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1. Introduction

Governments have been prioritizing public health policies and taking decisions, plans and actions
to save human lives from deadly infectious diseases. For this issue, computational biologists
study the dynamics of epidemics in order to prevent and control the spread of infections in the
population [1, 2]. Recently, an epidemic named Corona Virus Disease 2019 (COVID-19) by the
World Health Organization (WHO) has been spreading worldwide, especially in the United States,
Brazil, India and South Africa, and the spread of the epidemic has caused a huge impact on industrial
production and social life [2-8]. The virus has spread widely from person to person, although its
origin remains unclear [9-12]. According to the data released by WHO Coronavirus (COVID-19)
Dashboard. As of 14 February 2022, there have been 416,614,051 confirmed cases of COVID-19,
including 5,844,097 deaths. COVID-19 has generated many mutant strains so far, and some of them
have higher transmission and lethality rates, posing new challenges to the prevention and control of the
epidemic.

In the 14th century, the authorities of the city of Venice adopted quarantine measures for access to
the port, where each crew member of each ship was examined and could be cleared from land once
the entire population was free of symptoms. This idea was adopted as the main measure to prevent the
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spread of infectious diseases such as Ebola and malaria. Recently, quarantine measures have proven
to be effective in the extinction of COVID-19 disease in China [13], which has led many countries to
adopt this strategy in the absence of a vaccine or cure for Neocoronavirus. To understand the effect of
quarantine on epidemic behavior [14-18]. Liu et al. [19] proposed a model with quarantine to describe
isolated individuals in a segregation model.

When studying the spread of epidemics, researchers now consider the impact of environmental
noise, such as high temperature, freezing, drought, humidity, hurricanes, and so on. And they show that
the existence of random factors such that the development of infectious diseases can be interfered [20].
The stochastic model can make up for the shortcomings of the deterministic model. Gard points out
that the population dynamics is often disturbed by random perturbations [21], Cai et al. revealed that
disease outbreaks can be suppressed by white noise [22]. Du et al. [23,24] propose the following model

dS =[A-F(S,I)—pS]ldt + 01SdB(1),
dl = [F(S,I) — (o +y)I]dt + o,1dBy(1),
dR = [yl — pR]dt + 03RdB;(1),

where F(S,1) = %, a1, @, are positive constants measuring the suppression effect. On the other
hand, a novel delayed stochastic model is proposed to describe the role of time delays in reality [25],
which leads to a more complex behavior of dynamical system stability. This concept was described as
temporary immunity in [26] and as a vaccine effect in [27]. However, temporary immunity can also
affect isolated individuals. To better reflect reality, motivated by the study of [23,24], we propose the

following triple-delay SIQR epidemic model with vaccination and isolation strategies

dS =[A-f(S,DI-(p+q)S +qS({t—T1))e™ ™" +yI(t — 12)e™ " + Q(t — T3)e #7]dt
+01SdB (1),

dIl = [f(S,DI — (p+w+7y+0)I]dt + 0,1dB(1),

dQ = [6] — (p + p + &)Qldt + 03QdB;5(1),

dR=1[yl+¢gS +&Q —pR —gS(t —11)e™ """ —yI(t — Tp)e "™ — eQ(t — 13)e 7 ]dt
+04RAB4(1),

(1.1)

where S (¢) stands for the susceptible individuals, I(¢) for infected individuals, R(#) for recovered
compartment and Q(¢) for isolated or quarantined compartment. The parameter 6, €, A, 8 and p denotes
the rate of infectious individuals who were isolated, the recovered people coming from isolation, the
population recuritment rate, the transmission coefficient from susceptible to infected individuals, the
natural death rate respectively. y, w, 1 and g represents the recovery rate of the infective individual, the
death rate for infected, quarantined individuals due to infection complications and the proportional
coeflicient of vaccinated for the susceptible respectively. The time 7, > 0, 7, > O and 73 > 0
represents the delay for the efficiency of vaccine, the length of the immunity period, the delay for
isolated individuals to get back their immunity respectively. The term S (1 —7;)e ™ reflects the fact that
some individuals remains susceptible even after the vaccine for a specific time. The term (¢ — 7,)e ™
represents the individuals who became susceptible because of the lose of immunity for a specific time.
The term Q(#—73)e ™ represents the individuals coming out from isolation with immunity impairment.
The B;(¢) (i = 1,2, 3,4) are independent standard Brownian motions defined on a complete probability
space (Q, 7, P) with the filtration (7)o, satisfying the usual conditions, and o; > 0 represent the
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intensities of B;(f). The incidence of model (1.1) is of the form

BS

1+a;S +a/21+a/351+a/4]2’

S, D =

where a1, @y, @3 and @4 are constants measuring the suppression effect.

