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Abstract: In this article, our interest is the quaternion matrix equation (AXB, DXE) = (C, F), and we
study its minimal norm centrohermitian least squares solution and skew centrohermitian least squares
solution. By applying of the real representation matrices of quaternion matrices and relative properties,
we convert the quaternion least squares problems with constrained variables into the corresponding real
least squares problems with free variables, and then we obtain the solutions of corresponding problems.
The final results can be expressed only by real matrices and vectors, and thus the corresponding
algorithms only involves real operations and avoid complex quaternion operations. Therefore, they are
portable and convenient. In the end, we give two examples to verify the effectiveness of the purposed
algorithms.
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1. Introduction

In this article, we apply the following notations. R is the real number field. R™" is the set of all
m x n real matrices, and the set R™*! is also denoted as R™. R, R are the sets of all p X g real
centrosymmetric and anti centrosymmetric matrices, respectively. Q is the quaternion skew-field, and
Q™ is the set of all m X n quaternion matrices. QF/, Qbrr are the sets of all p X ¢ quaternion
centrohermitian and skew centrohermitian matrices, respectively. C”, C, C' and R(C) denote the
transpose, the conjugate, the Moore-Penrose inverse and the rank of the matrix C, respectively. I
denotes the k X k identity matrix. J; = (e, ex_1,- - ,€2,€1), in which e; is the i-th column of ;. Let
A= (e, ,a,) €R™" vec(A) = (al,ab,--- ,al)" is the vec operator. || - || stands for the matrix
Frobenius norm. Let B = (b;;)) € R™",C € R4, and then B® C = (b;;C) € R™" means the

Kronecker product of B and C. The rand(m,n) is a function, which can generate a m X n random


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022803

14596

matrix in MATLAB.

Matrix equations are the main content of numerical algebra. They are widely used in computational
mathematics, control theory, quantum physics, quantum mechanics, color image processing and so on.
With the rapid development of these fields, matrix equations are widely studied [1-13]. In this article,
our interest is the following matrix equation

(AXB, DXE) = (C, F) (1.1)

in which X is an unknown matrix, and others are given matrices with proper sizes. In recent years,
this matrix equation has attracted much attention for its important role in pole assignment [14],
measurement feedback [15], matrix programming problem [16] and so on. The main methods of
solving (1.1) include the iterative method and the direct method. In this article, we are concerned with
the latter.

Some significant results of the matrix equation (1.1) have been obtained by direct method.
Navarra et al. [17] derived a representation of the general solution for the complex matrix
equation (1.1). Liao et al. [18] gave an analytical expression of the minimal norm least squares
solution for the real matrix equation (1.1) by the the generalized singular value decomposition.
Yuan et al. [19, 20] considered the minimal norm Hermitian least squares solution, n-bi-Hermitian
least squares solution and n-anti-bi-Hermitian least squares solution for the quaternion matrix
equation (1.1) by the complex representation method. Wang et al. [21] studied the minimal norm
Hermitian least squares solution of the complex matrix equation (1.1) by a product of matrices and
vectors. Zhang et al. [22] studied the same problems as [21] by the real representation matrices
of quaternion matrices. Simsek et al. [23] purposed the precise solutions on the minimum residual
and matrix nearness problems of the quaternion matrix equation (1.1) for centrohermitian and skew
centrohermitian matrices.

In addition, centrohermitian and skew centrohermitian matrices have wide applications in linear
system theory, information theory, numerical analysis and linear estimate theory [24,25]. Therefore,
for the quaternion matrix equation (1.1), it is valuable of the research of centrohermitian and skew
centrohermitian solutions. It is generally known that the quaternion skew-filed Q is a non-commutative
but associate algebra. Thus, many conclusions on real number field are invalid on the quaternion
algebra. For example, the result vec(AXB) = (BT ® A)vec(X) does not hold on the quaternion
algebra. Based on these, in the present paper, we will convert the quaternion least squares problems
with constrained variables into the corresponding real least squares problems with free variables by
using the real representations of quaternion matrices and relative properties, and give the solutions of
corresponding problems.

