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1. Introduction

It is assumed that the reader is familiar with the standard notations and basic results of Nevanlinna’s
value distribution theory (see [2,10]). Especially, we use the notions σ( f ) to denote the order of growth
of the meromorphic function f (z) and S (r, f ) to denote any quantity that satisfies S (r, f ) = o(T (r, f )),
where r → ∞ outside of a possible exceptional set of finite logarithmic measure.

The celebrated Fermat’s last theorem [17] elaborates that it do not exist nonzero rational numbers
x, y and an integer n ≥ 3 such that xn + yn = 1. The equation x2 + y2 = 1 does admit nontrivial
rational solutions. Replacing x, y in it by entire or meromorphic functions f , g, Fermat type functional
equations were studied by Gross [8] and many others thereafter. In 2004, Yang and Li [15] did some
related research and they obtained the following result.
Theorem A. [15] Let n be a positive integer, a(z), b0(z), b1(z), · · · , bn−1(z) are polynomials, and bn(z) ≡
bn be a nonzero constant. Let L( f ) =

∑n
k=0 bk(z) f (k). If a(z) . 0, then a transcendental meromorphic

solution of the equation
f 2 + (L( f ))2 = a(z),

must have the form f (z) = 1
2

(
P(z)eR(z) + Q(z)e−R(z)

)
, where P(z),Q(z),R(z) are polynomials, and

P(z)Q(z) = a(z).
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Recently, as the difference analogues of Nevanlinna’s theory are being investigated [2], there are
many interests in the complex analytic properties of meromorphic solutions of complex difference
equations, and many results on the complex linear or nonlinear difference equations are got rapidly,
such as [2,9,11]. In particular, some results on the solutions of the Fermat type functional equation are
obtained [11–13].

In 2012, Liu et al. [11] investigated entire solutions with finite order of the Fermat type differential-
difference equation and obtained the following result.
Theorem B. [11] The transcendental entire solutions with finite order of the differential-difference
equation

f ′(z)2 + f (z + c)2 = 1,

must satisfy f (z) = sin(z + iB), where B is a constant and c = 2kπ or c = 2kπ + π, k is an integer.
In 2012, Gao had discussed the existence or growth of some types of systems of complex

difference equations, and obtained some results [3–7]. Especially, Gao [7] investigated the existence
of transcendental entire functions for the system of the nonlinear differential-difference equationsw′1(z)2 + P1(z)2w2(z + c)2 = Q1(z),

w′2(z)2 + P2(z)2w1(z + c)2 = Q2(z),

and obtained the following interesting result.
Theorem C. [7] Suppose that (w1(z),w2(z)) are the transcendental entire solutions for the above
differential-difference equations, σ(w1,w2) < ∞, then P1(z) = A, P2(z) = B, AB , 0, and

w1(z) =
c11eaz+b1 − c12e−az−b1

2a
, w2(z) =

c21eaz+b2 − c22e−az−b2

2a
,

where a4 = A2B2, A, B, b j, c jk, k, j = 1, 2 are all constants.
The order of growth of meromorphic solutions ( f , g) of the system of the nonlinear differential-

difference equations is defined by

σ( f , g) = max{σ( f ), σ(g)}, σ( f ) = lim sup
r→∞

log+ T (r, f )
log r

.

In 2019, Liu and Gao [13] investigated the existence of entire functions for the nonlinear differential-
difference equation

ω′′2(z) + ω(z + c)2 = Q(z), (1.1)

where Q(z) is a nonzero polynomials and they obtained the following result.
Theorem D. [13] There is a transcendental entire solution w(z) with finite order for the differential-
difference equation (1.1), then Q(z) = c1c2 is a constant, and w(z) must satisfy

w(z) =
c1eaz+b + c2e−az−b

2a2 ,

where a is a constant such that a4 = 1, b and b′ are arbitrary constants, c =
ln(−ia2)+2kπi

a , k is an integer.
Inspired by the above theorems, we [14] consider the existence of entire functions for the nonlinear

differential-difference
ω′′(z)2 + [P(z)(d1ω(z + c) + d0ω(z))]2 = Q(z), (1.2)
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where P(z) and Q(z) be nonzero polynomials, d0, d1 are nonzero constants and we obtained the
following result.
Theorem E. [14] Let P(z) and Q(z) be nonzero polynomials, d0, d1 are nonzero constants such that
d0 = ±d1, then there is no finite order entire solutionω(z) satisfying the nonlinear differential-difference
equation (1.2).

