,11] in tackling certain
nonlinear dynamical models with non-integer order; having unanimously represented multiple integral
transforms in different values of α. Since the Gα transform is a generalized Laplace transform, it means
that properties established in this transform are established in each transform having a specific alpha
value. In this respect, this study is meaningful. The integral representation of the Gα integral transform
reads

Gα{ f (t)} = Fα(s) = sα
∫ ∞

0
f (t)e−t/sdt, t ≥ 0, (1.1)

where s is the Gα transform parameter, and α is a generalized real parameter; we explain the role of
this parameter for certain values of interest in the subsequent Section.

Furthermore, to demonstrate the applicability of this transform, we couple the Gα transform with
Adomian’s approach [12,13] to tackle a class of nonlinear evolution equations in the presence of
non-integer order derivatives based on Caputo’s fractional derivative definition [14–16]. Nonlinear
evolution equations play an important role in many nonlinear sciences. More so, different approaches
have been used in the past and present literature to tackle diverse classes of evolution equations.
So, in order not to go too far in mentioning these known methods for solving different forms
of nonlinear evolution equations, we briefly recall approaches like integration schemes [17–20],
numerical approaches [21,22], and semi-analytical approaches [23–27]. On the other hand, we also
mention some significant works on the theory and development of fractional calculus here to lay a
solid foundation with regard to the non-integer order derivative [28–32]. It is also vital to point out that
the theory fractional calculus is not something developed lately, as it goes back to the year of 1695.

In addition, this study considers three types of nonlinear evolution equations as tests problems to
portray the application of the present methodology. These equations of interest are as follows

1) Burger’s equation [13,17]
ft + f fx = fxx, (1.2)

2) Schrödinger differential equation [33]

i ft + fxx + 2 f 2 f ∗ = 0, (1.3)

3) Coupled singular inhomogeneous Burger’s equation [34,35]

ft = x−1∂x(x fx) + 2 f fx − ( f g)x + h1(x, t),
gt = x−1∂x(xgx) + 2ggx − ( f g)x + h2(x, t),

(1.4)

where f ∗ is the conjugate of f in Eq (1.3), and i =
√
−1; while in the coupled equation given in

Eq (1.4), h j(x, t) for j = 1, 2 are the prescribed source functions.
Moreover, the choice of this integral transform is to further reveal some of its salient and untapped

properties. This of course is associated with the transform’s ability to collectively represent multiple
integral transforms for different values of α. Indeed, to our knowledge, this transform has never been
coupled in the literature to study nonlinear dynamical equations; let alone, nonlinear dynamical models
with non-integer order derivatives. Furthermore, Caputo’s definition of the non-integer derivative is
chosen in this study owing to its wide practicality. We also state here that the Wolfram Mathematica 9
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software will be utilized for the computational and graphical purposes. Besides, the current manuscript
is organized in the following manner: Section 2 gives some preliminaries with regard to the Gα

transform and non-integer order derivative. Section 3 presents the Gα decomposition approach; while
Section 4 gives the application of this very approach. Section 5 discusses the obtained results; while
Section 6 gives some concluding points.

2. Preliminaries

The present section outlines some important definitions related to the Gα integral transform, and
on the other hand, the non-integer order derivative, which is alternatively known as the fractional
derivative. The section systematically recalls some conceptual backgrounds of these two concepts.

2.1. Gα integral transform

This subsection recollects some vital definitions and concepts associated with the Gα transform to
be utilized in the study.

Definition 1. The Gα transform of the function f (t) belonging to a set F defined by:

F = { f : | f (t)| < Mek j |t|, if t ∈ (−1) j × [0,∞), j = 1, 2; (M, k1, k2 > 0 )},

where M is a finite constant number; k1, k2 may be finite or infinite is defined by [9–11]

Gα{ f (t)} = Fα(s) = sα
∫ ∞

0
f (t)e−t/sdt, t ≥ 0, k1 ≤ s ≤ k2. (2.1)

Equally, one may alternatively express Gα transform as follows

Gα{ f (t)} = Fα+1(s) = sα+1
∫ ∞

0
f (st)e−tdt, t ≥ 0, k1 ≤ s ≤ k2. (2.2)

The Laplace transform by the logarithm function can be expressed as

s−α
∫ ∞

1
f (ln x)x−s−1dx, t = ln x,

where in this case the transform reduces to each Laplace-type transform upon varying the value of α
as follows. Of course, dozens of Laplace-type transforms not described here can also be expressed by
changing the value of α. Moreover, some of the Kernel values of recent Laplace-type transforms are
given in Table 1.

