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Abstract: The problem of delay-range-dependent (DRD) stability analysis for continuous time
Takagi—Sugeno (T-S) fuzzy time-delay systems (TDSs) is addressed in this paper. An improved
DRD stability criterion is proposed in an linear matrix inequality (LMI) framework by constructing an
appropriate delay-product-type (DPT) Lyapunov—Krasovskii functional (LKF) to make use of Bessel-
Legendre polynomial based relaxed integral inequality. The modification in the proposed LKF along
with the judicious choice of integral inequalities helps to obtain a less conservative delay upper bound
for a given lower bound. The efficacy of the obtained stability conditions is validated through the
solution of three numerical examples.
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1. Introduction

Most of the physical models are nonlinear in nature, and they frequently involve many complex
input-output relationships. Over the years, different nonlinear control techniques were developed to
obtain the actual behavior of the nonlinear models [1, 2]. The Takagi—Sugeno (T-S) fuzzy model
approach is recognized as an effective tool for approximation of complex nonlinear systems among
several control methods [3]. The development and application of the T-S fuzzy model have greatly
increased for the study of nonlinear systems. The universal approximation principle, which states that
a T-S fuzzy model may estimate any smooth nonlinear system with any degree of certainty, made it
possible to use a T-S fuzzy model to investigate nonlinear systems. The T-S can represent a nonlinear
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system into local linear models through nonlinear membership functions so that established stability
and control theories can be applied directly [4—6]. The major purpose of the T-S fuzzy control
technique is that the stability and control architectures can be transformed into the linear matrix
inequality (LMI) framework. [7].

Time delay is inherently present in most engineering systems, and it is one of the primary reasons of
instability and performance degradation [8,9]. Numerous results addressing the synthesis and analysis
of T=S fuzzy systems with variable time-delay conditions have been obtained as a result of the industrial
need [20—40]. The Lyapunov second approach can be used to analyze the stability of time-delay
systems in two ways, (i) delay-dependent stability [8—14], and (ii) delay-independent stability [15]. A
Lyapunov—Krasovskii functional (LKF) with an integral term is developed to obtain an efficient delay-
dependent stability condition. Constructing a suitable LKF and estimating the integral term in the
derivative of the LKF is the most common strategy for minimizing conservativeness. So far, various
methods have been presented for processing the integral term and reducing the conservatism, such as
model transformation method [10], free-weighting matrix approach was proposed in [11], Jensen’s
inequality technique in [35, 8, 17], reciprocal convex lemma in [12], Wirtinger-based inequality [13],
auxiliary-function-based inequality [14]. In order to further improve the stability conditions of time-
delay systems, quadratic function negative-determination lemma was introduced in [16, 18].

Apart from the various bounding inequalities, constructing a appropriate LKF is another key point.
In the recent years, delay-partitioning LKFs and augmented LKFs are broadly studied and successful
results have been achieved [21, 22]. However, introducing too many free matrices makes computing
LMIs immensely challenging, increasing processing complexity. Recently, a line integral fuzzy
Lyapunov function was used to analyze the stability of T-S fuzzy systems in [23]. In the meantime,
the concept was utilized for LMI based control design in [24]. Although the line integral Lyapunov
function can be utilized to avoid time derivatives, it can also result in bilinear matrix inequalities in
the controller design, which can be difficult to extrapolate for higher-order systems [25-30]. In the
recent years, augmented LKF technique and Bessel-Legendre ploynomial based integral inequality
have been used to obtain the less conservative results for T-S fuzzy TDS in [31-40]. As a result, a
less conservative criterion can be obtained by selecting a suitable LKF and developing a new integral
inequality. A unique LKF construction method, called delay-product-type (DPT) functional approach,
was recently introduced and analyzed in [31, 34, 36, 39], taking into account both conservatism and
computational burden. Specifically, this LKF construction method multiplies time-varying delay
terms with integral and non-integral terms, resulting in a LKF with additional time-delay information.
Also, because the restriction on certain places is eased when using the DPT functional method, the
LKF have a more comprehensive form. Thus, by combining the new Bessel-Legendre
polynomial-based relaxed integral inequality with the augmented and DPT LKEF, it is possible to
obtain a less conservative admissibility condition for T-S fuzzy systems with time-varying delays.
This is the motivation of this paper.

The aim of this paper is to study the stability of T=S fuzzy systems with time-varying delays. The
main contributions of this study are listed as follows:

(1) A less conservative stability condition is established for T-S fuzzy TDS by constructing a suitable
DPT augmented LKF. The proposed LKF has the motivation that, situations of various delay
derivative nature can be handled with ease and less complexity.

(i) Bessel-Legendre polynomial based relaxed integral inequality is used to estimate the integral
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terms coming out from the derivative of LKF.
(iii)) The advantages of the proposed stability criteria are demonstrated using three numerical examples
and a comparison of maximum delay upper bound results with various recent stability criteria.

Notation: Throughout this paper, A” and A~! stands for the transpose and the inverse of the matrix
respectively, R” denotes the n-dimensional Euclidean space; R™ is the set of all n X m real matrices;

P > 0 means that the matrix is positive definite; S ym(A) is defined as A + AT; for any square matrix A

and B, define diag (A, B) = [6‘ >

b )

2. Problem formulation and useful lemmas

. . . A
] . The notation [ stands for the identity matrix and .

g] stands for

Consider the following nonlinear system with time delay as

n@ = f@&n@,nt—-y®), =0, 2.1)
n() = ¢(), —y, <t <0,

where 7n(f) € R” is the state vector, ' f’ is a non-linear function, 7(¢) = ¢(¢) denote the initial condition
on [—y»,0] and y(?) is the time-varying delay differential function.

The T-S fuzzy model of the system given in (2.1) can be described by following IF-THEN form as
Rule i: IF 6,(¢) is G;; and ... and 6,(?)is G;, THEN

() = Am(t) + A,nt —y(1), >0, (2.2)
n =¢@), -y2<t<0,

where 6,(1), 6,(1), .....,0,(t) are the premises variables, G;; are the fuzzy membership functions with
i =1,23,..,r, j = 1,2,3,.., p, the scalars r and p indicates the number of fuzzy IF-THEN rules
and number of premise variable, respectively. A;, A,, are known system matrices of appropriate
dimensions. The delay differential function y(¢) satisty the following:

O<y1 <y®) <7y Vvi<yO) =<, (2.3)

where vy, v,, v and v, are given positive scalars represent the lower and upper bound of y(#) and y(¢),
respectively.

