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schemes, namely, explicit product integration rectangular rule (forward Euler method), implicit product
integration rectangular rule (backward Euler method), implicit product integration trapezoidal rule
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equations with different kernels. The results show that theses numerical schemes are feasible in
application.
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1. Introduction

Fractional calculus has been as a mathematical theory of interest over three centuries. However,
this theory was not initially applied to any real situation. The scientists and engineers in other fields
commonly mentioned how the practical knowledge of fractional calculus has been used and how to
operate it to the relevant studies. Fractional calculus and its application can be found in many fields
such as physics [34, 35], neural networks [32], mechanics and dynamic systems [12, 38], biology [15,
40] and economics [37].
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The effect of increasing attention on fractional order models has made the investigation and growth
of numerical methods for nonlinear fractional integro-differential equations [5-11] and partial
differential equations with time or space fractional derivatives [13, 31] become more active in the
recent years. Moreover, the computational algorithm for the numerical solution of nonlinear fractional
differential equations are found in [17-19,23-25].

Researchers can obtain particular schemes for fractional differential equations based on the
corresponding integral equation, for example, the product integration rules [39]. Nevertheless, the
case of Adams predictor-corrector method [20] is different. It has been adjusted to create strong
theoretical knowledge for numerical treatment of fractional differential equations. Some numerical
schemes for fractional differential equations are developed directly from integral equations
approaches, for example, product integration rules [39]. In addition, the Adams predictor-corrector
approaches [20] is a completely different approach for the numerical solution of fractional differential
equations.

Moreover, when the fractional order & converges to the nearest integer, the product integration
rules and Adams predictor-corrector noticeably became the same methods. In fractional differential
equations, the generalizations of the consistent approach for ordinary differential equations are
considered as different methods.

The existence of different characteristics in approaches for fractional differential equations, which
is established from the similar approach for ordinary differential equations, needs to be studied
carefully. Particular distinctions are of theoretical concern, for instance, stability and convergence.
However, these methods similarly indicate different types of computational nature, which have impact
on the efficiency of the solution process. Therefore, our paper intends to explain various methods for
fractional differential equations. A comparison of specific methods is also presented. The strengths
and weaknesses will be investigated. Moreover, we compare the appropriateness among these
methods.

Product integration rules and Adams predictor-corrector method are restricted to the analysis.
These two approaches provide the least possible error constant [30], leading to a suitable balance
between accuracy stability properties and computational complexity. This paper investigates when
those strengths are rooted by the corresponding methods for fractional differential equations.

Additionally, we observe various definitions of fractional calculus [28, 29] including
Riemann-Liouville, Caputo, Hilfer, Riesz, Erdelyi-Kober and Hadamard, among others. In particular,
R. Almeida [2] suggests some generalizations of fractional operators of a function with arbitrary
kernels involving a weight function ®.

The ®-Caputo fractional differential equations have gained more attention recently. Numerical
schemes for solving the ®-Caputo fractional differential equations are still under development. There
are some research studies on the ®-Caputo fractional derivative. For example, Almeida et al. [4]
indicated that mathematical models based on ®-Caputo fractional derivatives can be more adaptable.
The ®-Caputo fractional derivative has the ability to extract hidden parts of real-world situations.
In 2019, Almeida et al. [3] demonstrated &®-shifted Legendre polynomials to solve
relaxation-oscillation equations with derivative of ®-Caputo. In [16, 36], the monotone iteration of
upper and lower solutions will be used to approximate the extremal solutions of ®-Caputo fractional
differential equations.

To the finest of our understanding, numerical schemes for nonlinear fractional differential equations
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in the sense of ®-Caputo derivative have never been investigated. On the basis of the above works on
fractional derivative with arbitrary kernels, this paper investigates the numerical approaches for the
solution of nonlinear fractional differential equations involving ®-Caputo fractional derivative. In
particular, the efficiency of numerical schemes, error and stability analysis are considered.

The paper is set as follows the next section, several preliminary knowledge of fractional derivatives
and integrals are presented. The initial value problem involving ®-Caputo fractional derivative is
defined in Section 3. Moreover, we presented four numerical schemes, namely explicit product
integration rectangular rule, implicit product integration rectangular rule, implicit product integration
trapezoidal rule, and Adams predictor-corrector method to find numerical solutions of the fractional
differential equations in sense of the ®-Caputo fractional derivative. Next, the error estimation of the
approximations and stability are obtained in Section 4. In Section 5, the simulation results including
numerical convergence order are discussed for four test examples. The approximate solution and the
error estimation for the test examples are presented through figures and tables, respectively. Further, a
comparative study of these numerical schemes is performed.

2. Preliminaries

In this section, we will examine basic definitions and theorems, which will be used to declare
and verify our essential results. Let @ be a continuously differentiable function on [fy, 7] such that
®'(t) > 0, for all ¢ € [ty, T].