We will consider the following two problems.

Problem I. Let A € Q"™”, Be Q7,C € Q™,D € Q™?, E € Q7 F € Q™" and

Qcu = {XIX € Q%}/, min||(AXB - C,DXE — F)||}.

Find Xy € Qcy such that || Xcy|| = Xinn [1X]].
€QcH
Problem II. Let A € Q™”, B € Q¥,C € Q™*,D € Q™" E € Q™ F € Q™ and

Qscr = (XIX € Q¢ min|l(AXB — C, DXE — F)|l}.
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Find Xgcy € Qgcy such that || Xgcy|| = min [|X]|.
XeQscu

The solution X¢y is also named the minimal norm centrohermitian least squares solution of (1.1),
and Xgcp 1s also named the minimal norm skew centrohermitian least squares solution of (1.1).

The rest of this article is arranged as follows. In Section 2, we provide some preliminary results.
In Section 3, by using the real representations of quaternion matrices and relative properties, we
convert the quaternion least squares problems with constrained variables into the corresponding real
least squares problems with free variables, and then we obtain the solutions of Problems I and II. In
Section 4, we first purpose two numerical algorithms for Problems I and II, respectively, and then we
give two examples to verify our algorithms. Finally, in Section 5, we offer some brief comments.

2. Preliminaries

A quaternion g € Q can be written as
q=q1 + @i+ q3j + gk,
where g1, ¢, q3,q4 € R and i* = j> = k* = ijk = —1. The conjugate of ¢ is defined as
q=q1 — @i-qaj — qik.
Similarly, a quaternion matrix Q € Q™" can be written as

0 = Q) + Qi+ O3) + 04k,

where Qi, 0>, 03,04 € R™", and its conjugate matrix is Q = Q; — OQ»i — O3) — O4k. The real
representation matrix of Q can be defined as

01 -0 -0z —04
O, O -04 O3
O 04 O -0
Oy =03 O O

c R4m><4n )

QR

The Frobenius norm of Q is defined as

101l = VIQIP + Q2> + 1051 + 1 Q4l>.

Obviously, O® has specific structure. Now, the k-th row block of O is denoted by QR and the k-th
column block of QR is denoted by OX. OF, OF, OR have the properties as below.

re?
Lemma 2.1 ( [26]). Let A,B € Q™",C € Q™,l € R. Then

= Lot = & = Lt = s
(1) A= Bo AR = BR & AR = BR o AR = BR
(2) (A+B)® = AR + BR (A + BR = AR + BR,

(3) (AR = 1AR, (AR = IAR,

(4) (AO)R = ARCR, (AC)R = ARCR,
(5) Al = lAR] = lAR]I,
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where k = 1,2,3,4.

For simplicity, we use the first column block of OR to solve Problems I and II, and which is denoted
as OR ie.,
O
(0}
0;
04

The following lemmas are useful for solving Problems I and II.

Ok =

Lemma 2.2 ([27]). Let X € QP*. Then vec(X®) = Fvec(XR), where

diag(14pa ) I4p)
diag(Qpa Y Qp) c R16pqx4pq
diag(R,, -+ ,R)) ’
diag(Sp,---,Sp)

and
0 -1, 0 0 0 0 -, 0 0 0 0 -
0 0O O 0 0 0o -I 0 0o I 0
Qp = p ,RP = g ’Sp = .
o 0 0 I b 00 0 0 A 00
0 0 -1, 0 0, 0 0 I, 000
vec(X))
y R vec(Xs)
Lemma 2.3. Let X € RP*4, Then vec(X) = M ;where
¢ vec(X3)
vec(Xy)
diag(1,,1,,1,,1))
_ dl(lg([z, Iza I29I2) c R4pq><4pq’

diag(1,,1,,1,1,)
and Iy = (1,,0,---,0),7, =(0,1,,---,0),---,7,=1(0,0,---,1,) € RPP4,