Table 1. Kernel values of recent Laplace-type transforms.

S -1
E 1
L 0
M -2
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Where from Table 1, the letters S, E, L and M stand for Sumudu, Elzaki, Laplace, and Mohand
transforms, respectively.

Using
G( f ) = sα · F(1/s),

for Laplace transform £( f ) = F(s), we can obtain the detailed relationship with Laplace transform as
illustrated on page 2 of [9] and the introduction of [10]. In order to have value among many Laplace-
type transforms, the form should be simple and the formula of Laplace transform should be available
through a simple relational expression.

Lemma 2. For Gα transform, the following properties holds [11]:

1) Gα{1} = sα+1,

2) Gα{tn} = n!sn+α+1, n > 1,
3) Gα{sin(at)} = asα+2

1+s2a2 ,

4) Gα{cos(at)} = sα+1

1+s2a2 ,

5) for any functions x(t) and y(t) defined over the set F, and constants a and b, then

Gα{ax(t) ± bw(t)} = aGα{x(t)} ± bGα{y(t)}.

Lemma 3. Given the integrable function f (t), the Gα transform of the nth(n ∈ N) derivative of f (t) is
given by [10]

Gα{ f (n)(t)} = s−nGα{ f (t)} − sα
n∑

k=1

sk−n f (k−1)(0). (2.3)

2.2. Non-integer order derivative

Non-integer order calculus or rather the fractional order calculus is as old as the integer order
calculus. However, there have been tremendous discoveries in recent times; having abandoned the
area in the past. Thus, the present subsection recalls certain important definitions specifically based on
Caputo’s fractional derivative [14–16].

Definition 4. The Caputo’s fractional derivative of the fractional order µ > 0 for a function f (t) is
defined by [16]

Dµ
t f (t) =

1
Γ(n − µ)

∫ ∞

0

f (n)(s)
(t − s)−n+µ+1 ds, n − 1 < µ ≤ n, (2.4)

where f (t) = 0 for t < 0; while Γ(.) is the gamma function given for n(> −1) ∈ R as Γ(n + 1) = n!.

Definition 5. The Caputo’s fractional derivative satisfies the following useful properties:

1) Dµ
t (a) = 0, a constant,

2) Dµ
t (tn) =

Γ(1+n)
Γ(1+n−µ) t

n−µ,

3) Dµ
t (ax(t)) = aDµ

t x(t), a constant,
4) Dµ

t (ax(t) ± by(t)) = aDµ
t (x(t)) ± bDµ

t (y(t)) .

Definition 6. The Mittag-Leffler function for one parameter µ is defined as [16]

Eµ(t) =

∞∑
n=0

tn

Γ(1 + µn)
, µ > 0, t ∈ C. (2.5)
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Lemma 7. The Gα transform for the Caputo’s fractional derivative defined in Eq (2.4) is given by

Gα{D
µ
t ( f (t))} = s−µGα{ f (t)} − sα

n∑
k=1

sk−µ f (k−1)(0), n − 1 < µ ≤ n. (2.6)

Proof. Without loss of generality, the proof follows directly from Lemma 3 upon considering a
fractional order µ > 0 in the interval n − 1 < µ ≤ n, n ∈ N. �

3. Gα decomposition approach

This section makes use of the Gα integral transform earlier discussed and further couples it with the
famous decomposition approach by Adomian [12] to present the methodology of the current study. In
short, the section derives iterative closed-form solutions to a generalized nonlinear dynamical model
with an arbitrary non-integer (fractional) order derivative in mathematical physics. Thus, to present the
methodology, let us consider the following theorem:

Theorem 8. Considering the generalized nonlinear non-integer order Initial-Value Problem (IVP)