Definition 2.1 ( [14]). The Gamma function is defined as

[(a) = /Oooe‘tt“‘l dt, a>0. (2.1)
Definition 2.2 ( [14]). The Euler beta function is defined as
B(a,ﬁ):/ol(l—t)“_]tﬁ_l dr, o,B>0. (2.2)
Definition 2.3 ( [2]). The ®-Riemann-Liouville fractional integral of a real valued function y on [ty, T]
is given by
I%y(1) = ﬁ/ﬁ: ' (v)(D(t) —@(v))* y(v)dv, for a>0. (2.3)

Definition 2.4 ( [2]). The ®-Riemann-Liouville fractional derivative of a real valued function y on
[to, T] is defined by

1 d\" ., _
D®y(r) = [ —— 2 ) %Py 2.4

o y() (¢/<t>dt) ) y( )7 ( )
wheren—1 < oo <nandn € N.

Definition 2.5 ( [2]). Let n e Nya € (n— 1,n) and y,® € €"([ty,T]). The ®-Caputo fractional
derivative of y of order  is given by

e/ 1 d\"
CDEPy (1) = 1P ( & (z)E) (). (2.5)
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Moreover, when a € (0,1), we have

D) = g | (@)~ @() Y (v)av, @6

In particular, the ®-Caputo fractional derivative is a generalization of the fractional derivatives as
follows:

e the classical Caputo fractional derivative [29] when ®(t) =1,

e the Caputo-Erdélyi-Kober fractional derivative [33] when ®(t)

e the Caputo-Hadamard fractional derivative [21,27] when ®(t) = In(t).

Theorem 2.1 ([1]). If y : [to, 7] — R is a continuous function, then
@ a,d
DL Cy(t) = y(1) = y(to).
3. Numerical schemes

In this work, we study the ®-Caputo fractional derivative to differential equation as below:

K
CD% y(t):f(tay(t))7 re [t()aT]; (3.1)
¥(t0) = Yo,
where CDg’q) is the ®-Caputo fractional derivative of order o € (0,1), f: [tp,T] x R — R is a given
continuous function and yg € R.
By Theorem 2.1, the solution of the problem (3.1) can be written in terms of the integral equation

Y1) =30+ o [ V)@0) ~ @) f (v, (v)av. (2)

r (OC) fo
However, the ®-Caputo fractional-order differential equation (3.1) is difficult to obtain the exact
solution. In order to motivate the construction of our numerical methods, the concept of product
integration rules [39] can be useed to estimate the integral in (3.2) by the appropriate polynomials.
In order to numerically solve the integral equation (3.2), we consider the approximation solutions
Yn,n=1,2,...,N. The uniform grid is divided as

0§l‘0<l‘1<l2<---<l‘N71<lN=T,

T—t
where t; =19+ jhand h = 0f0r0§j§N.

Additionally, we assume the approximations y; ~ y(;) (0 < j < n—1) in the basic step. The
piecewise decomposition of (3.2) is defined as

Yn yo+—Z/l

tj+1

— (V) L f(v,y(v)dv, >t (3.3)
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3.1. Explicit product integration rectangular rule (Ex. PI Rec.)

To obtain the approximation of y, ~ y(,), the function f(v,y(v)) in the integrand of (3.3) is
approximated by the (explicit) forward Euler method, which is the constant values f (t I j). The
resulting methods is

LY [ g o
ynzyoerj;) / O (v)(®(t,) — D(v))* £(t},y;)dv

1 n—1 o o
=Yyo+ m L ( ((IJ(I,,) - q)(tj)) - (q)(ln) — CID(th)) )f(lj,)’j) (3.4)
]:
1 n—1 o o
where
WP = (@(1,) — D(1))) . (3.5)

3.2. Implicit product integration rectangular rule (Im. PI Rec.)

We use a similar step of the explicit product integration rectangular rule to find the resulting method.
However, the (implicit) backward Euler method is used to approximate, the function in the integrand
of (3.3), which is

Fv,y(V) = f (tj41,)41) -

The resulting methods is

n-l rtj
=0t s X[ @) @)~ @) 1 1,370)dv

I'(a) =y
=0+ F(al ey ]; (@) = (1) = (@) = (1)) ) £(11.7,) (3.6)
=30+ Fa T X (vt =) )

where wy" is defined by (3.5).

3.3. Implicit product integration trapezoidal rule (Im. PI Trap.)

In this method, we replace the function in each subinterval of the integrand (3.3) by the first-degree
polynomial interpolant

Fvoy(v) = f (ti+1,yj+1) + v_hth (f (tjr1,9501) = F(tj,y5)) V€ [tj,tj41] -
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The implicit product integration trapezoidal rule is

Vn yﬁ——Z/tﬁl d(1,) —D(v))*! [f(thrl»ijrl)

e —m<f<,j+l,w_f@_,.,y,.))]dv

1 o
T(a+1) ((q)(t”) —(1))* — E’o,i(b) f(t0,¥0)
vy o o 3.7)
X iary () 10

1 S
ity (nTa) fl)
n
o.®
— - s p t
0+ Frg 1y o S 0:30) + OH—I ;( J?y,)
Tjt+1 .
with Ij J+1 = /t (®(t,) — ®(v))%dv, and
J
1
wio =2 loi if j=0,

nO hOl ’
D l /oo : .
u® = —<1‘?‘_ 1”+1> if1<j<n—1,

o ;11 Ji—LJ
- (15,) if j=n.
h bl

3.4. Adams predictor-corrector method (Adams PC)

According to (3.7), Newton’s method is necessary for approximating y,,. However, we can predict
the approximation y, in (3.7) by using (3.4). The approximation in the predictor-step is called y*.
Furthermore, y? can be used in (3.7). This step is called corrector-step. Overall, this numerical scheme
is called Adams predictor-corrector method and is defined by