For a real matrix X = (x;;) € R, if x;; = X(p-i+1)g—j+1)> then X is called centrosymmetric matrix.
If xij = —X(p-is1)g-j+1)» then X is called anti centrosymmetric matrix. They can also be described
equivalently as
pXq — 12:4 —
XeRy = X=J,XJ;,, XeR = X=-J,XJ,

Similarly, for a quaternion matrix X = (x;) € QP if X;; = X(-isr1)g-j+1). then X is called
centrohermitian matrix. If x;; = —X(,—i+1)g—j+1), then X is called skew centrohermitian matrix. And
it is not difficult to get the following conclusions:
pXq - I Y pxq _ v
XeQy &= X=J,XJ;, XeQspy = X=-J,XJ,.

Furthermore, we can get the following Lemma 2.4.
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Lemma2.4. Let X = X + Xoi + X3j + X4k € Qqu. Then

(1) X € Q%) < X; e RE, X5, X3, X4 € R

g N g3
(2) X € Qqry = X1 € R, X2, X3, X4 € R

Proof. By the definition of centrohermitian matrix, we have
XeQl e X=1J,XJ,
— X + le + X3j + X4k = Jp(Xl - Xzi - ng - X4k)Jq
— X] = Jpleq,Xz = —JPXQJq,X3 = —JpX3Jq,X4 = —JPX4Jq

pxq pxq
— X, € RCS , X2, X3,X4 € RACS‘

Thus (1) holds. Similarly, we can show that (2) holds.

Lemma 2.5. Suppose X = (x;;) € RP.
(1) Ifp=2m+1,g=2n+1,let

@ = (X1, X205 ** s Xmanyi), 1=1,2,--- ,n+1,

;= (X1j,X2j," "+ s Xpmj), J=n+2,---,q,
and vecS3 (X) = (a1, @, - ,a,)", then

X e Rgﬂ & vec(X) = G5 vecfs (X),

00 0

where
L 0 0 0 0 0 0 0
0 0 0 0O 0 0 0 Jn
0 I 0 0 0 0 0 0
0 0 0 0O 0 0 Jn O
0 0 Ly 0O 0 0 0 0
GCS — 8 8 8 I?I 8 J(')" 8 8 c qux(2mn+m+n+l)
00 .
0 0 0 0 1 0 0 0
0 0 0 Jo 0 0 0 0
0 0 0 0o 0 I, 0 0
0 0 Tl 0O 0 0 0 0
0 0 cee 0 o o o - 0 I,
Ji O - 0 0 0 0 - 0 0

2) Ifp=2m+1,q="2n,let

@; = (X1j, X205+ 5 Xgmanyi)s L= 1,2, ,n,

a/j:(xlj9x2j"”’xmj)’ i:n+19“'aQ9

and vec$> (X) = (a1, @2, - -+ , )", then

oe

X € R & vec(X) = G5 vecS) (X),

e
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where

GCS —

oe

]m+l

0
J, m+1

3) Ifp=2mqg=2n+1,let

and vec$S (X) = (ay, aa, - -

where

eo

4) Ifp=2m,q="2n,let

a; = (X1, X2,

Im+l

,a,)", then

0 0 0 0
0 0 0 Jn
0 0 0 0
0 0 Jn 0
L 0 0 0 pgx(2mn+n)
0 J, o o |€ R .
0 I 0 0
Jm+] 0 0 0
0 0 0 Iy
0 0 0 0

’xmi)7i: 1,2,"’ ’q’