If 6;(1) = 6? are given, where 9? are singletons, then for each i fuzzy rule, the aggregation of the
fuzzy rule using fuzzy ‘min’ operator can be expressed as

A01) = (G (O1 (D) A .. A Gip(0,(1)) i = 1,2, .7, (2.4)

where G;1(6,()), ..., Gip(0,(2)) 1s the grade of the membership of 6,(¢), ...., 6,(¢) in G;;.
By fuzzy blending technique, the final output of (2.2) is calculated as

S AO) {Am(t) + At =y ()} L
- ST A0 = > w0 [Am®) + At =y}, 23
=17 i=1

()

AIMS Mathematics Volume 7, Issue 9, 16464—-16481.



16467

A;(0(t . . . .
where w;(6(r)) = & Vtandi = 1,2,...,r, is called the fuzzy weighting function and

Dim1 /l,-(é?(.t))’ .
A,(0()) = ?:1 Gij(6,(1)). Since A;(6(t)) > 0, it holds that w;(6(¢)) > 0 and }};_, w;(6(z)) = 1 for all

i =1,2,...,r. Further, w;(6(t)) will be denoted as w; for simplicity.
The objective of this study is to derive a delay-range-dependent stability condition for T-S fuzzy
time delay system (2.5). Following lemmas are used to obtain our main result.

Lemma 1. ( [40]) For a positive definite matrix R > 0, and any continuously differentiable function
n(.) : [01, 62] = R”, the following inequality holds

)
S f i’ (o)Ri(p)dp > P RY¥, + 3%, RY, + 5¥] RY; + T¥/RY,, (2.6)
01

where
= [77(52) - n(51)], 012 = (62 — 61),

2 (™
¥y = [n(62) + (1) - — f n(p)dp),
01

12

6 ”
= [0~ o0+ = [ nipvdo - f | todoas),

01

12 2 120 % %
¥y = [77(52) +n(01) — o f; n(p)dp + — f f n(p)dpdd — — f f n(p)dpdﬂd@

Lemma 2. ( [40]) Let n(t) be a continuously differentiable function, R € R™" be real symmetric
positive definite matrix and W, (1), Y»(t) € R are real vectors, €, € € [0, 1], §; < 6(f) < 6, are
positive real scalars and 1 satisfies T € (0, 1). If there exists any real symmetric matrices M,, M, €

R¥4 and any appropriately dimensioned matrices X, X, € R¥>#,

[%—Ml X1 ] >0 [%—Gle Xz

* R - 62M1 - * R - M2:| = 0’ (27)

such that the inequality

(1-1)

t—01
~513 f 7" (P)RA(p)dp < —x" (1)|w] (% +(1-1M, + ¢ Mz) ¥

t—0>

= Sym{y] (X + (1 = DX2) Yo

2
! (9& +TM, + & 17_ TMl) ANG) 2.8)

holds, where

[T T, T, 1 o
O U O | e,

1—5(1) 1—01 1—01 r
R dpdo,
51— 6(r)f ' (p)dp (6<r> ©() -6, f 5(;)[9 mp)dp
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t—0(1) t—0(1) . 6 —6) —5 —61 .
@ 6<r>>2 L Aol A A AR
1—0(1) t—0(t) t—0(t)
@ - 6(r>)3 f f f ' (p)dpdads),

¥ =[0'1 oy 03 0’4] ‘/’2—[0'5 o5 07 0'8] ’

R =diag{R, 3R, 5R, TR}, o1 = (e; — ey),

o = (€1 + ey —2ey),03 = (e; — e + 6ey — 6¢5), 05 = (€2 — €3),06 = (€2 + &3 — 2es),
07 = (e; —e3 + bes — 6e7), 04 = (e] + e, — 12e4 + 30es — 20eg),

og = (es + e3 — 12e5 + 30e; — 20ey),

Eq = [Onx(qfl)n Lysn Onx(9—q)n], g=12,..09.

Remark 1. It is worth noting that Lemma 2 is coupled to the two predefined individual factors €, and
6. € and & can be determined independently because they are distinct of each other and unrestricted.

Lemma 3. ( [19]) Let f(s) = a>s* + as + ay, where s € [hy, hy) and ay, a,,a, € R. Suppose that the
Jfollowing conditions are satisfied

(@) f(hy) <0, (ii) f(hy) <0, (iii) — ax(hy — h)* + f(y) < O.

Then, f(s) < 0.
3. Stability analysis

In this section, an improved DRD stability condition is established for the T-S fuzzy TDS (2.5).
The following notations are defined for simplicity:

1) = [0 @, 0"t =y, 0" =y @), 7" =y, 7@, 7=y, 7=y @), 7@ =72,
) t 1 =i p t—y(1) y
— n "(p)dp. D=7 fw) ) p, y(t)f n" (p)dp,

=1

= dpdf, ——— dpd,

f f” (0)dp <y<r> 7"y f,mf 7 (P

t—y(1) t—y(1) . r
dpdf— dpdde,
()’2— (r))f fg 7P ﬁLlﬁ"wP
fl Y1 ft—yl ft—)’l T(p)d 0

()’(I) Y1)} ¥ Jo 2 1 p

t=y(1)  rt=y(@) =y (D) T (t) —
_° f f f 0" (0)dpdAde| yi2 = (y2 — y1), @ = L=,
r2=v@®) Jioy, Jo b Y12

i

&) = [n ®, 1" (t = y®), 0"t = y2), 7@, 7" (¢ =y®), 7't = y2), —= ' (p)dp,

() t—y(t)
1 ft—)’(t) T(p)d 9 ft ft T(p)d 10
=70 Jyy TP R S Jy TP
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t—y(1) t—y(1)
dpdAdo,
(n—y(r)) . f ) f y(,)f f ' (©)dp

t—y(®) =y =y (t)
(72 —7(t))3 f f f n (p)dpcude] :

