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Abstract: In this paper, we study the analytical solutions of two-dimensional fractional-order linear
system Dαt X(t) = AX(t) described by fractional differential equations, where D is the fractional
derivative in the Caputo-Fabrizio sense and A = (ai j)2×2 is nonsingular coefficient matrix with ai j ∈ R.
The analytical solutions of fractional-order linear system will be compared to the solution of classical
linear system. Examples are provided to characterize the behavior of the solutions for fractional-order
linear system.
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1. Introduction

A fractional-order system means a system described by a fractional differential equation or
fractional integral equation or by a system of such equations. A fractional differential equation is an
equation which contains fractional derivative. There are many forms of fractional derivatives, such as
Riemann-Liouville, Grünwald-Letnikov, Caputo and Caputo-Fabrizio fractional derivatives, one can
refer to [1]. Fractional differential equations have been applied in various fields, and have been
studied in the literature, for example, Lin and Xu studied the time-fractional diffusion equation using
finite difference/spectral approximations in [2]; Zhuang et al. [3] considered the numerical methods
for the variable-order fractional advection diffusion equation with a nonlinear source term; Properties
of a new fractional derivative without singular kernel was studied by Losada and Nieto in [4]; Fardi
and Khan considered the finite difference-spectral method for fractal mobile/immobiletransport model
based on Caputo-Fabrizio derivative [5]; Solution of a fractional logistic ordinary differential equation
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was obtained by Nieto in [6]. It has been found that the behavior of many physical systems can be
properly described by using the fractional-order system theory. Generally speaking, the exact
solutions of fractional differential equations are difficulty solved by some analytic methods. However,
for some special fractional differential equations, we can still obtain their analytical solutions, such as
fractional-order linear system involving Caputo-Fabrizio fractional derivative. Caputo-Fabrizio
fractional derivative was proposed by Caputo and Fabrizio [7]. Algahtani [8] represented the model
by Allen-Cahn with both derivatives (Atangana-Baleanu and Caputo-Fabrizio) in order to see their
difference in a real world problem. Akman et al. [9] computed Caputo-Fabrizio derivatives of some
known functions both theoretically and numerically. Baleanu et al. constructed a fractional order
model of 2019 coronavirus disease transmission using Caputo-Fabrizio derivative in [10], and
proposed a new fractional model for human liver involving Caputo-Fabrizio derivative with the
exponential kernel in [11]. Aydogan et al. [12] investigated a new version of the mathematical model
of Rabies disease by using the fractional Caputo-Fabrizio derivative. Additional researches on
Caputo-Fabrizio fractional derivative can be found in [13–18], among others. There are many results
about autonomous system, one can refer to [19–22]. Also, the fractional-order system has been
studied by many scholars [23–25].

In this paper, we consider the Caputo-Fabrizio fractional-order real linear system. The main goal
of this paper is to obtain the analytical solutions of fractional-order linear system, where the fractional
derivative is in the Caputo-Fabrizio sense. The system is of the form

Dαt X(t) = AX(t), (1.1)

where 0 < α < 1, X(t) = [x(t), y(t)]′ and A =
(

a11 a12

a21 a22

)
. The fractional derivativeDαt x(t) is Caputo-

Fabrizio fractional derivative of order α, defined as (one can see [4])

Dαt x(t) =
(2 − α)M(α)

2(1 − α)

∫ t

0
e−

α
1−α (t−s)x′(s)ds. (1.2)

In [4], we know that M(α) = 2
2−α . Thus, we have (one can see [7])

Dαt x(t) =
1

1 − α

∫ t

0
e−

α
1−α (t−s)x′(s)ds. (1.3)

For Caputo-Fabrizio fractional derivative, the corresponding fractional integral of a function x(t) is

Iαt x(t) = (1 − α)[x(t) − x0] + α
∫ t

0
x(s)ds, (1.4)

where x0 = x(0) is the initial condition. By (1.4), if x0 , 0 and x(t) = x0e−
α

1−α t, then we can obtain that
Iαt x(t) = 0. Hence the kernel of the operator Iαt is the one-dimensional subspace generated by e−

α
1−α t.