Dµ
t f (x, t) = L f (x, t) + F f (x, t) + N f (x, t) + h(x, t),

f (x, 0) = g(x),
(3.1)

where L is the highest linear differential operator, F is also a linear operator, but with degree less that
of L, N is the nonlinear differential operator, h(x, t) is the inhomogeneous term, g(x) is the prescribed
initial data; while Dµ

t is the fractional order derivative defined in the Caputo’s fractional sense for
0 < µ ≤ 1, such that [16]

Dµ
t f (t) = J1−µ

0+

d
dt

f (t), Jµ0+
f (t) =

1
Γ(µ)

∫ t

0
(t − s)µ−1 f (s)ds, (3.2)

then, the non-integer order IVP given in Eq (3.1) admits the following iterative Gα decomposition
solution 

f0(x, t) = g(x) + G−1
α {s

µGα{h(x, t)}},

fk+1(x, t) = G−1
α {s

µGα{L fk(x, t) + F fk(x, t) + Rk}}, k ≥ 0,
(3.3)

Proof. Taking the Gα integral transform in t of Eq (3.1) alongside utilizing Lemma 7, Eq (3.1) then
transforms to the following

Gα{ f (x, t)} = sα+1g(x) + sµGα{L f (x, t) + F f (x, t) + N f (x, t)} + sµGα{h(x, t)}. (3.4)

Next, we apply the inverse Gα transform G−1
α to the above equation in s to obtain

f (x, t) = g(x) + G−1
α {s

µGα{h(x, t)}} + G−1
α {s

µGα{L f (x, t) + F f (x, t) + N f (x, t)}}. (3.5)

More so, via the Adomian’s approach, we decompose the unknown solution f (x, t) using the following
infinite sum [12,13]

f (x, t) =

∞∑
n=0

fn(x, t), (3.6)
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and the nonlinear termed operator N f (x, t) using the following infinite sum of Adomian’s polynomials
as follows

N f (x, t) =

∞∑
n=0

Rn, (3.7)

where Rn’s are the polynomials devised by Adomian [12,13], and to be computed via the following
recurrent formula

Rn =
1
n!

dn

dξn

[
N
( ∞∑

j=0

ξ j f j

)]
ξ=0
, n = 0, 1, 2, ... (3.8)

So, rewriting Eq (3.5) in terms of the summations given in Eqs (3.6) and (3.7), we get

f (x, t) = g(x) + G−1
α {s

µGα{h(x, t)}} + G−1
α

[
sµGα

[
L
∞∑

n=0

fn(x, t) + F
∞∑

n=0

fn(x, t) +

∞∑
n=0

Rn

]]
. (3.9)

Finally, identifying the terms arising from the prescribed initial data and nonhomogeneous function
with the first component f0(x, t), and the rest of the terms recurrently follow as suggested by the
approach, we thus get the following recurrent scheme

f0(x, t) = g(x) + G−1
α {s

µGα{h(x, t)}},

fk+1(x, t) = G−1
α {s

µGα{L fk(x, t) + F fk(x, t) + Rk}}, k ≥ 0
(3.10)

�
Moreover, upon taking the net sum of these components, we get the final closed-form solution

f (x, t) = lim
M→∞

 M∑
n=0

fn(x, t)

 . (3.11)

�

Theorem 9. Consider the following coupled system of generalized nonlinear non-integer order IVPs
under the assumptions of Theorem 8

Dµ
t f j(x, t) = L f j(x, t) + F f j(x, t) + N{ f1, f2, ..., fn}(x, t) + h j(x, t),

f j(x, 0) = g j(x), for j = 1, 2, ..., n,
(3.12)

where h j(x, t) are the inhomogeneous terms, g j(x) are the prescribed initial data for j = 1, 2, ..., n.
Then, the non-integer order coupled system of IVPs given in Eq (3.12) admits the following iterative
Gα decomposition solution

f j0(x, t) = g j(x) + G−1
α {s

µGα{h j(x, t)}}, j = 1, 2, ..., n,

f j(k+1)(x, t) = G−1
α {s

µGα{L f jk(x, t) + F f jk(x, t) + R jk}}, k ≥ 0, j = 1, 2, ..., n.
(3.13)

Proof. Without lost of generality, the current proof generalizes the proof of Theorem 8 by considering
n coupled system of generalized nonlinear non-integer order IVPs. �
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4. Applications of Gα decomposition approach

The current section makes consideration to non-integer order versions of the nonlinear evolution
equations given in Eqs (1.2)–(1.4), and further employs the approach just introduced in the above
Section (via Theorems 8 and 9) to scrutinize the non-integer order models.