—

€p = [Onx(p—l)n Inxn OnX(G—p)n]’ P = 1’23 ERE) 6, €y = [Onx(q—l)n Inxn On><(17—q)n:|7 q
zr = [Onx(r—l)n J 0n><(3—r)n]’ r=1,2,3, e, = [Onx(s—l)n Lsn Onx(l2—s)n]a s=1,2,..,

Theorem 1. For given scalars yi,7y,, v and v,, the T-S fuzzy TDS (2.5) with (2.3), is asymptotically
stable if there exist symmetric positive definite matrices P, € RO P, ¢ R¥# Q, € R¥™ (I =

1,2,3,4), Ri € R™" symmetric matrices My € R¥* and any matrices Y,

c R4n><4n (k — 1’2)

and N, (p = 1,2,3) with suitable dimension such that the following LMIs are satisfied for all y(t) €

vi,w], i=1,2,...,r

P+ TP, T >0, P+ 7T P, T > 0,

ﬁZ_Ml Ayl >0, ’732 Ayz >0,
* Rz - M] * Rz - Mz
ﬁz—M1 %1 >0, /ﬁz—Mz Ayz >0,
* Rz * RQ — M2
and
fO,7(®) <0, f(1,y(@) <0,
=&, + f(0,%(1) <0,
where

f(O’ 7(0): f(a'7 7(t))|a:0a f(lay(t)) = f(a/’ ’}./(t))la=17
fla, 7(0))= @’ + aE + (o + Sym {4210))},

Eo= Sym (4], + A1 )P 142} + yiSym (45, + B)PrAs} + (), + A5)Po(d3a + A3c)
+el (YR + y1,Ro)es + AL (Q) + Qu)ds + AL (-Q) + Q3) g + (1 — ¥()A7 (-Q5 + Qu) 47
+A§(—Qy — QA — AR A9 — 34T, R A1 — 54T, R A1y — TALR A1

—P Ry + My + M) P, — VI Ry Py — Sym (W] Y, 1)

[1]

+ynSym{(dl, + L)P M) — P (- My = 2M) ¥
— I MW — Sym { PV P} + Sym (W] Y, 1),

Eo= Y1) A5, — A3 )P(A3p — A3e) + y12Sym {(AT - A3TC)7)2A4} - PIMP - P M P,
T
T=[e], e, e, &1, R = diag {Ro, 3Ro, 5Ra, TRa}, 41, = [0, 0, ynely, 0, 0, 0],

T
Ala: I:e{’ yleg’ 07 Oa '}’]esz’ 7]8{5] ’ A]C = [07 0’ O’ 7126?17 07 0] ’

1= Sym{(A], - AT)P14} + yiSym {4, — A5)Prds) + 7S ym {45, + AT)Po(dy, — 430))

3.1)

(3.2)

(3.3)

(3.4)
(3.5)
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2= [l (e — e (e = (1= 3(@Des) (1= 3(W)es = e). 2er — €)', 3er — e ]
= [, vieh, 0, 0], 43 = [0, 0, yiaely, 0], 45 = [0, 0, 0, yi2el, ',
[elT, es] Ag = [62, 66] 47 = [eg , 67] ,Ag = [64, egT]T,
Ay = [éh (1 = e, (e2 = (1= F(@Des) . (1= 3(0)es — )] .
Ao = (€1 —€2), A19 = (e1 + €2 — 2e9), A1z = (€1 + €2 — 12¢9 + 30e1 — 20e;5)
A = (e1 — €2 + 6eg — beps), ¥y = [dTy, ATy, AT, L], w0 = [Ty, ATy, ATy, A%
A1z = (€2 — €3), d14 = (€2 + €3 — 2e19), 415 = (e2 — €3 + 6e19 — 6¢13),

Ay7 = (e3 —e4), dig = (€3 — ey + 6e1 — 6e14), 413 = (e3 + €4 — 2eyy),
A16 = (62 + e3 — 12610 + 30613 - 20616), Azo = (63 +e4 — 12611 + 30614 - 20617),

A21 = [e?Nl + e3TN2 + €§N3], @,’ = [ﬂiel + ﬂy,.e3 - 65].

Proof. Choose the delay-dependent LKF as follows:

4
V() = ) Ve, (3.6)
g=1
where
Vi(n) = @ (OP1@1(1), Va(n,) = yO@s (0Pr@(D),
Vi) = f @5 ()Q @5(s)ds +f @5 () Quws(s)ds
" 1=Y1 " t—y(1)
+ w3T(s)Q3zU3(s)ds+ f w3T (8)Qum(s)ds,
t—y(1) t—y>
0 ! t ! —Y1 t
Vi) = f f 7" ($)Ri7(s)dsdA + v, f f 7" ($)Rom(s)dsdA,
—Y1 t+A1 Y2 t+A4
with

t 1—y1 1—y(t)
@) = [n" ), f n' (s)ds, f (s, f s, = f f 0" (s)dsd),
y(0) Y2 Y1
f f f 7 (dsdodd] , @ = [n @, i 0]

1=y ()
@) = [ (), f 7' (s)ds. f 1 (s)ds. f 7 (s
t—y1 t=y(?) 1=y2

In order to meet the stability condition of the fuzzy system (2.5) using the Lyapunov method, first we
show the positive definiteness of V(7). From the LKF V,(1,) and V,(7,), we deduce

Vi) + Van) = @] 0| P1 + yOT Py T |@1(0) = @] 0| P1 + (1 + ay) TPy T [@n (0, 3.7
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where 7’ is defined after (3.5).

Therefore, if the LMIs (3.1) is holds; then V;(1,) + Va(13,) > €l|n,||> should be fulfilled with € > 0.
Hence, the positivity of V(7,) ensure when the LMIs in (3.1) and Q;, R, > 0(l = 1,2,3,4, k = 1,2)
hold.