As we know, population systems may suffer severe environmental perturbations, such as tsunami,
volcanoes, avian influenza, hurricanes, earthquakes, toxic pollutants, etc. These phenomena cannot
be described by stochastic continuous models. And so it is feasible to introduce a jump process into
the underlying population systems (see e.g., [28—-30]). Our goal in this work is to extend the model
presented in [23] to a model with Lévy noise perturbation and also take in consideration a special
incidence f(S, I) and this model can be practically applied to describe hepatitis B epidemic [31].

dS =[A=f(S,DI-(p+q)S +qS(t —T1)e™™" +yI(t — 12)e™ ™ + eQ(t — T3)e #7]dt
+01SdB(1) + [, ;S ()N(dt, dy),

dl =[f(S,DI — (o +w+y+)I]dt + o,1dB,(¢) + fy .S ()N(dt, dy),

dQ = [61 — (p + p + £)Qldt + 03 QdBs(t) + [, 13(»)Q()N(d, dy),

dR= [yl +¢gS +eQ —pR—¢gS(t —11)e """ —yI(t — 12)e™*™ — eQ(t — 13)e *]dt
+0uRABy(0) + [, mR(IN(d1, dy),

(1.2)

where S (1), I(t"), Q(t") and R(t") is the left limit of S (¢), I(f), Q(¢) and R(f). N = N(dt, dy) is a poisson
counting measure with the stationary compensator v(dy)dt. v defined on a measurable subset Y of
[0, 00) with v(Y) < coandn; > -1, i=1,2,3,4.

Noticing the first three stochastic differential equations in system (1.2) do not depend on the function
R(?), and so we can exclude the fourth one without loss of generality. Hence, we will only discuss the
following system

dS =[A-f(S,DI-(p+q)S +qS(t —T1))e™™" +yI(t — 12)e™ ™ + eQ(t — T3)e™#7]dt
+01SdBi(1) + [, m)S ()N(dt, dy),

dI = [f(S, DI — (p + w +y + O)I]dt + 02 1dBy (1) + [, m(y)S (")N(dt, dy),

dQ = [6] - (p + p + £)Qldt + 73QdB5(t) + [, 13(») Q" )N(dt, dy),

(1.3)

R3 = {(xl, X2, X3) €R3, x; > 0,x, >0, x3 > O}. Let C([-7,0],R?) be the Banach space of continuous
function mappings [-7,0] into R} with norm ||¢|| = SUP_, <o [#(0)], where T = max {7y, 72, 73}. We
assume that
SO) = ¢1(0), 1(0) = ¢a2(6), Q) = ¢3(0),
$:(0)>0,¥0€[-1,0], i=1,2,3,
¢, € C([-7,0],R,) for ie{l,2,3}.

The innovation of this paper as follow:

eWe consider the delay and Lévy noise based on the model in [23], a threshold Rf) of model (1.3) is
obtained. If we disregard Lévy jumps, then R} = R}, here R} is the threshold of the random model (1.1).

e A complex incidence function f(S, ) is considered, and the function can contain the following
form:
(1) Holling Type II incidence f(S,I)I = BS1 [32], Saturation incidence f(S,I)] = 51 [33],

1+asS 1+agl
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Bilinear functional response f(S, )] = BS1 [34].
(2) if @4 = a3 = 0, we obtain Beddington-DeAngelis rate f(S, )] = BT [35].

1+aI+asS

(3) if a4 = 0, a3 = @ a,, Crowly-Martin functional response f(S, )] = W [36].
(4) if @) = a; = a3 = 0, Non-monotonous incidence f(S, )] = 1554112 [37].
(5) if @ = a3 = 0, Holling Type IV incidence f(S, NI = 72p— [38].

e The numerical simulations compare the effects of Lévy noise and white noise on infectious
diseases, and further conclude that Lévy noise can make diseases extinct.