This is quite different to the case of the usual fractional where Iαt x(t) = 0 implies that x(t) = 0. Thus,
we have

IαtD
α
t x(t) = x(t) + c, (1.5)

where c is an arbitrary constant. The behavior of classical fractional derivative (Rieman-Liouville or
Caputo) is similar to the classical integer order derivative in the sense that it satisfies that the derivative
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of the integral is the same function. However, for the new Caputo-Fabrizio derivative, we have

Dαt I
α
t x(t) = x(t) − x0e−

α
1−α t. (1.6)

Let x(t) be the solution of (1.5), by (1.5) and (1.6), then x(t) is the solution of (1.6) with a kernel e−
α

1−α t.
This paper is organized as follows. In Section 2, we solove the Caputo-Fabrizio fractional-order

real linear system and obtain the analytical solutions which coincides with the solutions of classical
linear system when α→ 1−. In Section 3, we plot the solutions of system (1.1) under given conditions
at different values of α.

2. Solutions of fractional-order linear system

In this section, we consider fractional-order real linear system (1.1) under the assumption that
det(A) , 0. According to the theoretical knowledge of linear algebra, if A is a nonsingular matrix,
then there exists a nonsingular matrix T such that B = T−1AT and X(t) = T X̃(t), where B is a Jordan
normal form and X̃(t) = [u(t), v(t)]′. The corresponding characteristic polynomial of A is

P(λ) = det(A − λI) = λ2 − pλ + q with p = a11 + a22 and q = a11a22 − a21a22, (2.1)

which has zeros λ = 1
2 (p −

√
p2 − 4q) and µ = 1

2 (p +
√

p2 − 4q). Thus, the system (1.1) will become

Dαt X̃(t) = T−1AT X̃(t) = BX̃(t), (2.2)

where B is one of the following normal forms:

L(λ, µ) =
(
λ 0
0 µ

)
, M(λ) =

(
λ 0
1 λ

)
, R(η, γ) =

(
η γ

−γ η

)
.

Here λ, µ, η and γ are real numbers with µ , 0 and γ > 0. If λ = µ , 0, then it will become a
special case of L(λ, µ). The above three cases are denoted by L for left,M for middle and R for right,
respectively. Therefore, we need to consider the case one by one.

If A = L(λ, µ), then system (1.1) will become as follows
Dαt x(t) = λx(t),

Dαt y(t) = µy(t).
(2.3)

Observe that for α = 1, system (2.3) is recovered to the classical linear system as follows
x′(t) = λx(t),

y′(t) = µy(t),
(2.4)

which has the solutions x(t) = c1eλt and y(t) = c2eµt.
The analytical solutions of system (2.3) can be obtained by the following theorem.

Theorem 2.1. Let x0 and y0 be the initial conditions of system (2.3). Then the solutions of system (2.3)
are x(t) = c1e

λα
1−λ+λα t and y(t) = c2e

µα
1−µ+µα t, where c1 = x0 and c2 = y0.
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Proof. If x(t) and y(t) are the solutions of (2.3), by (1.4) and (1.5), interating we get
x(t) + c1 = λI

α
t x(t) = λ(1 − α)[x(t) − x(0)] + λα

∫ t

0
x(s)ds,

y(t) + c2 = µI
α
t y(t) = µ(1 − α)[y(t) − y(0)] + µα

∫ t

0
y(s)ds.

(2.5)

Taking the first derivative both sides of (2.5), we get
x′(t) = λ(1 − α)x′(t) + λαx(t),

y′(t) = µ(1 − α)y′(t) + µαy(t).
(2.6)

By (2.6), for 1 − λ + λα , 0 and 1 − µ + µα , 0, the analytical solutions of the system (2.3) with
0 < α < 1 are given by

x(t) = c1e
λα

1−λ+λα t and y(t) = c2e
µα

1−µ+µα t, (2.7)

where c1 = x0 and c2 = y0 are real constants. This proves the theorem. □

If A =M(λ), then system (1.1) will become as follows
Dαt x(t) = λx(t),

Dαt y(t) = x(t) + λy(t).
(2.8)

Observe that for α = 1, system (2.8) is recovered to the classical linear system as follows
x′(t) = λx(t),

y′(t) = x(t) + λy(t),
(2.9)

which has the solutions x(t) = c1eλt and y(t) = (c1t + c2)eλt.
The analytical solutions of system (2.8) can be obtained by the following theorem.