Finding the time derivative of (3.6) along with the trajectory of (2.5), one can obtain

4
Vo) = ) Vo), (3.8)
g=1

where

n(1)
n() —n(t —yy)
n(t —y1) — (1 — yO)m(t — ()
Vi) = 2a” (0P, | (1 = YO = (1) =0t = 72)

2
20(0) = == |, ms)ds

6
30 - o, fin(9dsda
L 1 |

= 267 ()| (4], + ad], + (1 — )] )P 4, |€(0)
= &0 Sym |, + AL P14} + aSym{(4], — AT P14} |0, (3.9)

a

Similarly, we obtain

Va(,) = Y@ (0Pym(1) + 2y @S (P na(0)
= & (|70}, + adl, + (1 = APy (s, + adlyy, + (1 - a)ds)
+ (0 + ay)Sym (Al + adl, + (1 — )45 )Pads) €
= &0 7)Y, + B )PoUsg + 430 + 1S ym {45, + 43,)Pr44)
+ o {ynSym (4}, - AL)Pad.)
+9(OSym {45, + AL)Px(A3y, = M30)} + ySym |4}, + A5) P}
+ o (4, — 45)Po(d3p - A3e) + yiuSym {45, - AL)Paa} o), (3.10)
V()= @ (D@1 + Q)s(1) + @5 (1 = y1)(~Q) + Q3)ws(t = y1)
+(1 = YO @} = YD)-Qs + Q)T3(1 = Y1) + T} (1 = ¥2)(~Q — Q@3 (t — )
= £7(0|43(@Q1 + Q)45 + 4{(-Qi + Q)¢
+ (1= 7(O)A](-Qs + Qi) + 45 (-Qy - Qu)ds | (1), (3.11)

4 =71

i’ ($)R7($)ds — yia f i’ ($)Ra7i(s)ds, (3.12)

=y2

Van) = 17 (002 R, + YaR)i0) — 1 f

=1

where 4, (I =2,4,5...,8), 414, 41p,A1¢, 434, 435, and 43, can be found after (3.5).
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The first integral term in the right hand side (RHS) of (3.12) contains only constant limits of
integration, Lemma 1 yields

!
-7 f 7" (YRi(s)ds < £ (O A3 R Ay + 347 Riho + 54T, Ry + TALR A |E@). (3.13)
t

71

Next, treating second integral term in the RHS of (3.13) containing uncertain limit of integration.
According to Lemma 2, we choose €, = @ and 6, = (1 — @) (a € [0, 1]).

Ry =M — Y l and [Rz —aM — Y2 l is satisfied for all & € [0, 1],
* R — (1 —a)M, * R — M,

then approximate the second integral terms in the RHS of (3.13) Lemma 2 is applied, yields

If the LMIs l

1=Y1 -
v [ ORI <~ €] (Ro+ (1= M+ (1 - 0P M)

72

+Sym [V @Y + (1 - )Y) Vo) + V] (Ry + aMy + &P My) 5 |£(0)
= &' (O 7] Ry + My + M)y + B Ry Wy + Sym (W] Y, 1)

+ [P (M = 2M) Py + P MW + Sym P19

—Sym{ P Yo o} + (P Moy + VI M ) £, (3.14)

where 4; (I = 9, 10, ...,20), ¥;, ¥, and /ﬁz are defined after (3.5).
For any free weighting matrices N, (p = 1.2.3) with suitable dimension, the following zero equation
holds

0=2 > win" ON: + 1 (t = YODNa + 7 (ON| x [ An(t) + Ayt = () = )]

i=1

= > wiE' (0 Sym (42,03} (1), (3.15)
i=1

where
Ay = [elTNl + e3TN2 + esTNg], Q= [ﬂ,-el + Ayez3 — e5].
Then, by substituting (3.9)—(3.15) in (3.8), we obtain
V()
< > wil O Sym (A, + AL)P14} + S ym{(AL, + B)PrAL} + 7OAL, + A )Po(A3g + M)
i=1

+ el (IR + yLRes + AL(Q + Qo)ds + AL(—Qy + Q)6 + (1 — YA (-Q5 + Qu)45

+ A§(~Qy — Q) Ay — AR A9 — 347, R A1 — 547 RiA1y — T4, R 412 + Sym (42,0;)

=V Ry + My + M)Wy = TR = Sym (P Yo o) + o [Sym{(4], - 41)P 145

+y1Sym {45, = 45)Padsl + YOS ym (AL, + A)Px(d3p = A30)} + yiaSym (4, + 45)P244)
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—P (- My = 2M) ¥, = P Mo — Sym (W1 Y B + Sym (W] Y, 15}
+ o (Y0}, — A5)Po(d3p = Ase) + yiaSym {45, = AL )Pata) = VT ML = VI My P} [C0)

= > wil' (0] @’Z, + aB + (Eo + Sym (410} [€(1), (3.16)

flay(@®)

where f(a,y(?)) is defined after (3.5).

Note that, the RHS of (3.16) depends on the two parameters « € [0, 1] and y(¢) € [v;, v,]. Since
oy w; = 1 and the RHS of (3.16) is quadratic with respect to a, so by Lemma 3 we can easily obtain
the LMIs in (3.4) and (3.5). Thus, if the LMIs (3.4) and (3.5) along with constraint (3.1)—(3.3) are
holds, then it implies that V() < —elln,/>, for € > 0, which in turn guaranteed the asymptotic
stability of the fuzzy system (2.5) as per Lyapunov—Krasovskii Theorem. This completes the proof of
Theorem 1.

Remark 2. If y; = 0, then y,;, = y,, then Theorem 1 is no more applicable to find the maximum delay
upper bound 1y, for stability of the TS fuzzy TDS (2.5). The following Corollary is formulated to deal
with this circumstance.