Throughout this paper, we define the operator L associated with the following n-dimensional
stochastic differential equation(SDE)

dX(t) = f(t,X(t))dt + g(t, X(¢))dB(t) + f H(X(), y)N(dt, dy),

Y

X = (x1,x2,-+, x,) . If £ acts on a function G € C*(R"; R,), then
1
LGX@) =G (X)) f(t,X (7)) + itrace(gT(t, X(17)G o (X()gt, X(17)))
+ f [GX() + HX(17),y) — GX()) — G(X()HX (1), y)lv(dy),
Y

and

2
_ (GG(X(I))’_ . GG(X(I)))’G” _ ((9 G(X(®)

Gx . T a._ a._ /nxn:
0x ox, Ox;0x; Jnx

then by Itd’s formula, we obtain
dG(X(1)) =LGX(t))dt + G (X(t))g(t, X)dB(t)

+fy[G(X(f) + H(X(17),y) = GX ()N, dy).

The rest of this article is organized as follows. In Section 2, the existence and uniqueness of the
global positive solution of a stochastic system with Lévy noise is proven. In Section 3, the result of
the analysis is the extinction can be determined when R < 1. In Section 4, we show that disease will
persistence in the mean when Rf) > 1. In Section 5, some numerical simulations to summarize related
results, and provides direction for future research.

2. Existence and uniqueness of the positive solution

Throughout this section, we will establish the existence of a global positive solution for our delayed
stochastic epidemic model with jumps. For the sake of convenience, we shall impose a standard
assumption (H1), which is essential to prove the existence and uniqueness of a global positive solution
of (1.3).

HD1T+n()>0,yeY,i=1,2,3,|In(1 + n;(y))| < C, where C is a positive constant.

Theorem 2.1. For any initial condition (S (0), 1(0), Q(0)) € L'([-,0]; Ri). There is a unique solution
(S(1), [(1), Q(1)) of the stochastic system (1.3) for t > —1 and the solution will remain in R with
probability one.
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Proof. For any initial condition (S (0), 1(0), Q(0)) € Ri, the local Lipschitz condition can make the
system (1.3) exist solution (S (¥), I(¢), Q(¢)) for any ¢t € [-7,7.) almost surely ( 7, is the explosion
time [39]). So, in order to prove the existence of a global positive solution, we need to prove that
7, = oo. In other words, (S (¢), I(?), Q(¢)) will not explode to infinity in a finite time. We choose a
positive constant my > 0. In order to keep S (0), 1(0), and Q(0) all lie within the interval [mlo, mpl, we
let m( be sufficiently large. Next, we construct a set { 7,,,m > my} related to this positive number
mo > 0:

T, = Inf {t €[-7,7.):min{S®),I(1),R(1)} < or max{S®),I),R(®} > m}

1
m
Clearly, we can find that 7,, is a monotonically increasing function of the independent variable m.
According to the definition above, set 7o, = lim,,_,c T;n, We know that 7., < 7, holds. In order to prove
7, = oo we just need to ensure that 7., = oo for (5 (0), 1(0), R(0)) € Ri. We write ¢ as the empty set and
define inf ¢ = oo in this paper. We assume that 7, < co holds, then there exist a pair of constant 7 > 0
and € € (0, 1) such that P(t, < T) > €. From the above discussion, we know that there is an integer
m; > myg such that
P(r, <T) >k, (2.1)
for all m > m;.

Define C? - function V(S,1, Q) : R? — R, by

V(S,I,Q):(S—a—aln%)+(1—l—ln1)+(Q—l—an)

t t !
+ge ' f Sds+ye™™ f Ids + ge™™ f Qds,
-7 -1 1—73

where a is a positive constant determined later, the non-negativity of this function occurs from u — 1 —
Inu > O for Yu > 0. With 1td6’s formula, then

LV =A-f(S,DI-(+q)S +qSt—T1)e " +yI(t — 1) + eQ(t — 13)e™""
+f(S,I)—(p+w+y+6)1+5l—(p+,u+8)Q—%[f(S,I)—(p+a)+'y+6)I]

LA = (S, DI = (p+@)S +qS(t =T)e™™ + Y1t = T2)e™™ + £0(1 — T3)e ]
2 2 2

1
2214 2 B 5101 = 0+ i+ )01+ fy[am(y) ~aln(l + m()v(dy)

+ f [72(y) = In(1 + () v(dy) + f [73(y) = In(1 + 3(y) Iv(dy)

Y Y
SA=pS—(p+w-(p+wW)0 -1 —-e"")gS —(1—e ")yl - (1 —e")eQ
_Aa s af(S,DI act o3 03

S S +a(p+q)+(p+a)+y+6)+(p+,u+s)+T+7+7

+ f [an:(y) = aln(l +3:1(y)]v(dy) + f [72(y) = In(1 + () ]v(dy)
Y Y

+ f [173(y) — In(1 + 73(y)]v(dy).
Y
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From @ < Bl and a = Z*, we get