Theorem 2.2. Let x0 and y0 be the initial conditions of system (2.8). Then the solutions of system (2.8)
are x(t) = c1e

λα
1−λ+λα t and y(t) =

(
c1α

(1−λ+λα)2 t + c2

)
e

λα
1−λ+λα t, where c1 = x0 and c2 = y0.

Proof. If x(t) and y(t) are the solutions of (2.8), by (1.4) and (1.5), interating we get
x(t) + c1 = λ(1 − α)[x(t) − x0] + λα

∫ t

0
x(s)ds,

y(t) + c2 = (1 − α)[x(t) − x0] + α
∫ t

0
x(s)ds + λ(1 − α)[y(t) − y(0)] + λα

∫ t

0
y(s)ds.

(2.10)

Taking the first derivative both sides of (2.10), we get
x′(t) = λ(1 − α)x′(t) + λαx(t),

y′(t) = (1 − α)x′(t) + αx(t) + λ(1 − α)y′(t) + λαy(t).
(2.11)

By (2.11), for 1 − λ + λα , 0, the analytical solutions of the system (2.8) with 0 < α < 1 are given by

x(t) = c1e
λα

1−λ+λα t and y(t) =
( c1α

(1 − λ + λα)2 t + c2

)
e

λα
1−λ+λα t, (2.12)

where c1 = x0 and c2 = y0 are real constants. This proves the theorem. □
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Similarly, if A = R(η, γ), then system (1.1) will become as follows
Dαt x(t) = ηx(t) + γy(t),

Dαt y(t) = −γx(t) + ηy(t).
(2.13)

Observe that for α = 1, system (2.13) is recovered to the classical linear system as follows
x′(t) = ηx(t) + γy(t),

y′(t) = −γx(t) + ηy(t),
(2.14)

which has the solutions x(t) = c1eηt cos(−γt + c2) and y(t) = c1eηt sin(−γt + c2). Where c1, c2 satisfy
that x0 = c1 cos c2 and y0 = c1 sin c2.

The analytical solutions of system (2.13) can be obtained by the following theorem.

Theorem 2.3. Let x0 and y0 be the initial conditions of system (2.13). Then the solutions of system
(2.13) are x(t) = c1eη1t cos(−γ1t + c2) and y(t) = c1eη1t sin(−γ1t + c2), where η1 =

ηα−(α−α2)(η2+γ2)
(1−η+ηα)2+(γ−γα)2 and

γ1 =
γα

(1−η+ηα)2+(γ−γα)2 , and c1, c2 satisfy that x0 = c1 cos c2 and y0 = c1 sin c2.

Proof. If x(t) and y(t) are the solutions of (2.13), by (1.4) and (1.5), interating we get
x(t) + c1 = η(1 − α)[x(t) − x0] + ηα

∫ t

0
x(s)ds + γ(1 − α)[y(t) − y0] + γα

∫ t

0
y(s)ds,

y(t) + c2 = −γ(1 − α)[x(t) − x0] − γα
∫ t

0
x(s)ds + η(1 − α)[y(t) − y0] + ηα

∫ t

0
y(s)ds.

(2.15)

Taking the first derivative both sides of (2.15), we get
x′(t) = η(1 − α)x′(t) + ηαx(t) + γ(1 − α)y′(t) + γαy(t),

y′(t) = −γ(1 − α)x′(t) − γαx(t) + η(1 − α)y′(t) + ηαy(t).
(2.16)

By (2.16), we get 
x′(t) = η1x′(t) + γ1y(t),

y′(t) = −γ1x′(t) + η1y(t),
(2.17)

where η1 =
ηα−(α−α2)(η2+γ2)

(1−η+ηα)2+(γ−γα)2 and γ1 =
γα

(1−η+ηα)2+(γ−γα)2 .

The system (2.17) can be solved explicitly by introducing polar coordinates x = ρ cos θ and y =
ρ sin θ, as follows. First note that

x
dx
dt
+ y

dy
dt
= ρ

dρ
dt

and x
dy
dt
− y

dx
dt
= ρ2 dθ

dt
.