4.1. Time non-integer order Burger’s equation

Let us consider the following time non-integer order Burger’s equation

Dµ
t f + f fx = fxx, 0 < µ ≤ 1, (4.1)

together with the following prescribed initial condition

f (x, 0) = 2x, (4.2)

where L f (x, t) =
d2 f
dx2 , F f (x, t) = 0, N f (x, t) = f fx, h(x, t) = 0, and g(x, t) = 2x. Therefore, without

further delay, the proposed Gα decomposition methodology posed the following recurrent scheme for
the time non-integer order Burger’s equation


f0(x, t) = f (x, 0),

fk+1(x, t) = G−1
α {s

µGα{ fkxx − Rk}}, k ≥ 0,
(4.3)

with Rk’s denoting the polynomials by Adomian in favour of the following nonlinear term

N f (x, t) = f fx, (4.4)

where we express some of the its few terms using the application of Eq (3.8) as follows

R0 = f0 f0x ,

R1 = f0 f1x + f0x f1,

R2 = f0 f2x + f1 f1x + f2 f0x ,

...

(4.5)
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Thus, from the recurrent scheme given in Eq (4.3) via Eq (4.5), we get some of the components
explicitly as follows

f0(x, t) = 2x,

f1(x, t) = G−1
α {s

µGα{ f0xx − R0}},

= −
4xtµ

Γ(1 + µ)
,

f2(x, t) = G−1
α {s

µGα{ f1xx − R1}},

=
16xt2µ

Γ(1 + 2µ)
,

f3(x, t) = G−1
α {s

µGα{ f2xx − R2}},

= −
96xt3µ

Γ(1 + 3µ)
,

f4(x, t) = G−1
α {s

µGα{ f3xx − R3}},

=
768xt4µ

Γ(1 + 4µ)
,

...

(4.6)

Therefore, the net sum of the above recurrent components gives the following

f (x, t) = lim
M→∞

 ∞∑
n=0

fn(x, t)

 ,
f (x, t) =

∞∑
n=0

fn(x, t) = 2x
(
1 −

Γ(1 + 1)(2tµ)
Γ(1 + µ)

+
Γ(1 + 2)(2tµ)2

Γ(1 + 2µ)
−

Γ(1 + 3)(2tµ)3

Γ(1 + 3µ)

+
Γ(1 + 4)(2tµ)4

Γ(1 + 4µ)
+ ...

)
,

= 2x

 lim
M→∞

 M∑
n=0

(−1)n Γ(1 + n)
Γ(1 + nµ)

(2tµ)n

 .
(4.7)

Note that, when µ = 1 in the above equation, which corresponds to the corresponding integer order
model, the obtained series solution further reduces to the following

f (x, t) = 2x

 lim
M→∞

 M∑
n=0

(−1)n(2t)n

 , (4.8)

which obviously converges to the following closed-form solution [36]

f (x, t) =
2x

1 + 2t
. (4.9)

Additionally, we have shown in Figure 1(a) the three-dimensional (3D) and Figure 1(b) the two-
dimensional (2D) graphical depictions of the obtained series solution in Eq (4.7) of the non-integer
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order Burger’s equation. In Figure 1(a), we fix M = 4 and µ = 0.85; while in Figure 1(b) we set
M = 4, x = 0.0125 and for various values of µ.

Figure 1. The (a) 3D and (b) 2D visualizations of the solution of non-integer order Burger’s
equation determined in Eq (4.7).