X € R > vec(X) = G vecS) (X),

~

[=NeNe]

a; = (X1, X2+ *

coococooco-- O OO

and vec,(X) = (a1, @, - ,a,)", then

where

GCS —

ee

AIMS Mathematics

& cocooo

Soococo

0

0 0 0 0

0 0 0 Jn

0 0 0 0

0 0 Jn 0

0 0 0 0

0 Jn 0 0 PgX(2mn+m)
L, 0 0 0 eR :
Jn 0 0 0

0 I, 0 0

0 0 0 0

0 0 0 I,

0 0 0

’xmi)ai: 1’27"' ’Q7

X e RIY! & vec(X) = G vects (X),

coc o

‘I/II

cocooco--- oo o

0 0 0 0
0 0 0 J,

0 0 0 0

0 0 50

I, O 0 0 pgx2mn
0 Jn o o |€ER .
0o 1, 0 0

Jn 0 0 0

0 0 0o 1,

0 0 0 0
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Lemma 2.6. Suppose X = (x;;) € RP*.
() Ifp=2m+1,g=2n+1,let
a; = (.X]i,le',"' 7-x(m+1)i)7 i = 1727"' » 1,

;= (X1, Xj, " s Xpj), Jj=n+1,--,q,

and vec’ S (X) = (a1, @, -+, a,)", then

X € RIS e vec(X) = GASS vechSS (X)),

where

) 0 0 0 0 0 0

0 0 0 0 0 0 I

0 y 0 0 0 0 0

0 0 0 0 0 —Jn 0

0 0 L 0 0 0 0
GACS _ g 8 8 1(,),1 gm 8 8 c quX(Zmn+m+n)
00 .

0 0 0 0 0 0 0

0 0 0 —Jm 0 0 0

0 0 0 0 I, 0 0

0 0 —J 1 0 0 0 0

0 0 0 0 0 0 L,

Jpa O 0 0 0 0 0

2) Ifp=2m+1,q="2n,let

a; = (x1i7x2i,"' ’x(m+l)i), 1= 1’2’... A,

aj:(-xlj’XZj,”"xmj)’ j:n+]~"”’Q7
and vec’ S5 (X) = (a1, @, ,a,)", then

X e R > vec(X) = GO veci S (X)),

where

Ly 0 0 0 0 0

0 0 0 0 0 —-J,

0 ) 0 0 0 0

0 0 0 0 -5, 0
ACS _ 0 0 L 0 0 0 pgx(2mn+n)
Goe - 0 0 0 - 0 0 € R °

0 0 0 I, 0 0

0 0 —Jms1 0 0 0

0 0 0 0 0 I,

—Jns1 0 0 0 0 0

3) Ifp=2m,g=2n+1,let
a; = (x1i9-x2ia”' ’xmi)ai: 1’27"' ’Q7
and vec?SS(X) = (a1, @, -, a,)", then

X e R > vec(X) = GoPveciS® (X)),
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where

I, 0 0 0 0 0 0

0 0 0 0 0 0 —J

0 I 0 0 0 0 0

0 0 0 0 0 ~Ju 0

0 0 I, 0 0 0 0
ACS _ 0 0 0 0 —Jn 0 0 pgx2mn+m)
Goo,” = o o 0o I, 0 o o |€R .

0 0 0 —J, O 0 0

0 0 0 0 I, 0 0

0 0 ) 0 0 0

0 0 - 0 0 0 - 0 I,

“Jy 0 0 0 0 - 0 0

4) If p=2m,q="2n,let
@; = (X155 X215 5 Xi)s 1= 1,2,+++ . q,
and veci® (X) = (ay, a2, -+ ,a,)7, then