More interestingly, we find that for d1 = 1, d0 = 0, the Eq (1.2) has a transcendental entire solution
with the following form

ω(z) =
q1eaz+b − q2e−(az+b)

2a2 ,

where P(z) ≡ A(, 0) and Q(z) = q1q2(, 0) , a4 = A2, ac = ikπ
2 , b ∈ C, q1, q2, c are nonzero complex

constants, k ∈ Z.
A natural and interesting question is, what we can say about the system of the differential-difference

equation  f ′′(z)2 + [P1(z)(d1g(z + c) + d0g(z))]2 = Q1(z),
g′′(z)2 + [P2(z)(d1 f (z + c) + d0 f (z))]2 = Q2(z),

(1.3)

where P j(z)( j = 1, 2) , Qi(z)(i = 1, 2) are nonzero polynomials and d0, d1 are nonzero constants?
In this paper, we investigate the the existence of finite order transcendental entire solutions for the

Fermart type of the system of differential-difference equations (1.3), and we obtain the following result.

Theorem 1.1. Let P j(z)( j = 1, 2), Qi(z)(i = 1, 2) be nonzero polynomials, d0, d1 be constants such that
d0 , ±d1. If the Fermart type of systems of differential-difference equation (1.3) has transcendental
entire solutions ( f (z), g(z)) such that σ( f , g) < ∞, then P j(z) ≡ P j( j = 1, 2) are nonzero constants and
( f (z), g(z)) can be expressed as 

f (z) =
S ∗1(z)eaz+b1 + S ∗2(z)e−az−b1

2i
,

g(z) =
T ∗1(z)eaz+b2 + T ∗2(z)e−az−b2

2
,

where a4 = P1P2(d0 + d1eac)2, d0 + d1eac , 0, either ac = kπi, k ∈ Z or −2d0
d1

= e−ac + eac, and
S ∗i (z),T ∗i (z)(i = 1, 2) are polynomials related to Qi(z)(i = 1, 2), b1 and b2 are arbitrary constants.

Example 1.1. Let a = 2i, P j = 1
2 , S 1 = S 2 = −4,T1 = 4i,T2 = −4i, d0 = −d1 = 4, then the solutions of

the systems of differential-difference equation
f ′′(z)2 +

[
1
2

(
4g(z −

π

2
) − 4g(z)

)]2

= 16

g′′(z)2 +

[
1
2

(
4 f (z −

π

2
) − 4 f (z)

)]2

= 16

has the transcendental entire solutions
f (z) =

−4ei(2z− π2 ) − 4e−i(2z− π2 )

−8
=

ei(2z− π2 ) + e−i(2z− π2 )

2
= sin 2z,

g(z) =
4iei(2z+ π

2 ) − 4ie−i(2z+ π
2 )

8i2 =
ei(2z+ π

2 ) − e−i(2z+ π
2 )

2i
= cos 2z.
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Corollary 1.1. Let P j(z)( j = 1, 2) be nonconstant polynomials, then the Fermart type of systems of
differential-difference equation (1.3) has no finite order transcendental entire solutions ( f (z), g(z)).
Remark 1.1. We want to prove a stronger conclusion that S i(z),Ti(z)(i = 1, 2) are constants too,
unfortunately we fail. In some special cases, we obtain the ideal result, such as d1 = 1, d0 = 0.

In fact, we investigate the differential-difference equation f ′′(z)2 + [P1(z)g(z + c)]2 = Q1(z),
g′′(z)2 + [P2(z) f (z + c)]2 = Q2(z),

(1.4)

and obtain the following result.

Theorem 1.2. Let P j(z)( j = 1, 2) and Qi(z)(i = 1, 2) be nonzero polynomials. If the Fermart type
of systems of differential-difference equation (1.5) has transcendental entire solutions ( f (z), g(z)) such
that σ( f , g) < ∞, then P j(z) ≡ P j( j = 1, 2),Q1(z) = β1β2 and Q2(z) = α1α2, where Pi, αi, βi(i = 1, 2)
are nonzero constants. Furthermore, ( f (z), g(z)) can be expressed as

f (z) =
β1eaz+b1 + β2e−az−b1

2a2 ,

g(z) =
α1eaz+b2 + α2e−az−b2

2a2 ,

(1.5)

where a8 = P2
1P2

2 and ac = 1
2kπi, k ∈ Z, b1 and b2 are arbitrary constants.