4.2. Time non-integer order Schrödinger equation

Let us consider the following time non-integer order nonlinear Schrödinger differential equation

iDµ
t f + fxx + 2 f 2 f ∗ = 0, 0 < µ ≤ 1, (4.10)

together with the following prescribed initial condition

f (x, 0) = eix, (4.11)

where L f (x, t) =
d2 f
dx2 , F f (x, t) = 0, N f (x, t) = 2 f 2 f ∗, h(x, t) = 0, and g(x, t) = eix. Therefore, without

further delay, the proposed Gα decomposition methodology posed the following recurrent scheme for
the problem 

f0(x, t) = f (x, 0),

fk+1(x, t) = iG−1
α {s

µGα{ fkxx + 2Rk}}, k ≥ 0,
(4.12)

with Rk’s denoting the polynomials by Adomian in favour of the nonlinear term given by

N f (x, t) = f 2 f ∗, (4.13)

where we express some few terms as follows

R0 = f 2
0 f ∗0 ,

R1 = 2 f0 f1 f ∗0 + f 2
0 f ∗1 ,

R2 = 2 f0 f2 f ∗0 + u2
1 f ∗0 + 2 f0 f1 f ∗1 + f 2

0 f ∗2 ,
...

(4.14)
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Thus, from the recurrent scheme given in Eq (4.12) via Eq (4.14), we get some of the components
explicitly as follows

f0(x, t) = eix,

f1(x, t) = iG−1
α {s

µGα{ f0xx + 2R0}},

= i
tµ

Γ(1 + µ)
eix,

f2(x, t) = iG−1
α {s

µGα{ f1xx + 2R1}},

= −
t2µ

Γ(1 + 2µ)
eix,

f3(x, t) = iG−1
α {s

µGα{ f2xx + 2R2}},

= −i
t3µ

Γ(1 + 3µ)
eix,

f4(x, t) = iG−1
α {s

µGα{ f3xx + 2R3}},

=
t4µ

Γ(1 + 4µ)
eix,

...

(4.15)

Therefore, the net sum of the above recurrent components gives the following

f (x, t) = lim
M→∞

 ∞∑
n=0

fn(x, t)

 ,
=

(
1 +

itµ

Γ(1 + µ)
+

(itµ)2

Γ(1 + 2µ)
+

(itµ)3

Γ(1 + 3µ)
+

(itµ)4

Γ(1 + 4µ)
+ . . .

)
eix,

=

 lim
M→∞

 M∑
n=0

(itµ)n

Γ(1 + nµ)

 eix,

(4.16)

which converges to the following closed-form solution

f (x, t) = Eµ(itµ)eix. (4.17)

where Eµ(t) is the one-parameter Mittag-Leffler function for 0 < µ ≤ 1. More so, when µ = 1, the
above solution reduces to the following integer solution version [33]

f (x, t) = ei(x+t). (4.18)

Additionally, we have shown in Figure 2(a),(b) the depictions of the 3D plots of the real and imaginary
solution parts of the non-integer order Schrödinger equation determined, respectively in Eq (4.17) for
µ = 0.85. Also, we have shown in Figure 3(a),(b) the corresponding depictions of the 2D plots of the
non-integer order Schrödinger equation determined in Eq (4.17) using x = π/5 and for various values
of µ.
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Figure 2. The 3D visualizations of the (a) real and (b) imaginary solution parts of the non-
integer order Schrödinger equation determined in Eq (1.4).

Figure 3. The 2D visualizations of the (a) real and (b) imaginary solution parts of the non-
integer order Schrödinger equation determined in Eq (1.4) for x = π/5, and for various values
of non-integer order µ.

4.3. Time non-integer order coupled Burger’s equation

Here, we study two variants of the time non-integer order coupled system of Burger’s equations
comprising of homogeneous and inhomogeneous settings. In addition, Theorem 9 will be utilized in
this regard.