X € R e vec(X) = GA% vectSS (X),

ACS ee
where
L, 0 0 0 0 0
0 0 0 0 0 -
0 I, 0 0 0 0
0 0 0 0 ~J. 0
6 0 1:,,, O 0 0 mn
G?KCS = 0 0 S 0 o e RPqXZ .
0 0 0 I 0 0
0 0 —Jw 0 0 0
0 0 - 0 0 - 0 I
-J, 0 - 0 0 0 0
Lemma 2.7. Let X = X + Xoi + X3j + X4k € Qqu. Then
vec(X7) vec/fvs (X1)
X5) vecSS (X,)
DX PXq vec( 2 — (CH ny
D XERer | ey |79 | vedSxs) |
vec(Xy) vec,,” (Xs)
vec(X7) VeC,’;‘VCS (X1)
X5) vecCS(X5)
2 X 12 V€C( 2 — (SCH ny
(2) X € Qe = vec(X3) w vecGy (X3) |’
vec(Xy) vecSy (Xy)
where
G/ff 0 0 0 G;‘VCS 0 0 0
Gt = 0 Gﬁycs 0 0 GSCH = 0 GSVS 0 0
p 0 0 Gf}vcs 0 ’ po 0 0 Ggf 0
0 0 0 G/’:‘VCS 0 0 0 Ggf

Here, p,q are odd numbers, and then u = v = o. p is odd number and q is even number, and then
U =o0,v=e. piseven number and q is odd number, and then u = e,v = o. p, q are even numbers, and
thenu=v=e.
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Lemmas 2.3, 2.5 and 2.6 can be obtained by direct calculation. According to Lemmas 2.4-2.6, we
can easily get Lemma 2.7, so we omit the details.

3. The solutions of Problems I and II

In this section, we first convert the quaternion least squares problems with constrained variables into
the corresponding real least squares problems with free variables by applying the real representations
of quaternion matrices and the relative properties, and then obtain the solutions of Problems I and II.

Theorem 3.1. Suppose A € Q™, B € Q7,C € Q™,D € Q™?, E € Q™ F € Q"™ and X =

R\T R
X+ Xoi + Xzj + X4k € Q’C’Zq, and denote K = (((gf{;T 2?)1‘)' Then the set Qcy in Problem I can be
represented as ‘
vec(Xy)
—(X V€C(X2) _ »CH W?M CH\T V€C(C§) CH 1 «TM CH\ T WTM CH 3 1
Qen=(X1| C) | = G KT MG (200 | + Gl =T MG (KT MGEID, (3.1
vec(Xy)

where y € R” is an arbitrary vector. The unique solution Xcy = X + Xoi+ Xz3j + X4k € Qcy of Problem
1 satisfies

vec(X7)

vec(X2) | _ cn CH\t vec(Cf)

vec(X3) | G KFMG,) ( vec(FR) ) (3-2)
vec(Xy)

Here,if p=2m+1,g=2n+1,thenu=v=o0andr =8mn+4m+4n+ 1. If p=2m+ 1, g = 2n,
thenu =o,v=candr =8mn+4n. If p=2m,q =2n+ 1, thenu = e,v = o and r = 8mn + 4m. If
p=2m,q=2n,thenu=v=-eandr = 8mn.

Proof. Because of
I(AXB — C,DXE — F)||* = ||AXB - C|* + ||DXE — F|,

we get
min ||(AXB — C, DXE — F)|| < min||JAXB - C||* + ||[DXE — FJ]*.

Therefore, the set Qcy of Problem I can also be represented as

Qcy = {XIX € Q%4 IAXB - C|* + ||IDXE — F|> = min}.

CH
According to Lemmas 2.1-2.3, we obtain
IAXB — C|I* + ||DXE — F|I* = |ARX®BR — CR|* + |IDRXRER — F¥|?
= I(B®)" ® A®)ec(X®) — vec(CP)|I*
+ I((E®™T ® D®)vec(X®) — vec(F®)||?