Example 1.2. Let a = 2i, P j = ±4, α11 = α12 = β11 = β12 = 1, then the solutions of the systems of
differential-difference equation  f ′′(z)2 + 16g(z + c)2 = 1

g′′(z)2 + 16 f (z + c)2 = 1
(1.6)

must have the form
f (z) =

e2iz+b1 + e−2iz−b1

−8
=

ei(2z−ib1) + e−i(2z−ib1)

−8
= −

1
4

cos(2z − ib1),

g(z) =
e2iz+b2 + e−2iz−b2

−8
=

ei(2z−ib2) + e−i(2z−ib2)

−8
= −

1
4

cos(2z − ib2).

Furthermore, we take c = 1
4π, then (−1

4 cos(2z − π
2 ),−1

4 cos(2z + π
2 )) is a pair of entire solutions of the

Eq (1.6).
Remark 1.2. Let a = i, P j = ±i, α11 = α12 = β11 = β12 = 1, c = 1

2π then
f (z) =

eiz− π2 i + e−iz+ π
2 i

−2
=

ei(z− π2 ) + e−i(z− π2 )

−2
= − cos(z −

π

2
)

g(z) =
eiz+ π

2 i + e−iz− π2 i

−2
=

ei(z+ π
2 ) + e−i(z+ π

2 )

−2
= − cos(z +

π

2
)

are the solutions of the systems of the differential-difference equation f ′′(z)2 − g(z + c)2 = 0,
g′′(z)2 − f (z + c)2 = 0.

(1.7)

AIMS Mathematics Volume 7, Issue 10, 17685–17698.



17689

This example indicates that the Eq (1.4) maybe also have the solutions of the form as (1.5) when
Qk(z) ≡ 0 (k = 1, 2).
Corollary 1.2. Let P j(z)( j = 1, 2) and Qi(z)(i = 1, 2) be nonconstant polynomials, then the Fermart
type of systems of differential-difference equation (1.4) has no finite order transcendental entire
solutions ( f (z), g(z)).

Next, the last question is what happens when d0 = ±d1 in the Eq (1.3)? When d0 = ±d1, we can
rewrite the Eq (1.3) as the following equations f ′′(z)2 + P1(z)2[g(z + c) + qg(z)]2 = Q1(z),

g′′(z)2 + P2(z)2[ f (z + c) + q f (z)]2 = Q2(z),
(1.8)

where q = ±1, and obtain the following theorem.

Theorem 1.3. Let P j(z)( j = 1, 2) and Qi(z)(i = 1, 2) be nonzero polynomials. If the Fermart type
of systems of differential-difference equation (1.8) has transcendental entire solutions ( f (z), g(z)) such
that σ( f , g) < ∞, then P j(z) ≡ P j( j = 1, 2),Q1(z) = β1β2 and Q2(z) = α1α2, where Pi, αi, βi(i = 1, 2)
are nonzero constants. Furthermore, ( f (z), g(z)) can be expressed as

f (z) =
β1eaz+b1 + β2e−az−b1

2a2 ,

g(z) =
α1eaz+b2 + α2e−az−b2

2a2 ,

(1.9)

where a4 = 4P1P2, b1 and b2 are arbitrary constants. Especially, for ∀k ∈ Z,
(i) ac = 2kπi, when q = 1;
(ii) ac = (2k + 1)πi, when q = −1.

2. Lemmas for proof of Theorems

To prove our theorems, the following lemmas are used play the key roles in proving our main
theorems.

Lemma 2.1. [16] Suppose that n ≥ 2, and let f j(z)( j = 1, · · · , n) be meromorphic functions and
g j(z)( j = 1, · · · , n) be entire functions such that

(i)
∑n

j=1 f j(z)eg j(z) ≡ 0;
(ii) when 1 ≤ j < k ≤ n, g j(z) − gk(z) is not a constant;

(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, f j) = o{T (r, egh−gk)}(r → ∞, r < E),

where E ⊂ (1,∞) is of finite logarithmic measure.

Then f j(z) ≡ 0( j = 1, · · · , n).