B
aci o5 03
£VSA+a(p+q)+(p+w+y+5)+(p+y+8)+T+7+7

+ f [ani(y) — aln(1 + n;(y)]v(dy) + f [172(y) — In(1 + 2 (y) ]v(dy)
Y Y

ﬁfmw—mrmmmmm:w
Y
Then,
dV <Wdt + o1(S — a)dB,(t) + o>(I — 1)dB,(t) + 03(Q — 1)dBs(t)

+ f [an:(y) — aln(1 + 11(y)IN(dt, dy) + f [72(y) — In(1 + 2 (y)IN(dr, dy)
Y Y

ﬁfm@—Mmemmey 22)
Y

Integrating both side of (2.2) from O to 7,, A T = min{r,,, T}, then

T AT T AT T AT
f dv(s,I, Q)Sf Wdt+f o1(S —a)dB;(r)
0 0 0

T AT T AT
+f oI — DAB,(1) + f o3(R — 1)dBs(1)
0 0
T AT
+j: Lfmm@yqnm1+m@mﬁwnﬁ0
Y
T AT
+f \fm@—mkmmeM@)
0 Y

T AT
[ [ )=+ o). 23)
Y
Take the expectations to (2.3)
EVIS@u AT), [t ANT), Q(t AT)) < V(§(0),1(0), Q(0)) + WE(T,, A T),

SO, we have
EVIS(t, AT), I(t,, NT),Q(t,, NT)) < V(5(0),1(0), Q(0)) + WT.

Let Q, = {t,, AT} for m > my, and by (2.1), we derive that P(Q2,,) > €. For Yw € Q,, there
is at least one of S(t,, A T),I(t,, AN T) and Q(t,, A T) that equals either % or m. It follows that
VIS(t, ANT),I(t,, NT),O(t,, A T)) is no less than m — 1 — Inm or % -1- ln:; oram—1—Inam
or - — 1 —In . From this we obtain

V(S$(0),1(0), Q(0)) + WT 2E (1o, (@)V(S (T AT), 1(T AT), QT A T)))

m

=E (1o, (@)V(S (T, ), (T, w), Q(T1r, )))

1
>emin{(m — 1 —Inm),(— — 1 + Inm),
m
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@n—1-Inam), (& -1-mly),
m m
where 1q, (w) 1s a indicator function of Q,,(w). Let m — oo, then we attain
oo > V(5(0),1(0), 0(0)) + WT > co.

From this we conclude that the above equation is a contradiction, then S (¢), I(¢) and Q(¢) will not
explode in a finite time. O

We consider the region

_ 3. A
F_{(S,I,Q)ER+.S+I+Q§p+q(l_e_ml)}.

Theorem 2.2. The region I is almost surely (a.s.) positive invariant for the stochastic model (1.3).

Prooi Suppose (S @,I(Q), 0@©) €T, i € [-1,0] and ny > O be sufficiently large such that S(6) €
(nl—o M], 1(0) € (% M] and Q(0) € (% M] . For each integer n > ny, the stopping times are defined as

follows
v, = inf {1 > 0(S (0,10, Q) = X(0) € T, (S0, 1), 0 # (4. ] },
7 = inf{r > 0|(S (¢), I(¢), Q(t)) ¢ T'}.
We need to show that P(t < ¢) = 0 forall # > 0.
Notice that P(r < #) < P(7, <), then we have to prove limsup,_,, P (7, <) = 0. Define the
function
W(S,1,0) = 1 + ! + l
S I Q

then

dW =L Wdt - ﬂdBl(l‘) - %de(t) - Qng(t) _ f( m@)
Y

S 0 S @) +m»S ()

n(y) n3(y) ~
N(dt, dy),
um+m@um+wammw@Q (dh.ay)

here,
A p+q BfES.D qS(E—-1)e  yl(t—T1)e
W=-—=+ + - -
L S2 S S2 Sz S2
8Q(-ty)e*™ o o3 o3 BfS.D) proty+s
S2 s I 0 I2 I

al p+u+8f mo) p f m5() p
o0 T hsaimom T ) taemon @

m0)
P d
o0 +mon

BIS, D z‘[_jﬁl_
RN T )

<

1
p+q+ v(dy)] Edt + [p
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()
(1 +n2(y)
UE16))
y @ +m()

1
+w+y+(5+a§+f v(dy)] fdt
Y

+lo+tu+e+os+

v(dy)] édt.