Corollary 1. Given scalars y»,vi and vy, the T=S fuzzy TDS (2.5) with 0 < y(t) < y2, vi < ¥(1) <
vy is asymptotically stable if there exist symmetric positive definite matrices 501,?2 e R Q e
R22n (] = 1,2,3), R € R™" symmetric matrices My € R**and any matrices Y, € R** (k =
1,2) and /Vp (p = 1,2,3) with suitable dimension such that the following LMIs are satisfied for all

Y0 €lvinl, i=1,2,..,r

Py +7,T P,T >0, (3.17)
[R—/\/h Y, }>0, [R Ayz_}zo, (3.18)
* R M] x R-— Mz
[R_Ml %]zo, {R_Mz A%_}zo, (3.19)
* * R-M,
and
FO,%(t) <0, f(L,¥(t) <0, (3.20)
~E + f(0, (1)) <0, (3.21)
where

FO.570)= f@ 7)lg=0. F1,3(1) = f@F(D)la=1,

f@y(0)=a'E; +aE + Eo + Sym {Z 14@)}

S,= Sym {(A + Alc)solgz} YO + A PrTr + o) + 8 (ARVE + 4 (@1 + Qo) s
+(1 - )"(0)24 (—Qy + Q)44 + Z5 (—Qi — Q)45
—?IT(;Q + Ml + Mﬁ?l — ?;Wz - Sym {?Wz?’z} ,
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= 7T T — — . T T — — — —T— —
Zi= Sym{(@), - 0P} + 508y |y, + APy, - Tro)} - Ty Moo
—T — — —T — — = —T — = —
+728 ym {(A1 ¥ Alcwz} ~ W, (-M, - 2M) T, - Sym {afq V- yz)%} ,
= . -7 T — — — -7 T — — —— — =T —
Eo=y(0) 4y, —A4,)P2(41p — A1c) + v2Sym {(Au) - A1C)P2A2} - Y MY -V, MY,
T=1[el, 2, 2, R = diag (R, 3R, 5R, TR} ,
- _ T — _ T — _mT
Ai,=el, 0, 0], 4y, = [0, 28], 0] , 4. =0, 0, 725
— . _ . _ . _ _ T — . T — . T
Ay = e}, @ - (1 =y)e), (1 -ye —&)'| . 45 = e, & . du= e}, & ,
— r T —= —T —T —T =TT — —T7 —T —T =TT — L
AS = [€3a 86] , V= [A(,a A7’ Ag’ A9] , o = [Ama A117 A]z’ A13] 5 A6 = (el _62),
A7 = (81 + & — 227), Ag = (2, — &, + 627 — 62y), Ay = (21 + &, — 1227 + 30ey — 20e;,),
Ay = (&, —€3), 411 = (&2 + &3 — 283), 413 = (€2 + &3 — 1225 + 302, — 20e),),
le = (ZQ - 23 + 623 - 6210), 214 = [Zle + ZgNZ + ZZNg] 6,’ = [ﬂ,‘gl + ﬂ%ZQ - 24]
Proof. Let us consider the LKF as follows:
— 4 —
Vo) = ) V), (3.22)
g=1
where
Vi) =@ Pi@ (D), Vo) = y(ty@, (P m(0),
— ! — ! _ 1=y(1) _
Vs(n,) = f @ (5)Q i (s)ds + @ (5)Q @ (s)ds + f @y (9)Qs@(5)ds,
=2 t=y(?) =y
_ 0 t
Vi) = v2 f f i’ (s)Ri(s)dsdA,
—y2 Jit+A
with

t =y (1)
() = |7 ), f n' (s)ds, f
t—y(1) t

T __ ) T
n'()ds| , @) = [n" @), 7" O] .
72
Now, take the similar steps as in Theorem 1 yields the LMIs in (3.17)—(3.21). The analysis is skipped
here because it is straightforward.

4. Numerical examples

Three numerical examples are given in this section to demonstrate the reduction of conservativeness
of our proposed method numerically.
Example 1. Consider the following T-S fuzzy TDS [31]:

2

i=1

() = > wi{Am(e) + Ayt = (1),

4.1
AIMS Mathematics
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where
-2 0 -1 0.5 -1 0 -1 0
ﬂl‘[o —0.9]’%‘[0 —1]’“7{”‘[—1 —1]’5(‘”‘[0.1 —1]’

and the membership functions are defined as wy = ., w2 = 1—wy.

For given vi = 0,v, = 0.1, delay upper bound v, is calculated by using Theorem 1 with different
values ;. The obtained delay bound results are presented in Table 1 along with the results of some
recent stability conditions. Further, numerical simulation for the system (4.1) is carried out and it is
consider that y(r) = 0.5768sin(wt) + 1.3768 is a very slow varying sine signal
(w = 3.141 rad/sec or f = 0.5Hz). Figure 1 validates the fact that, the system states are

asymptotically stable for the initial condition 5(0) = [-2, 2]".

Table 1. Admissible upper bound 7, for various y; and v = 0.1 for Example 1.

v1/Method [5] [6] [20] [30] [31] Theorem 1
0.8 1.6539 1.7633 1.7828 1.857 NA 1.9536
1.0 1.8069 1.7718 1.8106 1.868 1.9405 1.9956

States

1 1 1
12 14

10
time t sec

Figure 1. State responses of the system given in Example 1 with y; = 0.8, y, = 1.9536.

Example 2. Consider the T-S fuzzy TDS (2.5) with a two plant rule and the parameters are as follows:

-32 0.6 -1 0 -1 09 09 0
ﬂ“[o —2.1]’%‘[1 —3]’52(7“[0 2]"?‘”‘[1 1.6]'

The membership functions are chosen as wy = m, w, =1-wy.Lety; =0and v = v, = —v,. For
given various v, the maximum allowable upper bounds of y, for Corollary 1 are obtained according to
Remark 2. The results of Corollary 1 are given in Table 2 along with several recent results from the
literatures in [32-36]. By choosing y; = 0, y, = 1.6519 and 1(0) = [-6, 417, Figure 2 shows the state
trajectory 7(¢). The state responses clearly indicate that T-S fuzzy system considered in Example 2 is
asymptotically stable.

AIMS Mathematics Volume 7, Issue 9, 16464—-16481.
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Sta

| ELL .

time t (sec

1
120

time t sec

Figure 2. State responses of the system given in Example 2.

Table 2. Maximum delay bound vy, for various v and y; = 0 for Example 2.