4.3.1. Time non-integer order coupled homogeneous Burger’s equation

Let us consider the following time non-integer order coupled nonsingular homogeneous Burger’s
equation {

Dµ
t f = fxx + 2 f fx − ( f g)x, 0 < µ ≤ 1,

Dµ
t g = gxx + 2ggx − ( f g)x, 0 < µ ≤ 1,

(4.19)
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together with the following prescribed initial condition

{
f (x, 0) = sin(x),
g(x, 0) = sin(x),

(4.20)

where L1 f (x, t) =
d2 f
dx2 , F1 f (x, t) = 0, N1 f (x, t) = 2 f fx, h1(x, t) = 0, and g1(x, t) = sin(x), L2g(x, t) =

d2g
dx2 , F2g(x, t) = 0, N2g(x, t) = 2ggx, N3( f , g) = ( f g)x, h2(x, t) = 0, and g2(x, t) = sin(x). Therefore,
as preceded, the following recurrent scheme for the time non-integer order coupled homogeneous
Burger’s equation is obtained



f0(x, t) = f (x, 0),
g0(x, t) = g(x, 0),

fk+1(x, t) = G−1
α {s

µGα{ fkxx + 2Ak −Ck}}, k ≥ 0,
gk+1(x, t) = G−1

α {s
µGα{gkxx + 2Bk −Ck}}, k ≥ 0,

(4.21)

with Ak’s, Bk’s and Ck’s denote the polynomials by Adomian in favour of the following nonlinear terms

N1 f (x, t) = f fx, N2g(x, t) = ggx, N3( f , g)(x, t) = ( f g)x, (4.22)

where we express few terms from these nonlinear terms using the application of Eq (3.8) as follows

A0 = f0 f0x ,

A1 = f0 f1x + f0x f1,

A2 = f0 f2x + f1 f1x + f2 f0x ,

...

(4.23)

B0 = g0g0x ,

B1 = g0g1x + g0xg1,

B2 = g0g2x + g1g1x + g2g0x ,

...

(4.24)

and

C0 = f0g0x + f0xg0,

C1 = f0g1x + g0x f1 + f1xg0 + g1 f0x ,

C2 = f0g2x + f1g1x + f2g0x + f2xg0 + f1xg1 + f0xg2,

...

(4.25)
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Thus, from the recurrent scheme given in Eq (4.21) via Eqs (4.23)–(4.25), we get some of the
components explicitly as follows

f0(x, t) = sin(x),
g0(x, t) = sin(x),

f1(x, t) = −
tµ

Γ(1 + µ)
sin(x),

g1(x, t) = −
tµ

Γ(1 + µ)
sin(x),

f2(x, t) =
t2µ

Γ(1 + 2µ)
sin(x),

g2(x, t) =
t2µ

Γ(1 + 2µ)
sin(x),

f3(x, t) = −
t3µ

Γ(1 + 3µ)
sin(x),

g3(x, t) = −
t3µ

Γ(1 + 3µ)
sin(x),

f4(x, t) =
t4µ

Γ(1 + 4µ)
sin(x),

g4(x, t) =
t4µ

Γ(1 + 4µ)
sin(x),

...

(4.26)

Then, the net sums of the above recurrent components obtained above gives

f (x, t) = lim
M→∞

 ∞∑
n=0

fn(x, t)

 ,
=

(
1 −

tµ

Γ(1 + µ)
+

t2µ

Γ(1 + 2µ)
−

t3µ

Γ(1 + 3µ)
+

t4µ

Γ(1 + 4µ)
+ . . .

)
sin(x),

=

 lim
M→∞

 M∑
n=0

(−tµ)n

Γ(1 + nµ)

 sin(x),

(4.27)

and

g(x, t) = lim
M→∞

 ∞∑
n=0

fn(x, t)

 ,
=

(
1 −

tµ

Γ(1 + µ)
+

t2µ

Γ(1 + 2µ)
−

t3µ

Γ(1 + 3µ)
+

t4µ

Γ(1 + 4µ)
+ . . .

)
sin(x),

=

 lim
M→∞

 M∑
n=0

(−tµ)n

Γ(1 + nµ)

 sin(x),

(4.28)
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which subsequently converges to the following closed-form solution

f (x, t) = Eµ(tµ) sin(x),
g(x, t) = Eµ(tµ) sin(x).

(4.29)

Equally, at µ = 1. the above solution apparently corresponds to that of the corresponding integer order
model that converges to the following exact solution [34,35]

f (x, t) = et sin(x),
g(x, t) = et sin(x).