Lemma 2.2. [1] Suppose Q(z) is nonzero entire function, P(z) is nonzero polynomial, h(z) is not
constant polynomial and satisfy

(Q′(z) ± Q(z)h′(z))P(z) − Q(z)P′(z) ≡ 0 (2.1)

then Q(z) is a transcendent entire function.
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Lemma 2.3. [16] Let n ≥ 3 and f j(z)( j = 1, · · · , n) be meromorphic functions satisfying
∑n

j=1 f j(z) = 1
such that fk(z)(k = 1, · · · , n − 1) being nonconstant. If fn(z) . 0 and

n∑
j=1

N(r,
1
f j

) + (n − 1)
n∑

j=1

N(r, f j) < (λ + o(1))T (r, fk),

where λ < 1 and k = 1, · · · , n − 1, then fn(z) ≡ 1.

3. Proof of Theorem

3.1. Proof of Theorem 1.1

Proof. Suppose that ( f (z), g(z)) is a transcendental entire solution with σ( f , g) < ∞ satisfying (1.3).
Equation (1.3) can be rewritten as follows

P1(z)[d1g(z + c) + d0g(z)] + i f ′′(z) = S 1(z)eh1(z),

P1(z)[d1g(z + c) + d0g(z)] − i f ′′(z) = S 2(z)e−h1(z),

g′′(z) + iP2(z)[d1 f (z + c) + d0 f (z)] = T1(z)eh2(z),

g′′(z) − iP2(z)[d1 f (z + c) + d0 f (z)] = T2(z)e−h2(z),

(3.1)

where h1(z) and h2(z) are nonconstant polynomials, Q1(z) = S 1(z)S 2(z),Q2(z) = T1(z)T2(z), S i(z)(i =

1, 2) and T j(z)( j = 1, 2) are nonzero polynomials. Then we obtain that
f ′′(z) =

S 1(z)eh1(z) − S 2(z)e−h1(z)

2i
,

d1 f (z + c) + d0 f (z) =
T1(z)eh2(z) − T2(z)e−h2(z)

2iP2(z)
,

(3.2)

and 
g′′(z) =

T1(z)eh2(z) + T2(z)e−h2(z)

2
,

d1g(z + c) + d0g(z) =
S 1(z)eh1(z) + S 2(z)e−h1(z)

2P1(z)
.

(3.3)

By the second equation of (3.2), we see that

d1 f ′′(z + c) + d0 f ′′(z) =
A1(z)eh2(z) + A2(z)e−h2(z)

2iP2(z)3 , (3.4)

where
A1(z) = (H′1 + H1h′2)P2 − 2P′2H1, A2(z) = −(H′2 − H2h′2)P2 + 2P′2H2,

and H1 = T ′1P2 + T1h′2P2 − T1P′2,H2 = T ′2P2 − T2h′2P2 − T2P′2.
Combining the above several equations, we have that

a1(z)eh2(z)−h1(z+c) + a2(z)e−h1(z)−h2(z) −
d1S 1(z + c)

d1S 1(z)
eh1(z+c)−h1(z)
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+
d1S 2(z + c)

d0S 1(z)
e−h1(z+c)−h1(z) +

S 2(z)
S 1(z)

e−2h1(z) ≡ 1, (3.5)

where
a1(z) =

A1(z)
d0S 1(z)P2(z)3 , a2(z) =

A2(z)
d0S 1(z)P2(z)3 .

To facilitate discussion, we rewrite the Eq (3.5) as

A1(z)eh2(z)−h1(z+c) + A2(z)e−h1(z)−h2(z) + A3(z)eh1(z+c)−h1(z) + A4(z)e−h1(z+c)−h1(z)

+A5(z)e−2h1(z) + A6(z)eh0(z) ≡ 0, (3.6)

where h0(z) ≡ 0 and A3(z) = d1S 1(z+c)P2(z)3, A4(z) = d1S 2(z+c)P2(z)3, A5(z) = d0S 2(z)P2(z)3, A6(z) =

d0S 1(z)P2(z)3.

Similar discussion to the Eq (3.3), we obtain that

b1(z)eh1(z)+h2(z) + b2(z)eh2(z)−h1(z) −
d1T1(z + c)

d0T2(z)
eh2(z+c)+h2(z)

−
d1T2(z + c)

d0T2(z)
eh2(z)−h2(z+c) −

T1(z)
T2(z)

e2h2(z) ≡ 1, (3.7)

where
b1(z) =

B1(z)
d0T2(z)P1(z)3 , b2(z) =

B2(z)
d0T2(z)P1(z)3 .

and

B1(z)eh1(z)+h2(z) + B2(z)eh2(z)−h1(z) + B3(z)eh2(z+c)+h2(z)+

B4(z)eh2(z)−h2(z+c) + B5(z)e2h2(z) + B6(z)eh0(z) ≡ 0, (3.8)

where h0(z) ≡ 0 and

B1(z) =(U′1 + U1h′1)P1 − 2P′1U1, B2(z) = (U′2 − U2h′1)P1 − 2P′1U2.