1 n—1 ® ®
R r T MU —W,‘f,’,~+1)f(tj,yj),
J:
1 o,® - < )
= —u_y f(t flt - t
Yn y0+l—‘(a+1)un70 f( 07y0 (X—I—l ; jayj +F((X+1) f( nayn)
(3.8)

where y? is the resulting method at predictor-step and y, is the resulting method at corrector-step.
In order to fulfill stability and error analysis, some lemmas are mentioned below.

Lemma 3.1. For ¢ € (0,1) and j = 1,...,n— 1, we have
a® _ o® a-1.0 1. >

Wnj Wit < Cae < Wit1,j
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and

o,® a-1® 1.0
Wijo1 — Wi ]+1 <Coo ( Wj—H,j) :
Proof. Applying the mean value theorem, we can find & € (®(1,) — @(t;11),P(t,) — P(t;)) such that

o

Wi =i = (@) cb(rj)) - (dD(tn) (1))
= ag® ! (o ) — D (1) + D(141))

—océ“ l(cp fj+1 ))
o (D(tn) - B

)—

In

D(tj41) — (1)) " a1
= (l + CD(l‘n_)‘— q)(tj_i_j)) (q)(tn) — (b(l‘j)) (‘D(lj.H) —q)(tj))

a-1® 1@
< Cow ( Wj+1,j> :

In a similar way, the second inequality can be proved.

Lemma 3.2. If o € (0,1),m € N and 3 be nonnegative, then
m—1
Y () = (1) (@(1j1) — 8(1) (P(1) = P(10)" < Blatf+1) (@(tm) ~D(10)*F
j=1

Proof. Let f(y) = (®(tw) — D(to) —y)*~' yP for 0 <y < ®(t) — D(t0).
Then, we have

)= (1= a)yP (@(tw) — (to) —y)* >+ BYP 1 (D (1) — P(t0) —y)*

=Y (@(tm) — D(10) =) 2 [(1 = @)y + B (P(1m) — P(10) )]
> 0.

This implies that f(y) is a monotone increasing function, and then
m—1 o1 B
Y (P(m) = (1)) ((tj41) — (1)) (D(t;) — D(t0))
j=1

m—1
=Y £ (®(t) - D(t0)) (Dtj1) — D(1))
j=1
(tm)—D(t0)
< M o
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P(tm) —@(10)
-/ (®(tn) ~ lto) —3)* "'y dy

0

= (D(ty,) — fD(to))(Hﬁ 1(1 — v)ﬁvo‘_1 dv

fo
= B(0t, B+ 1) (®(tn) ~ ®(10)**F
which completes the proof.

In order to verify the stability and error analysis of our numerical schemes, we present a modified
Gronwall’s inequality as follows.

Lemma 3.3. Suppose a € (0,1),79 € (0,T), and

fad _ {(d)(tm) —®()) T (@) — D), j=1,2,...,m—1,
o 0, j=>n.

Jj=m
Let Z b?f;;b ‘ej’ =0 for 1 <n < m. Then, we have
j=n

len| <Clnol, n=1,2,...,
if
m71~aq)
lem| <M Z bjjn }ej‘+|1”lo|, m=1,2,...,n,
j=1
where M and C are positive constants.

Proof. Letc —Mb be such that

lem| < Mol + Z ¢ }e]\ =1,2,...,n. (3.9)
J=

From the inequality (3.9), we have |e;| < |1o| to obtain

’eﬂ‘ < |n0’+ Z cjl n |eJ1‘
J1—1

<m0l + Z il (|n0|+ Z i \%})

Jj1=1 J2=1

= |10l +Inol Z c]l n ot Z le n Z cjz,n |612‘

J1=1 J1=1 J2=1
< Mol + o] Z CJ] n + Z c]] n Z Cjz Ji (’770|+ Z ch i ‘613|>
J1=1 J1=1 J2=1 J3=1
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~1 o1
= o] + |10 Z CJ1"+|TI | Z CJ1n L S, 11+ Z Jln _ J2 Ji Z €jsin ‘613‘

J1=1 J1=1 J2=1 J1=1 J2=1 J3=1

< |Mo[ +|nol Z le n +|77 | Z Cjzn Z ch J2+|n0| Z cj3n Z Cjz7j3 Z Cjwz

j1=1 Ja=1 Jj3=1 J2=1 J1=1
n—1 oD Jn—1—1 oD J2—1 oa.®
++ |n0| . Z Cj”717n Z C.jn727.jn71 ; lev.jZ' (310)
Jn—1=1 Jj—2=1 J1=1