(4.30)

What’s more, we have shown in Figure 4(a) the 3D and Figure 4(b) the 2D graphical depictions of the
obtained closed-form solution in Eq (4.29) of the non-integer order coupled nonsingular homogeneous
Burger’s equation. In Figure 4(a) we fix µ = 0.85; while in Figure 4(b), we set x = π/15, and for
various values of non-integer order µ.

Figure 4. The (a) 3D and (b) 2D visualizations of the solution of non-integer order coupled
nonsingular homogeneous Burger’s equation determined in Eq (4.29).

4.3.2. Time non-integer order coupled inhomogeneous Burger’s equation

Let us consider the time non-integer order coupled singular inhomogeneous Burger’s equation as
follows {

Dµ
t f = x−1∂x(x fx) + 2 f fx − ( f g)x + (x2 − 4)et, 0 < µ ≤ 1,

Dµ
t g = x−1∂x(xgx) + 2ggx − ( f g)x + (x2 − 4)et, 0 < µ ≤ 1,

(4.31)

with the initial condition as follows {
f (x, 0) = x2,

g(x, 0) = x2,
(4.32)

where L1 f (x, t) =
d2 f
dx2 , F1 f (x, t) = x−1 d f

dx , N1 f (x, t) = 2 f fx, h1(x, t) = (x2 − 4)et, and g1(x, t) = x2,

L2g(x, t) =
d2g
dx2 , F2g(x, t) = x−1 dg

dx , N2g(x, t) = 2ggx, N3( f , g) = ( f g)x, h2(x, t) = (x2 − 4)et, and
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g2(x, t) = x2. Therefore, as preceded, the following recurrent scheme is obtained

f0(x, t) = f (x, 0) + G−1
α {s

µGα{(x2 − 4)et}},

g0(x, t) = g(x, 0) + G−1
α {s

µGα{(x2 − 4)et}},

fk+1(x, t) = G−1
α {s

µGα{x−1∂x(x fkx) + 2Ak −Ck}}, k ≥ 0,
gk+1(x, t) = G−1

α {s
µGα{x−1∂x(xgkx) + 2Bk −Ck}}, k ≥ 0,

(4.33)

with Ak’s, Bk’s and Ck’s the polynomials by Adomian as in the above homogeneous case via the
application of Eq (3.8). Hence, some of the few components from the above scheme are explicitly
revealed as follows

f0(x, t) = x2 +

(
1 −

Γ(µ, t)
Γ(µ)

) (
−4 + x2

)
et,

g0(x, t) = x2 +

(
1 −

Γ(µ, t)
Γ(µ)

) (
−4 + x2

)
et,

f1(x, t) = 4et

(
1 −

Γ(µ, t)
Γ(µ)

)
+ 4t,

g1(x, t) = 4et

(
1 −

Γ(µ, t)
Γ(µ)

)
+ 4t,

f2(x, t) = 0, g2(x, t) = 0,
f3(x, t) = 0, g3(x, t) = 0,

...
...

(4.34)

Accordingly, the net sum reveals the following solution

f (x, t) = x2 + γ
(
−4 + x2

)
et + 4γet + 4t,

g(x, t) = x2 + γ
(
−4 + x2

)
et + 4γet + 4t,

(4.35)

where

γ = 1 −
1

Γ(µ)
Γ(µ, t), (4.36)

with Γ(µ, t) denoting the incomplete Gamma function. More so, it is apparent at µ = 1 that the above
solution corresponds to that of the corresponding integer order model, which converges to the following
exact solution [37]

f (x, t) = x2et,

g(x, t) = x2et.
(4.37)

Additionally, we have shown in Figure 5(a) the 3D and Figure 5(b) the 2D graphical depictions of the
obtained closed-form solution in Eq (4.35) of the non-integer order coupled singular inhomogeneous
Burger’s equation. In Figure 5(a) we fix µ = 0.85; while in Figure 5(b), we set x = π/15, and for
various values of non-integer order µ.
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Figure 5. The (a) 3D and (b) 2D visualizations of the solution of non-integer order coupled
singular inhomogeneous Burger’s equation determined in Eq (4.35).