(BB @ AR vec(CR)
= | ((Ef)T 2 DR) vec(X®) — (veC(Ff)) I?
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R
= K Fvec(XF) - (V“(Cc )) I2

vec(FR)
vec(X;)
B vec(X,) vec(CR)\ »
= IIKFM vec(X3) (vec(FB) I
vec(Xy)
For X = X; + Xoi + X3j + Xuk € Q7;/, according to Lemma 2.7, we get
vec(X7) vec/ff (X1)
vec(Xa) | _ e | vecis® (Xa)
vec(Xz) | TH veCf}VC S(X3) |
vec(Xy) vech® (Xa)

Consequently

vecffvs (X1)
cr | vee,ss (Xa) (vec(Cf)) 2

IAXB - C|? + |DXE - F|* = | KF MG vec(FR)

g vecﬁfS(x3) -
ek (x,)

For the real matrix equation

vecfys (X1)
cn | veeiS (Xo) | (vec(CR)
KIMG,, vec%VCS(Xg) _(vec(Ff) ’
vechEs (X,

its least squares solutions can be represented as

vecfvs (X1)

vecAVcS (X2) _ CH\# vec(CB) CH o
VeCZ\vC (X3 | (KT MGy vec(FR) + 11, = (KF MG, (KFMG,,Oly,
vecﬁyc 5 (X4)

where y € R" is an arbitrary vector. Then

vec(Xy)

X . R .
Eiiﬁxji =Gy (KF MG, (iﬁi;;) + GSHI, — (KF MGSHY (KF MGE™)y.
vec(Xy)

Here,if p=2m+1,g=2n+1,thenu=v=0andr=8mn+4m+4n+ 1. lf p =2m+ 1, g = 2n,
thenuy =o,v=eandr =8mn+4n. If p =2m,qg =2n+ 1,thenu = e,v = o and r = 8mn + 4m. If
p=2m,q=2n,thenu =v =eandr = 8mn.

Thus, we obtain the set Q¢ in (3.1), and the unique solution X¢cy = X; + Xoi + X;j + Xyk € Qcpy of
Problem I satisfies (3.2). O
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By Theorem 3.1, we can get the condition that there is a centrohermitian solution and the
centrohermitian solution set of the quaternion matrix equation (1.1).
Corollary 3.2. Suppose A € Q™?, B € Q7*,C € Q™,D € Q™P, E € Q" F € Q™ and X =
N pxq _[((B¥T @ AR
X1+ Xoi+X3j+ X4k € Q;, and denote K = (E?)T ® DR
has a centrohermitian solution X € QZ;;] if and only if

). Then the quaternion matrix equation (1.1)

+ [vec(C®)
Uinisery = KF MG KF MG (vec( F}‘)) = 0. (3.3)
When (1.1) has a centrohermitian solution, the centrohermitian solution set of (1.1) is
vec(Xy)
_ vec(X2) | _ ~cn CH\t vec(Cf) CHry _ CH\¥ CH
Sen=IX1 |00 [FORKTMGEN!| [ ) | + G~ (KT MG (KT ML), (B4
vec(Xy)

where y € R” is an arbitrary vector. In addition, if (1.1) has a centrohermitian solution, then (1.1) has
a unique centrohermitian solution X € Scy if and only if

8mn+4dm+4n+1, ifp=2m+1,qg=2n+1,
R(?(TMQCH): 8mn+4n, if p=2m+1, q=2n,
w 8mn+4m, if p=2m,q=2n+1,

8mn, if p=2m,qg=2n.

And the unique centrohermitian solution X = X, + Xoi + X3j + X4k € Scy satisfies

vec(X7)

vec(Xa) | _ cn CH\t vec(CB)

vec(Xs) | = G KT MG ) (V%(F?))' )
vec(Xy)

Here, if p=2m+1,g=2n+1,thenu=v=o0andr =8mn+4m+4n+ 1. If p=2m+ 1, g = 2n,
thenu =o0,v=eandr =8mn+4n. If p =2m,q =2n+1, thenu = e,v = o and r = 8mn + 4m. If
p=2m,q=2n,thenu=v=eandr = 8mn.

Proof. The quaternion matrix equation (1.1) has a centrohermitian solution X if and only if X satisfies
(AXB,DXE)=(C, F). Notice that

(AXB,DXE) = (C, F)
&=(AXB-C,DXE-F)=0
&||AXB-C,DXE - F|| =0
&||AXB - C|* + |DXE - F|* = 0.