B3(z) = −d1T1(z + c)P1(z)3, B4(z) = −d1T2(z + c)P1(z)3,

B5(z) = −d0T1(z)P1(z)3, B6(z) = −d0T2(z)P1(z)3,

denoting U1 = S ′1P1 + S 1h′1P1 − S 1P′1 and U2 = S ′2P1 − S 2h′1P1 − S 2P′1.
From the formula (3.2), using the fact that f ′′(z) and d1 f (z+c)+d0 f (z) having the same finite order of

growth and f (z) transcendental, we can deduce easily that deg h1 = deg h2 ≥ 1. We claim that deg h1 =

deg h2 = 1. Conversely, we assume that deg h1 ≥ 2 and deg h2 ≥ 2. Since Pi(z), S i(z),Ti(z), hi(z)(i =

1, 2) are polynomials, A j(z)( j = 1, 2, 3, 4, 5, 6) and Bk(z)(k = 1, 2, 3, 4, 5, 6) are polynomials, too. Thus,

T (r, Ai) = o
(
eh2(z)+h1(z+c)−h0(z)

)
, T (r, Ai) = o

(
eh2(z)+h1(z+c)−2h1(z+c)

)
,

· · ·

T (r, Ai) = o
(
e2h1(z+c)−h0(z)

)
, T (r, Bi) = o

(
eh1(z)+h2(z+c)−h0(z)

)
,

· · ·

AIMS Mathematics Volume 7, Issue 10, 17685–17698.
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T (r, Bi) = o
(
e2h2(z)−h0(z)

)
, i = 1, 2, 3, 4, 5, 6.

By Lemma 2.1, we see that

A1(z) ≡ 0, A2(z) ≡ 0, B1(z) ≡ 0, B2(z) ≡ 0.

i.e.,
(H′1 + H1h′2)P2 − 2P′2H1 ≡ 0, (H′2 − H2h′2)P2 + 2P′2H2 ≡ 0,
(U′1 + U1h′1)P1 − 2P′1U1 ≡ 0, (U′2 − U2h′1)P1 + 2P′1U2 ≡ 0.

(3.9)

Noting that S i(z)(i = 1, 2) and T j(z)( j = 1, 2) are polynomials, by Lemma 2.2, we see that T ′i P2 ±

Tih′2P2 − TiP′2 . 0(i = 1, 2) and S ′i P1 ± S ih′1P1 − S iP′1 . 0(i = 1, 2). Hence Hi . 0(i = 1, 2) and
Ui . 0(i = 1, 2). Thus there is only a item that it has the largest degree in Ai(z), Bi(z)(i = 1, 2). For
example, T1(z)h′2(z)2P2(z)2 is the only item that it has the largest degree in A1(z). Then Ai(z) . 0, Bi(z) .
0(i = 1, 2). It contradicts the Eq (3.9).

Now we consider that deg h1 = 1 and deg h2 = 1. Let h1(z) = a1z + b1 and h2(z) = a2z + b2, by (3.2)
or (3.3), we easily obtain that a1 = a2. Hence, we assume that h1(z) = az + b1 and h2(z) = az + b2.

We rewrite the Eq (3.5) as

[a2(z)e−b1−b2−ac−
d1S 2(z + c)

d0S 1(z)
e−2b1−ac −

S 2(z)
S 1(z)

e−2b1]e−2az

+ [a1(z)eb2−b1 −
d1S 1(z + c)

d0S 1(z)
eac] ≡ 1,

hence 
a1(z)eb2−b1 −

d1S 1(z + c)
d0S 1(z)

eac ≡ 1,

a2(z)e−b1−b2−ac −
d1S 2(z + c)

d0S 1(z)
e−2b1−ac −

S 2(z)
S 1(z)

e−2b1 ≡ 0.
(3.10)

Noticing the expressions of a1(z) and a2(z), we see that

A1(z) =eb1−b2 P2(z)3[d0S 1(z) + d1S 1(z + c)eac], (3.11)
A2(z) =eb2−b1 P2(z)3[d0S 2(z) + d1S 2(z + c)e−ac]. (3.12)