5. Discussion of results

The current study uses an integrated form of Laplace-type integral transform by the name Gα

integral transform coupled with the Adomian’s approach to examine nonlinear evolution equations
endowed with non-integer order derivatives in time. The specific kinds of nonlinear evolution equations
of interest in the present study include: non-integer Burger’s equation, non-integer Schrödinger
equation, and the non-integer coupled Burger’s equation. Thus, the present method rapidly revealed
convergent closed-form solutions iteratively and efficiently. Additionally, in order to shed for more
light on the obtained solutions, and the relevance of the non-integer order derivative on these models,
we further make use of the Wolfram Mathematica 9 software for the computational simulations, as well
as the graphical illustrations. More specifically, Figure 1 portrays the 3D and 2D graphical illustrations
of the non-integer Burger’s equation; Figures 2 and 3 portray the 3D and 3D graphical illustrations of
the non-integer Schrödinger equation, respectively; while Figures 4 and 5 portray the respective 3D and
2D graphical illustrations of the coupled system of non-integer Burger’s equations, correspondingly. In
these plots, the 2D plots show the variational effects of the non-integer order derivative 0 < µ < 1 on the
respective wave profiles in comparison with the integer order derivative at µ = 1. For instance, in the
case of the non-integer Burger’s equation shown in Figure 1(b), the wave propagates linearly for smaller
values of µ, and gradually increases exponentially with an increase in µ. However, a periodic behavior
was observed in the case of the integer Schrödinger equation at µ = 1 as shown in Figure 2; while this
behavior vanishes as µ decreases. Moreover, since both the wave profiles of the non-integer coupled
Burger’s equation are the same, that is, f (x, t) = g(x, t) with regard to the nonsingular homogeneous
and singular inhomogeneous cases, the wave profiles shown in Figures 4(b) and 5(b) decrease with
an increase in µ, with the integer version being the least. Finally, Figures 1(a), 2, 4(a) and 5(a) show
the corresponding 3D plots for the respective non-integer nonlinear models under consideration when
µ = 0.85. More comparatively, the integer-order solution determined in Subsection 4.1 corresponds
to the solution obtained in [13] by Biazar and Aminikhah using variational iteration method; the same
solution was equally reported by Nuruddeen at al. in [36] via the application of Sumudu decomposition
method. The integer-order solution determined in Subsection 4.2 corresponds to the solution presented
by Nuruddeen [33] using Elzaki decomposition approach; it also corresponds to the solution presented
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by Wazwaz [38] using Adomian’s approach. Finally, the integer-order and non-integer-order solutions
determined in Subsection 4.3 correspond to the respective results presented in [34,35,37,39] using
iterative based decomposition methods. Indeed, the mentioned references confirmed the exactness of
the obtained results.

6. Conclusions

To conclude the current manuscript, an essential and integrated form of Laplace-type integral
transform by the name Gα integral transform coupled with the well-known Adomian’s approach has
been employed to study some important nonlinear evolution equations endowed with non-integer order
derivatives in time. More specifically, we have examined the time-fractional Burger’s equation, time-
fractional Schrödinger equation, and the coupled system of time-fractional Burger’s equation as the
test of non-integer nonlinear models. Additionally, Caputo’s definition of the non-integer derivative
was chosen owing to the fact that the non-integer order does not affect the initial conditions, and on
the other hand, owing to its practicality. Thus, the presented methodology rapidly revealed convergent
closed-form solutions iteratively and efficiently. Lastly, we studied the variational effect of the non-
integer order derivatives on the evolution of the three models under consideration in comparison with
the integer-order derivative when µ = 1, as graphically portrayed via the two and three-dimensional
depictions. Moreover, the literature is well equipped with various coupling between the famous
Adomian decomposition method and various integral transforms. Thus, considering the effectiveness
of the derived techniques, the method is highly recommended for solving strongly nonlinear problems
arising in nonlinear sciences, such as nonlinear evolution equations and Schrödinger equations. More
so, appropriate initial and/or boundary conditions are expected to be supplied for the existence and
uniqueness of the solutions.
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