Then

Il

_f( m()
y\S () +m»S ()

o) mO)
IO +mOIE) T 2E) +mME )

AW <nLWdt - %dBl(t) ~ Z24By (1) - %d&(t)

) N(dt,dy), (2.4)

where

_ BA ) 7 (0) ,
"= max{p““pw(l “ewmy T +fys T+ mon

;) ;
I(1+n()

2
50) v(dy)} :

+p+w+y+6+o-§+f (dy);
Y

2
ptu+e+os+

y Q1 +m3()

Taking integral and expectation on both sides of (2.4) and by virtue of Fubini Theorem, then we
derive

EW(X(s) < W(Xo) +1 f S E(W(X(£)))déE.
Applying Gronwall Lemma, we obtain that 0
E(W(X(s))) < W(Xo) €™.
for all s € [0, A 7,]. Thus,
EW X (tAT,) < W (Xp) "™ < W(Xp)e,t > 0.

In consideration of W (X (¢ A 7,,)) > 0 and some component of X (7,,) being less than or equal to % we
achieve

EWX(AT)) = EWX (1)) Lr,<y) 2 nP (1, <1). (2.5)
By (2.5), we obtain that
nt
B(r, << 0

for all ¢+ > 0. Therefore,
limsupP(r, <1) =0.

n—+oo

The proof is completed. O
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3. Extinction of the disease

In the study of infectious disease models, the search for thresholds is an important aspect, and in
this section we investigate a threshold condition that can determine the extinction and persistence of
the disease. Define a parameter

_ BA
S (p+rgl—e )+ Np+w+y+0)

Ry

2
]

Let R = Ry — m 5 | be the threshold of our stochastic model (1.3) and Rf) be the threshold of
our model (1.3) defined as follows

1 o2
Ry=Ro= s |5 fy [12(3) = In(1 + ﬂz(y))]v(d)’)]
S _ 1 _
=R, Prwty+d) fY [172(y) — In(1 +nz(y))]V(dy)]-

To simplify, we consider the following notation {x(t)) = % fot x(s)ds.

Lemma 3.1. [40] M = {M,},5( be a real-valued continuous local martingle vanishing at t = O then

M
Iim{M,M)=00 a.s = lim L =0, as.
f—00 t—oo (M, M)
and also MM u
lim sup ¢ ,t ) <o as. = lim Tt =0, a.s.
t—0co >0

Theorem 3.1. For any initial value (S(60),1(0),0(0)) € I', 6 € [-1,0], let (S(2), (1), Q(t)) be the
solution of stochastic system (1.3). If Ré < 1, then

In I(t)
t

lim sup <(P+w+y+0)R,-1)<0.

t—00

The disease will be extinct exponentially. Moreover

. _ BA
tlircl}o <S (t)> _p + q(] — e—ﬂTl)’

lim (Q(n)) =0.

Proof. We consider the following function

86—;17‘3 Q ! ! Tt
V=S+I+———+ge"" f Sds+ye™ " f Ids+ge™™ f Qds.
p + l’l +& -7 -7 —713

Using the It6’s formula, we get

LV =[A—(p+q)S — f(S,DI +qS(t—1)e " +vI(t —12)e"™ + Q(t — 13)e "]

AIMS Mathematics Volume 7, Issue 9, 16498—-16518.
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—HT3

+ S, DI-(p+w+y+)]+ L[@] (o 4+ Q]+ ge T+ yeHT
p+u+e
—(@S(t = T)e ™ + g™ + yI(t = T2)e M + Q1 — T3)e ™),

and

—uT3

dV =LVdt + 0SB, (1) + 0>1dBy() + ————0730dBs(1)
p+u+e
—uT3
« [ nos@)+ o)+ PO IN )
Then,

_ _ oge i
dv = [A —(+qg(l—-e*")s — (p+y(1 — e ") +w+o — —)I dt

p+u+e

—HT3

f (71 G)S (1) + I + ‘%ﬂ m()OUIN (L, dy)

o
+01SdB, (1) + 0 ldBy(f) + ——— o5 QdBy(1). G.1)
p+u+e

Therefore, intergrating both sides of (3.1), we obtain

3 A (p+y(1 = e ™M) +w+0)(p + 1) + e(p+y(1 — e ) +w)
B e o+ e+l - ) v
—$(2), (3.2)
where
S (1) + 1(t) + 222 (1) + ge™™ || ' Sdstyer™ [1 Ids+ee ™ [T Qds
$(1) = ' . =