According to Lemma 3.2, it yields

Js=1
X <5 (@(t) ~ @)
Ja=

Therefore,
-1 jp—1

J2
@ @ 0
qn—|no|Z i Z ovia L € () = D(00))
Jg=1 Jg—1=1 J1=1
(= o,® ol o,® i o,® a
<Imol Y i X i e (@) — @(10)) " Bat, 1)M
Jq=1 Jg—1=1 =1

— 110l M9 (@ (1) — D(10))7* LI

< o] M (@(T) — D(ty) 1 AL
Now, we want to show the following result:
> I'a))?
¥ e (@(7) - @) = Yo
q=1

In effect, we have

lim Pg+1 _ M (D(T) — D(19)) (e %
4= Py M3 (D(T) — <1>(to))qaqu)+)1)
B B o D()T(ga+1)
=M (@) =®0) ;o et 1)
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Applying the property of two gamma functions as follows:

Lletm) _ o

1
1+0(—- ||, |arg(z+m)|<m as|z] — oo.
o=z lieo ()] faeerml<x asl
Then, we have

INga+1)
I'(g+1)a+1

1
=(ga) *|1+0(— )| <C(ga)™“ — oo,
] (qo) {Jr (qa)]_ (qo)™" asq
Therefore, we obtain

lim et
g—roo <I>q

qo

— M (@(7) - @) Tl 140 ()] <1.

(o)

which yields the convergence of Z ®,. Thus, the inequality of (3.10) is bounded, which means
q=1

n

n—1 —1
len] < |10l + 10| Y, @4 =10 Y ®r <C|nol.
=1 =0

q q
The proof is completed.
Now, we outline the following assumptions on the nonlinearity f.

(H;) The function f : [tg,T] x R — R is a continuous function.

(Hy) The function f: [fy,T] x R — R is Lipschitz continuous in the second variable, that is, there exists
L > 0 such that

|f(Ey1) = f(t,y2)] < Llyi — 2|
forallt € [ty,T] and y;,y2 € R.
(H3) The function f : [fo,T| x R — R is Lipschitz condition in # and y(¢) with a Lipschitz constant K.

Lemma 3.4. Assume that (H;) holds. Let y(¢) be the solution of problem (3.2) and / > 0 be sufficiently
small. Then, there exists a constant C which is independent of 4 such that

y(t+h) —y(t)] < Ch%*, t€ty,T—h).

Proof. By the assumption (Hj), there is a positive constant M such that |f(z,y(¢))| < M. From the
integral equation (3.2), we get

y(t+h) = y(r) :ﬁ ( ;h @' (V)(P(1+h) —@(v))* f(v.y(v))dv

@)@ —<1>(V))"“1f(v,y(V))dV) .

To
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Then, we have

< g |, PO (@ = @) ! = (@)~ @(v)*! | f(v.y(v))av
Fra | W@ ) vy
< ey L YW@+ m =0 - @) - e av
b [ ) @) - e ay
— e [ W) [(@) - @)~ @0+ h) - o) av
* Ty (-0
ZF(;{H) (@(t) — D(10))* + (P(t + 1) — D(t))* — (D(t +h) — P(to))*]
+r<oﬁ1 (@ (1 + 1) — ®(1))"
< F(iﬁil) (@(1 +h) — (1))
s [@0-+0) = B(0)* = (@(0) — 0(0)"]. a1

In the fact that the inequality

one immediately gets

(®(t+h) —@(1))* < Ch“. (3.12)
Combining (3.11) and (3.12), we obtain
y(t+h) —y(t)| < Ch?,

which completes the proof.
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Lemma 3.5. Assume that (H;) and (H3) hold. Let y(¢) be the solution of problem (3.2) and /& > 0 be
sufficiently small. Then, we have

In _ 1 n—1 o o
AU ORI Y viy(v))dv—— ZO (Wff,}- - Wff,’m) f (tj,yj)\ < Ch%,
]:
where (wg";b — wg ’jq_)H> is given by (3.4).

Proof. By the assumption (H3) and Lemma 3.4, which contributes to

tn n—1

"0/ (0)@(0) @) vy (v))av - é};o (we? = w2 ) f (1537)
n=l| etjig

=L /, &' (v)(@ (1) — B(V))* ! [F(voy(vV)) — £(1jy(1))] dv
j= J

n—1 1jt1
<L [ @ -em!

(|7 voyv) = £ vy @) [+ (v (1) = £ (1.3 (1)) [) v

< Lnil /tj+1 D' (v)(@(ty) — P(V)* ! [(v—1t;) +Ch*] dv
j=0"1j

<L+ [ & (v)(D(5,) — D(v))*~dv

— L1+ O (D(t) ~ ()"

<L(1 +C)h“$ (@(T) —D(10))"

< Ch*.

Lemma 3.6. Assume that (H;) and (H3) hold. Let y(¢) be the solution of problem (3.2) and 4 > 0 be
sufficiently small. Then, we have

[ ) (@00 = @(v)* v 5(v))av - ézl (e w2 ) £ (13| < On
where (wroliﬁl — wr‘i ’?) is given by (3.6).
Proof. The proof follows the same argument as in Lemma 3.5.
Lemma 3.7. If f(¢) € € [to, T], then
L a-1 1 a.® o
F—a)/to (V) (P(tn) —B(v)™ f(v)ds— Tlat1) <unjo [ (1) +,~Z’1 Uy, ; f(fj)> '

AIMS Mathematics Volume 7, Issue 8, 15002—-15028.