It follows that
ρ′(t) = η1ρ and θ′(t) = −γ1, (2.18)
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thus, the solutions of system (2.18) may be expressed in the form

ρ(t) = c1eη1t and θ(t) = −γ1t + c2, (2.19)

where c1 = ρ(0) and c2 = θ(0).
By (2.19), the solutions of system (2.13) may be expressed in the form

x(t) = c1eη1t cos(−γ1t + c2) and y(t) = c1eη1t sin(−γ1t + c2). (2.20)

This proves the theorem. □

3. Computational results and discussion

In this section, we plot the solutions of system (1.1) under given conditions at different values of α.
We consider the following three cases, that are A = L(λ, µ), A =M(λ) and A = R(η, γ).

For A = L(λ, µ). If λ = −1 or λ = 2, then the solutions x(t) of system (2.3) for different α are shown
in Figure 1 (similarly, the solutions of y(t) can be obtained for given µ). For λ = −1, the results are
shown in Figure 1 (a), which shows that x(t) → 0 as t → +∞ and the speed of x(t) approaching zero
gradually becomes faster with the increase of α. For λ = 2, by Theorem 2.1, we know that α , 1/2,
and α = 1/2 is the demarcation line, the results are shown in Figure 1 (b). If α > 1/2, then x(t) is
increasing with the evolution of time and the speed increase of x(t) becomes faster with the decrease of
α. If α < 1/2, then x(t) is decreasing with the evolution of time and the speed decrease of x(t) becomes
faster with the increase of α.

(a) λ = −1 (b) λ = 2
Figure 1. Solutions of system (2.3) for different values of α with c1 = 2 and c2 = 3.

For A =M(λ). If λ = −1 or λ = 2, then the solutions y(t) of system (2.8) for different α are shown
in Figure 2 (x(t) can be obtained as in system (2.3)). For λ = −1, the results are shown in Figure 2 (a),
which shows that x(t) → 0 as t → +∞ and the speed of x(t) approaching zero gradually becomes
faster with the increase of α. For λ = 2, by Theorem 2.2, we know that α , 1/2, and α = 1/2 is the
demarcation line. If α > 1/2, then x(t) is increasing with the evolution of time and the speed increase
of x(t) becomes faster with the decrease of α, the result is shown in Figure 2 (b). Figure 2 (c) shows
the results for λ = 2 and α < 1/2, on the whole, x(t) is decreasing with the evolution of time and the
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speed decrease of x(t) becomes faster with the increase of α. However, a special phenomenon will
occur in this case, that is x(t) will increase firstly and then decrease when α reaches a critical value, in
particular, this phenomenon is more obvious when α→ 0.5.

(a) λ = −1

(b) λ = 2 for α > 1/2 (c) λ = 2 for α < 1/2
Figure 2. Solutions of system (2.8) for different values of α with c1 = 2 and c2 = 3.

For A = R(η, γ). If η = 1/100, γ =
√

199/100 and c1 = ρ(0) = 2, c2 = θ(0) = 3, then the
solutions x(t) of system (2.13) are shown in Figure 3 (similarly, the Figure of y(t) can be obtained).
By Theorem 2.3, we know that x(t) = 2 cos(−

√
199t/199 + 3) when α = 1/2. If α > 1/2, then x(t)

behaves an oscillating phenomenon and the amplitude becomes wide with the evolution of the time
(Figure 3 (a)). If α < 1/2, then x(t) behaves an oscillating phenomenon and tends to zero with the
evolution of the time. In particular, the speed of x(t) approaching zero will firstly increase with the
decrease of α. When α reaches a critical value, the speed of x(t) approaching zero will slow down with
the decrease of α (Figure 3 (b)).
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(a) η = 1/100 and γ =
√

199/100 for α ∈ {0.5, 0.7, 0.9, 1.0}

(b) η = 1/100 and γ =
√

199/100 for α ∈ {0.02, 0.1, 0.3, 0.4, 0.5}
Figure 3. Solutions of system (2.13) for different values of α with c1 = 2 and c2 = 3.

4. Conclusions

In this paper, we study the analytical solutions for fractional-order linear system involving
Caputo-Fabrizio fractional derivative. This problem is a natural generalization of the classical linear
system. Compared with classical linear system, the solutions of fractional-order linear system have
richer behaviors and abnormal phenomena for different α. From the examples, we can find that the
results of this paper can be applied not only to fractional order linear system when 0 < α < 1, but also
to classical linear systems as α = 1, which means that the classical linear system is the limit form of
fractional system. In the future, fractional-order nonlinear system can also be studied.
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