[o+q(1 = e+t
SO +10) + £75000) + e [ " Sds+yer [ Idsveer™ [ Qds
o +q(1 — e+t
. Iy IS @) + mOI(E) + Z22p3(0) Q)N dt, dy)
[p+q(1 —e )]t
. Jy 1S dB () + [§ oaldBy(0) + 222 [ o3 QdBs (1)
o+ q(1 —e )]t '

Since (S, 1, Q) € I', and taking expectation of ¢(¢), we obtain lim,_,, ¢(¢) = 0. Now, applying 1td’s
formula to the function In /() we get

dlnI(t):[f(S,I)—(p+a)+y+6+%<T§)—fnz(y)—ln(l + .(y)v(dy) | dt
Y

+02dBs (1) + f In(1 + 7>(y))N(dt, dy). (3.3)

Y
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Noticing that the function f(S, I) can be written as

£ =- A —s) Plp+qd —e™))
’ p+q(l —e+m) e+ qg(l—e )+ aA)(1 +a1S + a] + a3S T+ ayl?)
BAayI BA
_(p +q(1 — e )+ a A1+ a1S + aod + azST + ayl?) - p+qg(l—e ) +aA
BA@:S 1
T(p+q(l—e )+ A1+ 1S + ol + asST + aul?)
BAa,I?

C(p+q(l—e ) +a A1 +a1S + ol + asST+ aul?)’
Then
BA

S,I) < .
168D p+q(l—er )+ a A

Hence, integrating both sides of (3.3) and by dividing by t we obtain

Inl(r) InI(0) BA o3
< + -ptw+o+y+—
t ot p+q(l—e* )+ oA bt+w Y 2)

+l f f 1n(1+;72(y))1§/(dz,dy)+1 f o2dBs(1).
t Jo Jy r Jo

By the strong of large number law for local martingales [41], and for Ré <1, we get

, In1() BA o3
1 < -ptw+o+y+—
o v e raa PO

1 (" - 1 ("
+ lim sup " f f In(1 + n,(y))N(dt, dy) + lim sup " f 02dB;(1)
0 Jr 0

t—00 t—0o0

=(p+w+7y+0)(R,—1),

which leads to lim,_,., 1(¢) = O.
From (3.2) we obtain

(p+y(1 = e ) +w+0)(p + 1) + e(p+y(1 — e™?)+w)

}Lrglo Sy =- b it o)+ gl =) ,132 (1))
T
B A
Cp+g(l—e )

Integrating third equation of system (1.3),
N -0 I 1 ("

—Q( ) . 0 :5;f I(s)ds — (o +u + 8);[ O(s)ds
0 0

1 [ 1 N
+—f0'3Qst(t)+—f fng(y)Q(t‘)N(dt,dy).
tJo tJo Jy
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Hence, from lim,_,., /(#) = 0 and by the strong law of large numbers for local martingales

!

1
lim — O(s)ds =0 a.s.

t—oo 0

So our proof is complete. m|
4. Persistence in mean of the disease

In this section, we investigate the persistence of the disease. First, we recall the following definition.

Definition 4.1. [42] The solution of the stochastic model (1.3) is said to persistence in the mean, if

liminf (x(z)) > 0 almost sure (a.s.).
—o0

Lemma 4.1. [42] Let f € C([0, ), (0,+0)) and F € C([0, +00),R) such that if there exist positive
constants my, m, and T, such that

lnf(t)Zmlt—mzff(x)dx+F(t) a.s. for all t>T,
0

and lim,_, @ =0 a.s., then
liminf (f(0) > = a.s.
—0o0 m2
Let
1= Blp + g1 — e ™)) (p+y(1 — e +w+6)(p + ) + e(p+y(l — e ™?)+w)

+p+e)p+q(l—ern)(p+q(l—e*)+aiA)
IBAQ'Z BAQ’3 ﬁAa4
" o+ q(l —em ) +a A I+ o+ q(l —enm) - p+q(l— 6_’”1))] .