15014

1l

S Tla+1) (®(T) — (1)) " b,

where u fto)+ Z un g tj is given by (3.7).

Proof. Applying the mean value theorem, there exist §;,7; € (t jsljt 1) for j=0,1,...,n such that

1 In a—1 , 1 a.d n ad .
ey, (@ =2 e <V>dv—m<uw oo+ L f(t])>|
- e |2 1/ <I><t>—<1>v>‘“[ V)= 5 (1) +£ 1 ))}q’/(\/)dv
_F(oc)zo (P(tn) —2(v) FV) =5 (F (1) +f (141
1 Lot a1l 1 /
~ e ]Z;)/t, (D(1,) —D(v))* ! {E (f(v)— (f(t,~))+§ (f(V)—f(tj+1))] @' (v)dv
n_l rti
= 2r1a) ,Zo/r] (®(ta) = (V) [ (s =1;) 1 (&) + (s =1j01) £ ()| @/ (v)dv
< HC[Z(”T] Z / " ®(v))* @/ (v)dv
3 h||f’!|c[,07T] .
= Ta+l) (D(tn) — B(10))
1 i, 7 o
< m(q’(T)—CP(to)) h.

This completes the proof.

Then, the stability analysis and error estimations of the explicit product integration rectangular
rule (3.4), the implicit product integration rectangular rule (3.6), the implicit product integration
trapezoidal rule (3.7), and the Adams predictor-corrector method (3.8) are investigated in the next
section.

4. Error estimation of the approximation and stability analysis

Theorem 4.1. Assume that (H3) holds. Let y(¢) € €’[t, T] be the solution of problem (3.2) and y;(0 <
J < n—1) be the solution of the explicit product integration rectangular rule (3.4). Then, the error
equation

[y (ty) —yn| <Ch*, n=1,2,....N 4.1)

holds.

AIMS Mathematics Volume 7, Issue 8, 15002—-15028.
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Proof. Foreachn=1,2,...,N,welete,_| =y (t,—1) —yn—1 and egp = 0. By the integral equation (3.2)
and the fractional left rectangle scheme (3.4), we have the error equation as follows:

Y (tn) = yn :ﬁ/: ' (v)(D(t,) —P(v))* ' f(v,y(V))dv
1 n—1 o o
~Far &y () 1),

By the assumption (H3), and applying Lemmas 3.1 and 3.5, we obtain

eal < ]ﬁ [ W) - em) vy
1 n—1 a. o
“Fan & () s
1 n—1

rarn & (wis? = we )1 (153 (1)) = £ (1329))]

<Ch* + W@ &P ) ’ej| )

K

It follows that the inequality (4.1) is obtained by using Lemma 3.3.

Theorem 4.2. Assume that (H3) holds. Let y(t) € €[ty, T| be the solution of problem (3.2) and y;(0 <
J <n—1) be the solution of the implicit product integration rectangular rule (3.6). Then, the error
equation

[y (tn) —yn| <Ch*, n=1,2,....N (4.2)
holds.
Proof. The proof is essentially similar to the proof of Theorem 4.1.

Theorem 4.3. Assume that (H;) and (H3) hold. Let y(¢) € €[ty, T| be the solution of problem (3.2)
and y;(1 < j < N) be the solution of the implicit product integration trapezoidal rule (3.7). Then, the
error equation

|y (ta) —ya| <Ch%, n=1,...,N
holds.
Proof. The proof of this theorem follows the same technique as Theorem 4.1.

Theorem 4.4. Assume that (H;) and (H;) hold. Let y(¢) € €[ty, T] be the solution of problem (3.2),

Dg’q)y(t) € €1, T],and y;(1 < j < N) be the solution of the Adams predictor-corrector method (3.8).

Then, the error equation
Y (tn) =yl <Ch, n=1,....N—1
holds.
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Proof. For eachn=0,1,...,N—1, we let e, = y(t,) — y, and ¢y = 0. By the integral equation (3.2)
and the Adams predictor-corrector method (3.8), we obtain

y(ty) —yn = ﬁ/: (D(1,) — D(V)* ! f(v,y(v))®' (v)dv

n—1
- ﬁ (;)u,‘fjf’f(tj,yj) +”g,};bf(fn,y5)>
Then,
1 In a—1 /
e \m / (@(1) ~ )" SV (V) (V)

To

a_|_1 (Zu t]7y] +unn (tnvyn))‘

< ﬁ/fﬂ (®(ty) —D(V)* ! f(v,y(v))®' (v)dv — ﬁ anou,?,’f’f (tj,y (t]))‘
0 =
n n—1
+ _F(a1+ 5 Y ul S (t,y (1) — (Z uy T f(t,y5) +u2{;?f(tn,yg)> |
j=0 j=0
< e [ @) = @) )@ ey - L 3 (1 (tj))‘
0 =0
n—1
i B AR U ) )
2
gy W U () = )
=hLh+L+5.