Similar discussion to the Eq (3.7), we obtain that

B1(z) = eb2−b1 P1(z)3[d0T1(z) + d1T1(z + c)eac], (3.13)
B2(z) = eb1−b2 P1(z)3[d0T2(z) + d1T2(z + c)e−ac]. (3.14)

Firstly we claim that d0 + d1eac , 0 and d0 + d1e−ac , 0. Conversely, either d0 + d1eac = 0 and
d0 +d1e−ac = 0, or one of d0 +d1eac and d0 +d1e−ac is not equal 0. On the one hand, if d0 +d1eac = 0 and
d0 + d1e−ac = 0, it contradicts the condition that d0 , ±d1. On the other hand, without losing generality,
we assume that d0 + d1eac , 0 and d0 + d1e−ac = 0. Let deg P j(z) = p j, deg S j(z) = s j, deg T j(z) = t j( j =

1, 2), then

deg[d0S 1(z) + d1S 1(z + c)eac] = s1 − 1, deg[d0T1(z) + d1T1(z + c)eac] = t1 − 1,
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deg[d0S 2(z) + d1S 2(z + c)e−ac] = s2, deg[d0T2(z) + d1T2(z + c)e−ac] = t2.

Comparing the degree of the polynomials on two sides of the Eqs (3.11) and (3.13), we have that
t1 + 2p2 = s1 − 1 + 3p2, and s1 + 2p1 = t1 − 1 + 3p1, i.e., p1 + p2 = 2. Comparing the degree of
the polynomials on two sides of the Eq (3.12) and (3.14), we have that t2 + 2p2 = s2 + 3p2, and
s2 + 2p1 = t2 + 3p1, i.e., p1 + p2 = 0. It is a contradiction.

Secondly we claim that P1(z) and P2(z) are constant functions. We set deg P j(z) = p j, deg S j(z) =

s j, deg T j(z) = t j( j = 1, 2). Comparing the degree of the polynomials on two sides of the Eqs (3.11)
and (3.13), we obtain that t1 + 2p2 = s1 + 3p2, and s1 + 2p1 = t1 + 3p1, i.e., p1 + p2 = 0. Since
deg P j(z) = p j ≥ 0, then p1 = p2 = 0. The claim is proved, i.e., P1(z) ≡ P1 and P2(z) ≡ P2 are
constants. Furthermore, we see that deg S 1(z) = deg T1(z) and deg S 2(z) = deg T2(z). Rewriting (3.11)–
(3.14) as follows:

T ′′1 (z) + 2aT ′1(z) + a2T1(z) = P2eb1−b2[d0S 1(z) + d1S 1(z + c)eac], (3.15)
2aT ′2(z) − T ′′2 (z) − a2T2(z) = P2eb2−b1[d0S 2(z) + d1S 2(z + c)e−ac], (3.16)
S ′′1 (z) + 2aS ′1(z) + a2S 1(z) = P1eb2−b1[d0T1(z) + d1T1(z + c)eac], (3.17)

2aS ′2(z) − S ′′2 (z) − a2S 2(z) = P1eb1−b2[d0T2(z) + d1T2(z + c)e−ac]. (3.18)

Let

T1(z) = αszs + αs−1zs−1 + · · · + α1z1 + α0, αs , 0,
S 1(z) = βszs + βs−1zs−1 + · · · + β1z1 + β0, βs , 0. (3.19)

Comparing the leading coefficients of polynomials on both sides of the Eqs (3.15) and (3.17), we obtain
that a2αs = P2eb2−b1(d0 + d1eac)βs, a2βs = P1eb1−b2(d0 + d1eac)αs. Thus

a4 = P1P2(d0 + d1eac)2. (3.20)

Similarly, from (3.16) and (3.18), we have that

a4 = P1P2(d0 + d1e−ac)2. (3.21)

By (3.20) and (3.21), we obtain that (d0 + d1eac)2 = (d0 + d1e−ac)2. Thus, either ac = kπi, k ∈ Z or
−2d0

d1
= e−ac + eac.