Method v =0.03 v=0.1 v=05
(32] 0.8771 0.7687 0.7584
[33] 0.9281 0.8092 0.7671
[34] (R, = R, = 0) 1.8328 1.3857 1.2186
[34] 1.9137 1.4354 1.3123
(35] 2.4291 1.7493 1.6355
[36] (Theorem 1 with (I)) 2.9931 1.8916 1.4594
[36] (Theorem 2 with (I)) 2.6160 1.6084 1.3409
Corollary 1 3.0130 1.6519 0.9925

Remark 3. Based on the results presented in Table 1 and Table 2, it can be seen that the proposed
Theorem 1 and Corollary 1 of this paper are less conservative than the existing results [5,6,20,30-36],
which shows the effectiveness and superiority of the method.

Example 3. Consider the T-S fuzzy TDS given in [27] as

2
() = D wi{Am) + Ayt = y©)}, (4.2)
i=1
where
-2.1 0.1 -1.9 0.0 -1.1 0.1 -0.9 0.0
A= [—o.z —0.9]’ Ho = [—0.2 —1.1]’ A = [—0.8 —0.9]’ H = [—1.1 —1.2]’
and the membership functions are w; = m, wy =1-—w.

By solving the LMIs in Corollary 1, delay upper bounds (y,) obtained for given different values of
v with y; = 0 and the results are given in Table 3. From Table 3, it is found that the results presented
in this paper is less conservative than previous researches [27, 34,37-39]. Figure 3 show the state
responses of the fuzzy system given in Example 3 with y; = 0, ¥, = 2.5198 and n(0) = [-2, 1]".

AIMS Mathematics Volume 7, Issue 9, 16464—16481.
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Table 3. Delay bound y, with various v = v, = —v; and y; = 0 for Example 3.

Method v=0.1 v=0.5
[34] 342 2.02
[27] 3.5518 2.3204
[37] 4.2044 2.0685
[38] 4.324 2.226
[39] 5.2300 3.3454
Corollary 1 5.4985 2.5198

States

B

1 7/VV\AA_/ |
:
R e e

4 5 3
time t sec

2 1 1 1 1 1 1 1
5 6 7 8 9 10
time t sec

Figure 3. State responses of the system given in Example 3.

Remark 4. The Lyapunov conditions for finite-time stability of impulsive systems is proposed
in [41], where the settling-time is well estimated via impulsive signals. In [42], the authors addressed
a class of nonlinear systems with delayed impulses, where the double effects (i.e., negative and
positive effects) of time delays in impulses are fully and systematically considered. In the framework
of Lyapunov conditions, in [43], the authors proposed a novel Zeno-free event-triggered impulsive
control strategy for uniform stability and asymptotic stability, where a class of forced impulse
sequences was introduced freely. Also, singular systems have found widespread use in circuits, power
systems, economic models, interconnected systems, and neural network models in recent
years [44—47]. Further research topics would be considered to extend the main results of this paper to
design an event-triggered control scheme and filter design for the T-S fuzzy TDS or singular network
systems with induced network delays.

5. Conclusions

An improved DRD stability criteria in a LMI framework has been proposed in this paper for T-S
fuzzy TDS. A new stability condition that successfully reduces conservativeness is obtained by
constructing a suitable DPT LKF and estimating the derivative of LKF using the Bessel-Legendre
polynomial-based relaxed integral inequality. Moreover, three numerical examples are given that
compare maximum acceptable delay bounds to highlight the advantages and usefulness of the
proposed criteria.

AIMS Mathematics Volume 7, Issue 9, 16464—-16481.



16478

Acknowledgments

This work was supported by Grant-in-Aid for Research Activity Start-up No. 20K23328, funded

by Japan Society for the Promotion of Science (JSPS) and in part by the Hiroshima University
KIBANKEIHI grant No. OBNK14, Japan.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. H. K. Khalil, J. W. Grizzle, Nonlinear systems, Prentice Hall, New Jersey, 1996.

2. V. Djordjevic, L. Dubonjic, M. M. Morato, D. Prsic, V. Stojanovic, Sensor fault estimation for
hydraulic servo actuator based on sliding mode observer, Math. Modell. Control, 2 (2022), 34-43.
https://doi.org/10.3934/mmc.2022005

3. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to
modeling and control, [EEE Trans. Syst. Man Cybern., 15 (1985), 116-132.
https://doi.org/10.1109/TSMC.1985.6313399

4. C. Ge, Y. Shi, J. H. Park, C. Hua, Robust H,, stabilization for T-S fuzzy systems with time-
varying delays and memory sampled-data control, Appl. Math. Comput., 346 (2019), 500-512.
https://doi.org/10.1016/j.amc.2018.10.076

5. C. Peng, Q. L. Han, Delay-range-dependent robust stabilization for uncertain T-S fuzzy
control systems with interval time-varying delays, Inf. Sci., 181 (2011), 4287-4299.
https://doi.org/10.1016/.ins.2011.05.025

6. F.. O. Souza, V. C. S. Campos, R. M. Palhares, On delay-dependent stability
conditions for Takagi—Sugeno fuzzy systems, J. Frankl. Inst., 351 (2014), 3707-3718.
https://doi.org/10.1016/j.jfranklin.2013.03.017

7. S. P. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and
control theory, SIAM, Philadelphia, PA, 1994. https://doi.org/10.1137/1.9781611970777

8. K. Gu, V. L. Kharitonov, J. Chen, Stability of time-delay systems, MA: Birkhduser, 2003.
https://doi.org/10.1007/978-1-4612-0039-0

9. B.lJiang, Y. Lou, J. Lu, Input-to-state stability of delayed systems with bounded-delay impulses,
Math. Modell. Control, 2, (2022), 44-54. https://doi.org/10.3934/mmc.2022006

10. E. Fridman, U. Shaked, An improved stabilization method for linear time-delay systems, /EEE
Trans. Autom. Control, 47 (2002), 1931-1937. https://doi.org/10.1109/TAC.2002.804462

11. Y. He, Q. G. Wang, L. Xie, C. Lin, Further improvement of free-weighting matrices technique
for systems with time-varying delay, IEEE Trans. Autom. Control, 52 (2007), 293-299.
https://doi.org/10.1109/TAC.2006.887907

12. P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying
delays, Automatica, 47 (2011), 235-238. https://doi.org/10.1016/j.automatica.2010.10.014

AIMS Mathematics Volume 7, Issue 9, 16464—-16481.