From Lemma 3.7, it follows that

I <Cih.
By the assumption (H;) of f, we obtain
1 el e
h= I(a+1) Ei ”aJ Lf (6,5 (1)) = £ (7,55)]
1 n—1 ao
S o &yt 0y ) =1 )]
n—1
<r(%+1)] L s [y (1) =il
n—1

a+1z ‘J{
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As for u®®, one gets

nn 4
o,d 1 a o
U = 5 (@) = B(t-1))* < Ch

Since f(t,y(t)) = Dg’q)y(t) is continuous and bounded, it follows Lemma 3.7 that

= |l/l2i’,fb [f(tn,y(tn)) —f(lnayg)”
< Ch*|f (tn,y (ta)) — f (ta,¥D)|
< CLh® |y (ty) — |

1

i / " (@(1) — (V) * LD (V) F(v.y(v))dv

o, P o,
" T(a+1) (Wn,j _Wn,jJrl)f(tjayj)

= CLh*

a,P a,® a,® )
T(a+1) (ij _Wn,j+l> Dy "y (1))

_1 a,® a,® a,®
INa+1) Z (W"»j _W’hj+1>Df0 y<tj)

T(a+1) )} (WZ? - Wﬁ‘ﬁl) f(tjv;5)

F(OC) . q)/(v)(q)(tn)—q)(\/))a_l Dg@y(\/)dv

oc+1 Z( J "J+1>Da¢y(tf>
CLha n—1 o o
M CES)) Z()(Wn,f)_wn,ﬁ-l) [f (15,3 (1)) = £ (17.3)|
=

CL*(T —1p)* "

+1 o,d o,P

< Ch* +—F((x—|—1) ZE)(W"’j —wn7j+1>‘ej|.
j:

According to Lemmas 3.1 and 3.3, we obtain

len| <h +hL+1

s¢ Z 7 lej]
“T(a+1) ;( n]+1)|eJ‘
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which implies the statement of Theorem 4.4.

Theorem 4.5. Assume that (H;) and (H») are true. Let y J( =1,2,...,n) be the solution to the explicit
product integration rectangular rule (3.4) on the existed interval of its unique solution. Then the explicit
product integration rectangular rule (3.4) is conditionally stable.

roof. Suppose that yp and y ave perturbations yj and y;, respectively. From (3.4), it
P Suppose th dy;(j=1,2,...,n) have perturbati d §;, respectively. From (3.4), i
follows
1 = o,P o,®
Yn+Fn=yo+Fo+ =—= ) (w = )f tj,yi+3j)- (4.3)
n T Jn Mla+1) sV 1) £ (5545)

By the assumption (Hj3), and the equations (3.4) and (4.3), we get

|}7ﬂ’ = ylo

~ 1 ol o o, ~
ey & () [y +5) 1 (0] |

~ 1 n—1
< Iyton ) (WZ,}CD an+1> |f (15,9 +3)) = £ (tj:3;)]

3&
»—‘O

~ L a,d
< |9 +m <Wn,j —W,, J+1> 5]

L a,® a,d
<5 Wno ~Wni -
ol + i o+ o g( w15l
<M+ T g( i) il @
By Lemmas 3.1 and 3.3, it implies to
|)7n| S Cn()a

o,P oc 03]
L (Wi = wi?) I5ol |
where ng = [ Jnax |Yo| + . The proof is completed.

<n<N-1 INa+ 1)
In the same way, we obtain the stability results for the implicit rectangular and trapezoidal rules in
Theorems 4.6 and 4.7, respectively. Hence, we omit the proof.

Theorem 4.6. Assume that (H;) and (H) hold. Let y;(j = 1,2,...,n) be the solution to the implicit
product integration rectangular rule (3.6) on the existed interval of its unique solution. Then the implicit
product integration rectangular rule (3.6) is conditionally stable.

Theorem 4.7. Assume that (H;) and (H») hold. Let y;(j = 1,2,...,n) be the solution to the implicit
product integration trapezoidal rule (3.7) on the existed interval of its unique solution. Then the implicit
product integration trapezoidal rule (3.7) is conditionally stable.

Next, we investigate the stability of the fractional predictor-corrector scheme (3.8).
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Theorem 4.8. Assume that (H;) and (H,) hold. Let y;(j = 1,2,...,n) be the solution to the Adams
predictor-corrector method (3.8) on the existed interval of its unique solution. Then, the Adams
predictor-corrector method (3.8) is conditionally stable.