Combining h1(z) = az + b1 and h2(z) = az + b2 and integrating the first equation of (3.2) and (3.3)
twice, we have that

f (z) =

∫ ∫
(S 1(z)eaz+b1 + S 2(z)e−az−b1)dzdz

2i
=

S ∗1(z)eaz+b1 + S ∗2(z)e−az−b1

2i
,

g(z) =

∫ ∫
(T1(z)eaz+b2 + T2(z)e−az−b2)dzdz

2
=

T ∗1(z)eaz+b2 + T ∗2(z)e−az−b2

2
,

where S ∗i (z),T ∗i (z)(i = 1, 2) are polynomials related to Qi(z)(i = 1, 2).
Thus, Theorem 1.1 is proved. �
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3.2. Proof of Theorem 1.2

Proof. We do the same proof as in the proof in Theorem 1.1, and easily obtain that P1(z) ≡ P1 and
P2(z) ≡ P2 are constants and deg S 1(z) = deg T1(z) and deg S 2(z) = deg T2(z). Noticing that d1 =

1, d0 = 0 and rewriting (3.15)–(3.18) as follows.

2aT ′2(z) − T ′′2 (z) − a2T2(z) = P2eb2−ac−b1S 2(z + c), (3.22)
T ′′1 (z) + 2aT ′1(z) + a2T1(z) = P2eb1+ac−b2S 1(z + c), (3.23)
2aS ′2(z) − S ′′2 (z) − a2S 2(z) = P1eb1−ac−b2T2(z + c), (3.24)
S ′′1 (z) + 2aS ′1(z) + a2S 1(z) = P1eb2+ac−b1T1(z + c). (3.25)

Let

T2(z) = αszs + αs−1zs−1 + · · · + α1z1 + α0, αs , 0,
S 2(z) = βszs + βs−1zs−1 + · · · + β1z1 + β0, βs , 0.

Comparing the leading coefficients of polynomials on both sides of the Eqs (3.22) and (3.24), we obtain
that −a2αs = P2eb2−ac−b1βs, −a2βs = P1eb1−ac−b2αs. Hence

a4 = P1P2e−2ac. (3.26)

Similarly, from (3.23) and (3.25), we have that

a4 = P1P2e2ac. (3.27)

By (3.26) and (3.27), we see that

a8 = P2
1P2

2, ac =
1
2

kπi, k ∈ Z. (3.28)

Multiplying (3.22) and (3.24), we get

[2aT ′2(z) − T ′′2 (z) − a2T2(z)][2aS ′2(z) − S ′′2 (z) − a2S 2(z)] = −P1P2e−2acT2(z + c)S 2(z + c).

Combining with (3.26), we rewrite the above equation as follow,

a4T2(z)S 2(z) − 2a3[T ′2(z)S 2(z) + T2(z)S ′2(z)] + H2s−2(z) = a4T2(z + c)S 2(z + c), (3.29)

where H2s−2(z) = 4a2S ′2(z)T ′2(z) − S ′′2 (z)(2aT ′2(z) − a2T2(z)) − T ′′2 (z)(2aS ′2(z) − a2S 2(z)) + T ′′2 (z)S ′′2 (z) is
a polynomial with degree 2s − 2.

Next we prove that T2(z) and S 2(z) are constants. Conversely, we assume that deg S 2(z) =

deg T2(z) = s ≥ 1, then 2s − 1 ≥ 1.
By the definition of T2(z) and S 2(z), we easily have that

T ′2(z) = sαszs−1 + (s − 1)αs−1zs−2 + · · · + α1,

S ′2(z) = sβszs−1 + (s − 1)βs−1zs−2 + · · · + β1,

T2(z + c) = αszs + (scαs + αs−1)zs−1 + · · · + cα1 + α0,
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S 2(z + c) = βszs + (scβs + βs−1)zs−1 + · · · + cβ1 + β0.

Comparing the coefficients of the terms of the degree equivalent to 2s − 1 of the two sides of the
Eq (3.29), we see that

a4(αsβs−1 + αs−1βs) − 2a3(sαsβs + sαsβs) = a4[αs(scβs + βs−1) + βs(scαs + αs−1)].

This gives ac = −2, which contradicts with (3.28). Similarly, we obtain that T1(z) and S 1(z) are
constants. Setting

T1(z) ≡ α1, T2(z) ≡ α2, S 1(z) ≡ β1, S 2(z) ≡ β2.

According h1(z) = az + b1 and h2(z) = az + b2 , we have that

f (z) =
β1eaz+b1 + β2e−az−b1

2a2 ,

g(z) =
α1eaz+b2 + α2e−az−b2

2a2 .