http://dx.doi.org/https://doi.org/10.3934/mmc.2022005
http://dx.doi.org/https://doi.org/10.1109/TSMC.1985.6313399
http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.10.076
http://dx.doi.org/https://doi.org/10.1016/j.ins.2011.05.025
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2013.03.017
http://dx.doi.org/https://doi.org/10.1137/1.9781611970777
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-0039-0
http://dx.doi.org/https://doi.org/10.3934/mmc.2022006
http://dx.doi.org/https://doi.org/10.1109/TAC.2002.804462
http://dx.doi.org/https://doi.org/10.1109/TAC.2006.887907
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2010.10.014

16479

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems,
Automatica, 49 (2013), 2860-2866. https://doi.org/10.1016/j.automatica.2013.05.030

P. Park, W. I. Lee, S. Y. Lee, Auxiliary function-based integral inequalities for quadratic
functions and their applications to time-delay systems, J. Frankl. Inst., 352 (2015), 1378-1396.
https://doi.org/10.1016/j.jfranklin.2015.01.004

J. Chen, D. Xu, B. Shafai, On sufficient conditions for stability independent of delay, IEEE Trans.
Autom. Control, 40 (1995), 1675-1680. https://doi.org/10.1109/9.412644

C. K. Zhang, F. Long, Y. He, W. Yao, L. Jiang, M. Wu, A relaxed quadratic function negative-
determination lemma and its application to time-delay systems, Automatica, 113 (2020), 108764.
https://doi.org/10.1016/j.automatica.2019.108764

J. H. Kim, Further improvement of Jensen inequality and application to stability of time-delayed
systems, Automatica, 64 (2016), 121-125. https://doi.org/10.1016/j.automatica.2015.08.025

F. S. de Oliveira, F. O. Souza, Further refinements in stability conditions for time-varying delay
systems, Appl. Math. Comput., 369 (2020), 124866. https://doi.org/10.1016/j.amc.2019.124866

H. B. Zeng, H. C. Lin, Y. He, K. L. Teo, W. Wang, Hierarchical stability conditions for time-
varying delay systems via an extended reciprocally convex quadratic inequality, J. Frankl. Inst.,
357 (2020), 9930-9941. https://doi.org/10.1016/].jfranklin.2020.07.034

Z. Feng, W. X. Zheng, Improved stability condition for Takagi—-Sugeno fuzzy
systems with time-varying delay, [EEE Trans. Cybern., 47 (2017), 661-670.
https://doi.org/10.1109/TCYB.2016.2523544

J. An, T. Li, G. Wen, R. Li, New stability conditions for uncertain T-S fuzzy systems
with interval time-varying delay, Int. J. Control, Autom. Syst., 10 (2012), 490-497.
https://doi.org/10.1007/s12555-012-0305-9

H. B. Zeng, J. H. Park, J. W. Xia, S. P. Xiao, Improved delay-dependent stability criteria
for T=S fuzzy systems with time-varying delay, Appl. Math. Comput., 235 (2014), 492-501.
https://doi.org/10.1016/j.amc.2014.03.005

Z. Zhang, C. Lin, B. Chen, New stability and stabilization conditions for T-S fuzzy systems with
time delay, Fuzzy Sets Syst., 263 (2015), 82-91. https://doi.org/10.1016/j.fss.2014.09.012

R. Marquez, T. M. Guerra, A. Kruszewski, M. Bernal, Improvements on non-quadratic stabilization
of Takagi—Sugeno models via line-integral Lyapunov functions, IFAC Proc. Vol., 46 (2013), 473—
478. https://doi.org/10.3182/20130902-3-CN-3020.00165

C.Peng, L. Y. Wen, J. Q. Yang, On delay-dependent robust stability criteria for uncertain T-S fuzzy
systems with interval time-varying delay, Int. J. Fuzzy Syst., 13 (2011), 35-44.

E. Tian, D. Yue, Y. Zhang, Delay-dependent robust H, control for T-S fuzzy
system with interval time-varying delay, Fuzzy Sets Syst., 160 (2009), 1708-1719.
https://doi.org/10.1016/.fss.2008.10.014

Z. Lian, Y. He, C. K. Zhang, M. Wu, Stability analysis for T-S fuzzy systems with time-varying
delay via free-matrix-based integral inequality, Int. J. Control Autom. Syst., 14 (2016), 21-28.
https://doi.org/10.1007/s12555-015-2001-z

AIMS Mathematics Volume 7, Issue 9, 16464—-16481.


http://dx.doi.org/https://doi.org/10.1016/j.automatica.2013.05.030
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2015.01.004
http://dx.doi.org/https://doi.org/10.1109/9.412644
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2019.108764
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2015.08.025
http://dx.doi.org/https://doi.org/10.1016/j.amc.2019.124866
http://dx.doi.org/https://doi.org/10.1016/j.jfranklin.2020.07.034
http://dx.doi.org/https://doi.org/10.1109/TCYB.2016.2523544
http://dx.doi.org/https://doi.org/10.1007/s12555-012-0305-9
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.03.005
http://dx.doi.org/https://doi.org/10.1016/j.fss.2014.09.012
http://dx.doi.org/https://doi.org/10.3182/20130902-3-CN-3020.00165
http://dx.doi.org/https://doi.org/10.1016/j.fss.2008.10.014
http://dx.doi.org/https://doi.org/10.1007/s12555-015-2001-z

16480

28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

.F. Liu, M. Wu, Y. He, R. Yokoyama, New delay-dependent stability criteria for T-
S fuzzy systems with time-varying delay, Fuzzy Sets Syst., 161 (2010), 2033-2042.
https://doi.org/10.1016/.fss.2009.12.014

S. H. Tsai, Y. A. Chen, J. C. Lo, A novel stabilization condition for a class of T-S fuzzy time-delay
systems, Neurocomputing, 175 (2016), 223-232. https://doi.org/10.1016/j.neucom.2015.10.054

R. Datta, R. Dey, B. Bhattacharya, A. Chakraborti, Improved stability condition for fuzzy systems
with interval time varying delay, 2017 Joint 17th World Congress of International Fuzzy Systems
Association and 9th International Conference on Soft Computing and Intelligent Systems (IFSA-
SCIS), 2017, 1-6. https://doi.org/10.1109/IFSA-SCIS.2017.8023230