Proof. Assume that §o,5;(j=1,2,...,n),and 3, (n=1,...,N) are perturbation terms of yo,y;, and y©,
respectively. Then, we construct the perturbation equations as follows:

P I )
i ZyOer Z, (ws? = v ) [ (toyi+53) = £ (1129,)]

=30+ gy a+1 {Zun, USIESHENAUSD]

-}-%(Cb(tn)—d)(tn1))a[f(tn,yn+yn) f(tn,y{i)]}-

From the assumption (H;) and the inequality (4.4), we get

1 n—1 o _
al =50+ Fr {j;oun;f’ KUSTESHESAGST]

(@(tn) = P(ta—1))" [ (tn, 5 +50) — f(fnvyﬁ)]} ‘

. I @ .
< ‘y0|+mj;)u2ij f (15,5 +57) = [ (t7,y))]

1 o
+ 2T(a+1) (D(tn) = DP(ta—1))" | f (tn, Y5 +55) — f (12, 35)]
Lug,’ L,
<ol + ="~ Fol + =——= Y u, 7 |9;
‘y0| F((X+1) |y0| F(a+1)jzlu i ‘yj’
L
+2F(OC+1) (CI)( )_Cp(tn 1)) Iyn\
Lua’rfp .,
ol + g5 (1) — D(t2-1))" o

(®(tn) — D(ta-1))" 50

(05+1) ( 1)
L (S o, L o a, o, ~
HCES) jZ {un,f” (o 1) Pn) = Plin1) (an—wnﬁlﬂ it
<Got (ocL+1 ; { +—2F(Of 7 (@)~ P(10-)" (W;;f;b_wgﬁl)} 5.
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where
Lu®® L
~ 0.n ~ O |~
— ’ D(t,) —P(t,—
o O<2n<a5_l{yyoy+r(a+l) ol g (P00) 1) 5
2 o,P a,d
L (wn’o — W, >

(D (ta) — P(ta=1))" |F0]

2l + 1IN +1)
By Lemmas 3.1 and 3.3, it yields to

|)7n’ < CCO-

This completes the proof.
5. Numerical examples

Motivated by [2], we assume that J = [0,1] and ® € %'(J) be a differentiable function such that
®'(¢t) > 0, € J and ®(J) = [0,1]. Moreover, we solve the numerical examples by using MATLAB
software and investigate different choices of suitable functions & in the numerical examples as below

Example 5.1. Consider the fractional order initial value problem given by

DO+ o) = ﬁ (@) *+(@(1)?), 0<a<l,

y(0) =0.

(5.1)

It is clearly seen that y(r) = (®(r))? is the exact solution.

The exact solution and numerical solutions of (5.1) are plotted for different kernels & in Figure 1.
Moreover, the numerical results are closed to the exact solution. Notice that the behaviors of the
solutions are similar although we change the different kernels ®. In Table 1, we display the maximum
errors of four numerical schemes for (5.1) when ®(f) = ¢ and o = 0.8. From the data given in
Table 1, the accuracy of numerical solutions corresponds the Theorems 4.1-4.4 when £ is sufﬁcient%y
=5
respectively. Overall, the implicit product integration trapezoidal rule and Adams predictor-corrector
method have higher accuracy than the other method.

t
small. Tables 2 and 3 also present maximum errors for the kernels ®(¢) = sin (1—0> and (1)

Table 1. Maximum errors for (5.1) with ®(z) =7 and o = 0.8.

h  Ex. PIRec. Im.PIRec. Im.PITrap. Adams PC
2779E-02  2.64E-02  2.89E-04  1.50E-03
1.38E-02  1.33E-02  7.73E-05  4.07E-04
6.80E-03  6.70E-03  2.10E-05  1.13E-04
3.40E-03  3.40E-03  5.66E-06  3.18E-05
1.70E-03  1.70E-03 1.51E-06  9.00E-06
8.49E-04  8.46E-04  4.02E-07  2.55E-06
2710 424B-04  4.23E-04 1.06E-07  7.26E-07
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t
Table 2. Maximum errors for (5.1) with ®(¢) = sin <E> and o = 0.8.

h  Ex.PIRec. Im.PIRec. Im.PITrap. AdamsPC
2=%  5.38E-04 5.18E-04 4.31E-06 1.32E-05
275 2.66E-04 2.62E-04 4.94E-06 4.44E-06
276 1.32E-04 1.32E-04 5.98E-06 5.92E-06
277 6.52E-05 6.68E-05 6.35E-06 6.47E-06
2 8

2 9

3.35E-05 3.40E-05 6.51E-06 6.62E-06
1.93E-05 1.76E-05 6.59E-06 6.66E-06
2710 1.27E-05 9.33E-06 6.63E-06 6.67E-06

t
Table 3. Maximum errors for (5.1) with ®(r) = 5 and o = 0.8.

h  Ex. PIRec. Im.PIRec. Im.PITrap. AdamsPC
* 940E-03 890E-03  7.73E-05  4.06E-04
= 470E-03  4.50E-03  2.10E-05  1.13E-04
6 230E-03 230E-03  5.66E-06  3.16E-05
7 1.20E-03  1.10E-03 1.51E-06  8.91E-06
-8 575B-04 571E-04  4.02E-07  2.52E-06
27% 287E-04 286E-04  1.06E-07  7.16E-07
2710 143E-04  1.43E-04  2.78E-08  2.04E-07
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Exact
Ex. Pl Rec.