Thus, Theorem 1.2 is proved. �

3.3. Proof of Theorem 1.3

Proof. Without losing generality, we only consider that q = 1.
We do the same proof as in the proof in Theorem 1.1, and easily obtain that 1 + eac , 0, P1(z) ≡ P1

and P2(z) ≡ P2 are constants and deg S 1(z) = deg T1(z), deg S 2(z) = deg T2(z). Noticing that d1 =

1, d0 = 0 and rewriting (3.15)–(3.18) as follows:

2aT ′2(z) − T ′′2 (z) − a2T2(z) = P2eb2−b1[S 2(z) + S 2(z + c)e−ac], (3.30)
T ′′1 (z) + 2aT ′1(z) + a2T1(z) = P2eb1−b2[S 1(z) + S 1(z + c)eac], (3.31)

2aS ′2(z) − S ′′2 (z) − a2S 2(z) = P1eb1−b2[T2(z) + T2(z + c)e−ac], (3.32)
S ′′1 (z) + 2aS ′1(z) + a2S 1(z) = P1eb2−b1[T1(z) + T1(z + c)eac]. (3.33)

Let

T2(z) = αszs + αs−1zs−1 + · · · + α1z1 + α0, αs , 0,
S 2(z) = βszs + βs−1zs−1 + · · · + β1z1 + β0, βs , 0.

Comparing the leading coefficients of polynomials on both sides of the Eqs (3.30) and (3.32), we obtain
that −a2αs = P2eb2−b1βs(1 + e−ac), −a2βs = P1eb1−b2αs(1 + e−ac). Thus

a4 = P1P2(1 + e−ac)2. (3.34)

Similarly, from (3.31) and (3.33), we have that

a4 = P1P2(1 + eac)2. (3.35)

By (3.34) and (3.35), we see that (1 + eac)2 = (1 + e−ac)2, i.e., 1 + eac = ±(1 + e−ac), hence e2ac = 1 or
eac + e−ac = 2. By eac + e−ac = 2, we obtain that 1 + eac = 0, that contradicts 1 + eac , 0. Thus e2ac = 1,
i.e., ac = lπi, l ∈ Z. Noticing that 1 + eac , 0, we see that l is a even number. Hence ac = 2kπi, k ∈ Z.
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Multiplying (3.30) and (3.32), noticing that ac = 2kπi, i.e., e−ac = 1, we get

[2aT ′2(z) − T ′′2 (z) − a2T2(z)][2aS ′2(z) − S ′′2 (z) − a2S 2(z)]
= P1P2[T2(z) + T2(z + c)][S 2(z) + S 2(z + c)].

Combining with (3.34), we rewrite the above equation as follow,

a4T2(z)S 2(z) − 2a3[T ′2(z)S 2(z) + T2(z)S ′2(z)] + H2s−2(z)
= P1P2[T2(z) + T2(z + c)][S 2(z) + S 2(z + c)], (3.36)

where H2s−2(z) = 4a2S ′2(z)T ′2(z) − S ′′2 (z)(2aT ′2(z) − a2T2(z)) − T ′′2 (z)(2aS ′2(z) − a2S 2(z)) + T ′′2 (z)S ′′2 (z) is
a polynomial with degree not higher than 2s − 2.

Next we prove that T2(z) and S 2(z) are constants. Conversely, we assume that deg S 2(z) =

deg T2(z) = s ≥ 1, then 2s − 1 ≥ 1. We easily have that

T ′2(z) = sαszs−1 + (s − 1)αs−1zs−2 + · · · + α1,

S ′2(z) = sβszs−1 + (s − 1)βs−1zs−2 + · · · + β1,

T2(z + c) = αszs + (scαs + αs−1)zs−1 + · · · + cα1 + α0,

S 2(z + c) = βszs + (scβs + βs−1)zs−1 + · · · + cβ1 + β0.

Comparing the coefficients of the terms of the degree equivalent to 2s − 1 of the two sides of the
Eq (3.36), we see that

a4(αsβs−1 + αs−1βs) − 2a3(sαsβs + sαsβs) = 4P1P2[αs(scβs + βs−1) + βs(scαs + αs−1)].

This gives ac = −2, which contradicts with ac = 2kπi. Similarly, we obtain that T1(z) and S 1(z) are
constants. Setting

T1(z) ≡ α1, T2(z) ≡ α2, S 1(z) ≡ β1, S 2(z) ≡ β2.

According with h1(z) = az + b1 and h2(z) = az + b2 , we have that

f (z) =
β1eaz+b1 + β2e−az−b1

2a2 ,

g(z) =
α1eaz+b2 + α2e−az−b2

2a2 .

Thus, Theorem 1.3 is proved.
�
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