Z. Lian, Y. He, C. K. Zhang, M. Wu, Stability and stabilization of T-S fuzzy systems with time-
varying delays via delay-product-type functional method, /EEE Trans. Cybern., 50 (2020), 2580—
2589. https://doi.org/10.1109/TCYB.2018.2890425

H. B. Zeng, J. H. Park, J. W. Xia, S. P. Xiao, Improved delay-dependent stability criteria
for T=S fuzzy systems with time-varying delay, Appl. Math. Comput., 235 (2014), 492-501.
https://doi.org/10.1016/j.amc.2014.03.005

L. Huang, X. Xie, C. Tan, Improved stability criteria for T-S fuzzy systems with time-
varying delay via convex analysis approach, IET Control Theory Appl., 10 (2016), 1888-1895.
https://doi.org/10.1049/iet-cta.2015.1109

Z. Lian, Y. He, C. K. Zhang, M. Wu, Further robust stability analysis for uncertain Takagi—Sugeno
fuzzy systems with time-varying delay via relaxed integral inequality, Inf. Sci., 409 (2017), 139—
150. https://doi.org/10.1016/}.ins.2017.05.017

Z. Li, H. Yan, H. Zhang, J. Sun, H. K. Lam, Stability and stabilization with additive freedom for
delayed Takagi—Sugeno fuzzy systems by intermediary polynomial-based functions, IEEE Trans.
Fuzzy Syst., 28 (2019), 692-705. https://doi.org/10.1109/TFUZZ.2019.2914615

X. J. Pan, B. Yang, J. J. Cao, X. D. Zhao, Improved stability analysis of Takagi—Sugeno fuzzy
systems with time-varying delays via an extended delay-dependent reciprocally convex inequality,
Inf. Sci., 571 (2021), 24-37. https://doi.org/10.1016/j.ins.2021.04.043

O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, Stability and stabilization of T-S fuzzy systems
with time-varying delays via augmented Lyapunov—Krasovskii functionals, Inf. Sci., 372 (2016),
1-15. https://doi.org/10.1016/.ins.2016.08.026

J. Tan, S. Dian, T. Zhao, Further studies on stability and stabilization of T-S fuzzy systems
with time-varying delays via fuzzy Lyapunov—Krasovskii functional method, Asian J. Control,
20 (2018), 1-16. https://doi.org/10.1002/asjc.1697

R. Datta, R. Dey, B. Bhattacharya, R. Saravanakumar, O. M. Kwon, Stability and stabilization
of T-S fuzzy systems with variable delays via new Bessel-Legendre polynomial based relaxed
integral inequality, Inf. Sci., 522 (2020), 99-123. https://doi.org/10.1016/j.ins.2020.02.060

R. Datta, R. Saravanakumar, R. Dey, B. Bhattacharya, C. K. Ahn, Improved stabilization
criteria for Takagi—Sugeno fuzzy systems with variable delays, Inf. Sci., 579 (2021), 591-606.
https://doi.org/10.1016/.ins.2021.07.089

AIMS Mathematics Volume 7, Issue 9, 16464—-16481.


http://dx.doi.org/https://doi.org/10.1016/j.fss.2009.12.014
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2015.10.054
http://dx.doi.org/https://doi.org/10.1109/IFSA-SCIS.2017.8023230
http://dx.doi.org/https://doi.org/10.1109/TCYB.2018.2890425
http://dx.doi.org/https://doi.org/10.1016/j.amc.2014.03.005
http://dx.doi.org/https://doi.org/10.1049/iet-cta.2015.1109
http://dx.doi.org/https://doi.org/10.1016/j.ins.2017.05.017
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2019.2914615
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.04.043
http://dx.doi.org/https://doi.org/10.1016/j.ins.2016.08.026
http://dx.doi.org/https://doi.org/10.1002/asjc.1697
http://dx.doi.org/https://doi.org/10.1016/j.ins.2020.02.060
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.07.089

16481

41. X. Li, D. W. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive
systems, Automatica, 99 (2019), 361-368. https://doi.org/10.1016/j.automatica.2018.10.024

42.X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed
impulses and applications, [EEE Trans. Autom. Control, 64 (2019), 4024-4034.
https://doi.org/10.1109/TAC.2019.2905271

43.X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-
triggered impulsive control, [EEE Trans. Autom. Control, 65 (2020), 4908-4913.
https://doi.org/10.1109/TAC.2020.2964558

44. Y. Zhang, X. Mu, Event-triggered output quantized control of discrete Markovian singular systems,
Automatica, 135 (2022), 109992. https://doi.org/10.1016/j.automatica.2021.109992

45.Y. Zhang, P. Shi, R. K. Agarwal, Y. Shi, Event-based mixed H. and passive
filtering for discrete singular stochastic systems, Int. J. Control, 93 (2020), 2407-2415.
https://doi.org/10.1080/00207179.2018.1559360

46. Y. Zhang, P. Shi, R. K. Agarwal, Y. Shi, Event-based dissipative analysis for discrete time-
delay singular jump neural networks, IEEE Trans. Neur. Net. Lear. Syst., 31 (2020), 1232-1241.
https://doi.org/10.1109/TNNLS.2019.2919585

47.Y. Zhang, P. Shi, M. V. Basin, Event-based finite-time H. filtering of discrete-time
singular jump network systems, Int. J. Robust Nonlinear Control, 32 (2022), 4038—4054.
https://doi.org/10.1002/rnc.6009

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

% AIMS Press

AIMS Mathematics Volume 7, Issue 9, 16464—-16481.


http://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.10.024
http://dx.doi.org/https://doi.org/10.1109/TAC.2019.2905271
http://dx.doi.org/https://doi.org/10.1109/TAC.2020.2964558
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2021.109992
http://dx.doi.org/https://doi.org/10.1080/00207179.2018.1559360
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2019.2919585
http://dx.doi.org/https://doi.org/10.1002/rnc.6009
http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem formulation and useful lemmas
	Stability analysis
	Numerical examples
	Conclusions