Theorem 4.1. Let (S(t), I(t), Q(t)) be the solution of system (1.3) with initial value (S (0), 1(6), Q(0)) €
I, 0€[-1,0l. IfR, > 1, then

P+w+o+y) _
A

liminf (/()) >(R}, — 1) I >0,
t—00

A o < liminf (S (¢)) < limsup (S (¢))
lo+a+ mimem) o
< A B [(p+’y(1 — e ") +w+0)(p + 1) + e(p+y(1 — e ?)+w) r
~ p+q(l —erm) (p+p+e)p+q(l—erm) ’

. 0 .
llf‘ggonﬂQ(t)) > ml > 0,

where I' = (RL — 1) &40t
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Proof. From Theorem 2.2, we can get

A Blp +q(1 —e™™))
f(S,H=- -5
(p + g(1 — e#m) ) e+ gl —e )+ aA)(1 +a1S + a +a3S T+ ayl?)
B BAay] N BA
e+ qg(l—e )+ a A1 +a1S +a] +a3ST+ayl?)  p+q(l —e ) +aA
BAasS 1
T(p+q(l—e )+ A1+ 1S + ol + a5ST + aul?)
BAa,I?
T(p+q(l—e )+ A1+ 1S + ol + asST + aul?)
>_( A —S) Blp +q(1 —e™™)) N BA
 \p+g(l—erm) +g(—e*)+aA)| p+gq(l—e*)+aA
BAa,l BAasS 1 BAayl?

_p +g(1 —e ) + a 1A - p+q(l —e ) +a A - p+qg(l —e ) +a A
Blo+a(l—er™) _[ BarA

T p+q(l —e )+ aA p+qg(l —e ) +a A

,31\20/3
o+ q(1—e ) + a1 A)(p + g(1 — e#m))
_ BN ay ]I
(o +q(l — e ™) + a1 A)p+q(l —erm)) |

Applying the Itd’s formula to the second equation of model (1.3) yields

dInI(t) =LVdt + 0,dB(t) + fln(l + 1,(y))N(dt, dy),

Y

where )
LV=fS.D-(p+tw+y+d+ %) - f(nz(y) — In(1 + m()v(dy).
Y

Then

Blp +q(1 —e™™))
p+q(l—e ) +a A
+ f (m2(y) — In(1 + Uz(y))V(dy))] dt

Y
BarA B BA a3

pral—erm) +ah  (p+q(l—er) +arA)p+q(l - erm)
- N e 1di

(o +q(l —e*) + a1 A)(p + g(1 — e#))
+0,d B (1) + fln(l +,(y))N(dt, dy). 4.1)

Y

dinI(t) >

o2
S—(p+w+7+6+72

From the result (3.2) and integrating (4.1) between 0 and t we have

Blp + g1 —e™*™)) A

InI(z) >
. ()_p+q(1—e‘/”')+a1Ap+q(l—e‘/”1)
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Bl +qg(l—e*M) |(p+y(l —e ™) +w+6)(p + ) + e(p+y(l — e ™)+w)
Cptg(l—e ) +aA (p+p+&)p+q(l —erm))
Ba, A ,8A2013
pral—er)+ah  (p+q(l—e+™) +aA)p +q(l —ern)
,BAZCM
T (ot q(l =)+ arA)p + (1 — ehm))

+ f (M (y) — In(1 + (Y )))V(dy)) t+ (1),
Y

()t

2
](I(t)>t—(,o+cu+6+y+2

2

where

_ Blo+gl—er))
p+qg(l—e* )+ a A

(1) = ot + f 02dB,(1) + f fln(l +12(y))N(dt, dy) + In 1(0).
0 0 Jy

By the strong law of large numbers for local martingales that

f@:

limin 0, a.s.

11—

Hence, by Lemma 4.1 we get

Blp + q(1 — e™™)) ((p+7(1 — e ") +w+0)(p + ) + e(p+y(l - e‘“’2)+w))

P+q(1 —e M)+ mA (p+’u+8)(p+q(1 — eH))
BA BAas BAas

’ p+qg(l —e ) +a A (az * 0+ q(l —erm) + o +q(l = e—/m))] (1))

>R —1)(p+w+d+7y).

Then, we get

P+w+o+7y)
A
=I"> 0. 4.2)

lim inf (/(1)) >(R) - 1)

From (3.2) and (4.2), we can check that

li S@) <
O =)

(o+y(1 — e ™) +w+0)(p + ) + e(p+y(1 — e#?)+w)
(b +u+op+g(l—erm)

—lim inf

t—00

(1)

A
<
p+gl—etrm)
(o+y(1 — e™™)+w+0)(p + ) + e(p+y(1 — e#?)+w)
(p+u+e)p+q(l —erm))

Also, from Theorem 2.2 and the first equation of (1.3) gives

BA
p+q(l—e*rm)

I

ds() >

A- (p +q+ )S(t)] dt + 1S (H)dB (t) + f mOS EN(L, dy).
Y
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Then

A SH-SO 1
(p gt q(f_ e_m)) (S@) 2A - w +- fo o1 (1)dBy (1)
[ .
+- f f’h(y)S (1" )N(dt, dy).
tJo Jy