1k Im. Pl Rec.
Im. Pl Trap.
Adam PC

0.5 0.6 0.7
time

02 03 04

@ o(r)=t
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Toasf
04t
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0.9 1

0.01

0.009 [
0.008 -
0.007 [
0.006 [

% 0.005
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0.003 [
0.002
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Exact
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Im. Pl Rec.
Im. Pl Trap.
Adam PC

0.5 0.6
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0.2 0.3 0.4

(b) (1) = sin( )

Exact

Ex. Pl Rec.
Im. Pl Rec.
Im. PI Trap.
Adam PC
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0.5 0.6
time

(c) (1)

03 04

2

08 09 1

Figure 1. Testing between exact and numerical solutions of (5.1) for differents & with h =

2710 and @ = 0.8.

Example 5.2. Consider the nonlinear ®-Caputo fractional differential equations given by

2o +1)
- T(a+1)

(P(r) —P(10))* — G-a)

2 (@)~ D(1))*

+ (@) = D(10))>* — (@(1) — D(10))?) —y*(1),

y(0) =0.

(5.2)

From Figure 2, the numerical and exact solutions of (5.2) are plotted for kernels ®. Moreover, the
numerical solutions are close to the exact solution. However, the behavior of the solutions is changed

when the functions of ® are change.
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0.09

Exact
Ex. Pl Rec.
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time

(b) (1) = sin( )

Figure 2. Testing between exact and numerical solutions of (5.2) for differents & with h =

2710 and @ = 0.8.

When o = 0.8 and ®(¢) = ¢, the maximum errors of four numerical schemes of (5.2) are presented in
Table 4. The accuracy of numerical solutions also corresponds to the Theorems 4.1-4.4 when the step

t
size h is getting small. Next, the maximum errors of (5.2) with the different kernels () = sin (—)

10

t
and ®(r) = 5 respectively, for different values of /& are showed in Tables 5 and 6. Therefore, the

implicit product integration trapezoidal rule has high accuracy than the other method. However, the
implicit product integration rectangular rule gives higher accuracy than the other method when ®(¢) =

t
sin <1—0> Particularly, the four numerical schemes can be reduced to the numerical schemes in [22]

when ®(¢) = . Furthermore, if ®(¢) = In(¢), the numerical schemes are agreed in the example of [26].

It can be seen that y(r) = (®(1) — D(19))>* — (P(t) — P(1))>.
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Table 4. Maximum errors for (5.2) with ®(¢) = and o = 0.8.

h  Ex. PIRec. Im.PIRec. Im.PITrap. Adams PC
* 1.17E-02 1.32E-02 1.30E-03 1.30E-03
> 6.00E-03  640E-03  4.11E-04  4.11E-04

~6 3.10E-03 3.20E-03 1.29E-04 1.29E-04
7
8
9

1.50E-03  1.60E-03  4.09E-05  4.09E-05
7.77E-04  7.85E-04  1.31E-05  1.31E-05
3.90E-04  3.92E-04  422E-06  4.22E-06
2710 195E-04  1.96E-04 1.37E-06  1.37E-06

t
Table 5. Maximum errors for (5.2) with ®(¢) = sin (E) and a = 0.8.

h  Ex.PIRec. Im.PIRec. Im.PITrap. AdamsPC
* 6.61E-04 5.99E-04 3.65E-05 3.91E-05
S 3.24E-04 3.06E-04 1.99E-05 2.14E-05

6 1.63E-04 1.55E-04 1.52E-05 1.61E-05
7
8
9

8.64E-05  7.80E-05 1.40E-05  1.45E-05
4.94E-05  3.91E-05 1.38E-05  1.41E-05
3.14E-05  1.96E-05 1.38E-05  1.39E-05
2710 226E-05  9.82E-06 1.38E-05  1.39E-05

t
Table 6. Maximum errors for (5.2) with ®(r) = 5 and a = 0.8.

h  Ex. PIRec. Im.PIRec. Im.PITrap. Adams PC
4 3.80E-03 2.90E-03 4.11E-04 4.11E-04
3 1.80E-03 1.50E-03 1.29E-04 1.29E-04

—6  8.72E-04 7.92E-04 4.09E-05 4.09E-05
7
8
9

428E-04  4.04E-04  1.31E-05  1.31E-05
2.11E-04  2.04E-04  422E-06  4.22E-06
1.05B-04  1.03E-04  1.37E-06  1.37E-06
2710 522E-05 5.17E-05  4.45E-07  4.45E-07

6. Conclusions and future work

Four numerical schemes namely explicit product integration rectangular rule, implicit product
integration rectangular rule, implicit product integration trapezoidal rule, and Adams method are
extended to solve the nonlinear ®-Caputo fractional differential problems. We also analyze the error
estimation and stability for those numerical schemes. When the exact solutions are known as in
Examples 5.1 and 5.2, the implicit product integration trapezoidal rule and Adams predictor-corrector
method can perform comparatively better than the explicit product integration rectangular and the
implicit product integration rectangular rules, where the convergence order depends on the step size A.

AIMS Mathematics Volume 7, Issue 8, 15002—-15028.



15025

Moreover, these schemes are investigated for the linear and nonlinear ®-Caputo fractional differential
equations. Further studies on numerical methods for fractional differential equations based on
®-Caputo derivative could be investigated for various types of fractional differential equations such as
the fractional differential equations with delay and a nonlocal term, integro-differential equations, and
higher order fractional differential equations.
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