By the law of large numbers for martingales and S (¢) € I', we obtain

A

(P+4+;ﬁ)'

lim inf (S (¢)) >
t—> 0

From the third equation of the system (1.3), we have

2000 ;1 [ gds-tprp+ o)t [ 0twas
t rJo rJo

1 1 [ -
+—f 030dBs(t) + —f f’h()’)Q(l_)N(dl, dy).
tJo t Jo Jy

Hence, from the strong law of large numbers for local martingales we get

o
lim inf (Q(f)) =—— liminf (I(¢))
t—o00 p =+ lu + & to

>———T>0.
p+u+e

So our proof is complete. O

5. Numerical simulations

In this section, we shall use Euler-Maruyama numerical approximation [43] to illustrate the rigor of
our analytical results. The two examples are given below concern the results obtained in Theorems 3.1
and 4.1. Moreover, we numerically simulate the solution of a corresponding system (1.2) for the
comparison.

Example 5.1. According to the parameters in the paper [31], Choose A = 0.5, 8 = 0.2, p = 0.1,
q=0106=0.15v=011,w=012,u =02, = 03,7y =0.1,7, = 05,73 = 05,1 = 0.22,;, =
az; =a4 =02, =001,7, =0.1,73 =0.03and Y = (0,00),v(Y) =1, 0y = 05 = 03 = 0.1. Then
Ry =1.04 > 1,R = 1.024 > 1, however R, = 0.9921 < 1.

The computer simulation illustrated by Figure 1, support the result of Theorem 3.1. That is to say,
the disease in system (1.3) (with jump) dies out exponentially with probability one, although the disease
in system (1.1) (without jumps) persists. If we decrease 510 0.19, we get Ry = 0.995 < 1,R) = 0.97 < 1,
and R = 0.9421 < 1. By Theorem 3.1, the disease will tend to zero exponentially with probability one.

AIMS Mathematics Volume 7, Issue 9, 16498—16518.
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—Deterministic
—With jumps
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—Deterministic
—With jumps
2 _
15 b
l H —
0.5 i
ot ; ; ; ; ; ;
200 400 600 800 1000 1200

t
Figure 1. The solution of the stochastic model (1.1) is described as a blue curve, the solution
of the stochastic model (1.3) is described as a black curve and the solution of the deterministic
model (1.3) is described as a red curve.

Example 5.2. Choose 8 = 0.19 and other parameters be the same as Example 5.1. Then Ry = 1.15 > 1,
Ry = 1.12 > 1, Ré = 1.09121 > 1. By Theorem 4.1 , We can get lim,_,, (S(t)) = 1.0921 > 0,
lim, . (I(¢)) = 0.593 > 0, lim,_,., (Q(¢)) = 0.1201 > 0. This means that the disease persists almost
surely. The come simulations showed in Figure 2 support the result 4.1 clearly.
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Figure 2. The solution of the stochastic model (1.1) is described as a blue curve, the solution
of the stochastic model (1.3) is described as a black curve and the solution of the deterministic
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6. Conclusions

Since the role of isolation has been shown to be meaningful for the prevention and control of
infectious diseases such as for the recent influenza disease COVID-19. Therefore the dynamical
behavior of a delayed SIQR stochastic epidemic model with Lévy noise is studied. In comparison with
the studies of [23], we explore a new response function f(S, I) and consider the Lévy noise. Where the

reaction function can contain forms such as Holling Type II incidence f(S,1)I = lfi js, Saturation

rate f(S,0I = 2L Bilinear functional response f(S,I)] = BSI , Beddington-DeAngelis rate

1+a; 1

f(S,DI = - Crowly-Martin functional response f(S, )] = — B Non-monotonous

1+ail+a2S ° l+al+axS+a1axS1°
incidence f(S, I = % , Holling Type IV incidence f(S, )] = % A threshold value Ré is
derived

o If Rf) > 1, the disease will persistence in mean.

o If Ré < 1, the disease will tend to extinction exponetially.

We can also compare the expressions for Rf) and the parameter R,. Obviously, when we ignore the
environmental noise and Lévy noise, we show that Rf) = R} = Ro, this implies that the stochastic model
is an extension of corresponding deterministic model.

The following topics deserve further discussion. Since white noise is a continuous stochastic
perturbation, some discontinuous perturbations such as the color noises can be further investigated
and the effect of the impulsive can also be considered. At the same time, we can also try to find the
probability density function by solving the Fokker-Planck equation of stochastic model (1.3). We left
the above topics for future work.
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