In addition,

IAXB - C| + ||IDXE — F|]?
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vecﬁ;g (Xy)

B cu | veenS (Xa) | [vec(CR))
=IKFMG,, vecgfs (X3) (vec(Ff)) |
veckes (x,)
vecs (X1)
_ CH CHyt e | vecn® (Xa) _ vec(CH)\ 12
SIKF MG, (KF MG, (KF MG, vecgvc 5(X3) (vec(Ff) I
veckes (x,)
_ CH CH\t vec(C?) _ vec(Cf) 2
=IKF MG, (KF MG (vec(Ff)) vec(FR) I
vec(CR)
e = KT MG KT MEEY ek | P

So, (1.1) has a centrohermitian solution if and only if

R
[Lym(ser) — KF MQEVH (KF Mggfl)‘r] (vec(CC )) o

vec(FR)

Thus (3.3) holds. When (1.1) has a centrohermitian solution, the centrohermitian solution of (1.1) is
the general solution of the following real matrix equation

vecfff (X1)
cn | veeiS  (Xo) | [vec(CR)
KFMG, vec%VCS(Xg) _(vec(Ff) '
vech€S (X,

So we obtain the formula in (3.4). In addition, (1.1) has a unique centrohermitian solution if and only
if

8mn+4m+4n+1, ifp=2m+1,qg=2n+1,

8mn+4n, ifp=2m+1,q="2n,

RIKFMG) =
( Gy') 8mn+4m, if p=2m,q=2n+1,
8mn, if p=2m,q=2n.
And the unique centrohermitian solution X = X; + Xsi + X3j + Xk € Scy satisfies (3.5). O

The method of solving Problem II is similar to that of Problem I, so we only give the conclusions
and omit the details.

Theorem 3.3. Suppose A € Q™P, B € Q7,C € Q™,D € Q™ E € Q' F € Q™ and X =

. . pXq (B®T ® AR .
X + X0l + X3j + X4k € Qg -y, and denote K = (ER) @ DR | Then the set Qgcy in Problem Il can be

represented as

vec(X;)
X ; R i
Quen=(X1| Vel LGRS RT ML (e 30 | G311~ KT MG T M),
vec(Xy)

(3.6)
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where y € R" is an arbitrary vector. The unique solution Xscy = X1 + Xoi + X3j + X4k € Qscy of
Problem Il satisfies

vec(X))

vec(Xo) | _ scu scuyi [vec(CR)

| = T MG )(vec(F:{)). (3.7)
vec(Xy)

Here, if p=2m+1,g=2n+ 1, thenuy=v=0andr =8mn+4m+4n+3. If p=2m+ 1, g = 2n,
thenu =o0,v=eandr =8mn+4n. If p=2m,q =2n+1, thenu = e,v = 0o and r = 8mn + 4m. If
p=2m,q="2n,thenu=v=eandr = 8mn.

Corollary 3.4. Suppose A € Q™P, B € Q7*,C € Q™,D € Q™P, E € Q' F € Q™ and X =

BR T AR
X, + Xoi + Xaj + X4k € QY and denote K = (( ) ®

(ER)T @ DR ) Then (1.1) has a skew centrohermitian

solution X € Qbrt if and only if

(3.8)

R
Uinteen — KFMGECH(KF MGECH)'] (V“(C“ )) -0

vec(FR)

When (1.1) has a skew centrohermitian solution, the skew centrohermitian solution set of (1.1) is

vec(X7)
X + [vec(CR :
Sscn=(X1| Vel [=GR KT ML) (e i |G 11~ KT MG KT MG
vec(Xy)

(3.9
where y € R” is arbitrary vector. In addition, if (1.1) has a skew centrohermitian solution, then (1.1)
has a unique skew centrohermitian solution X € Sgcy if and only if

8mn+4dm+4n+3, ifp=2m+1,g=2n+1,
ROKFMGSCH) < |5+ anif p=2m+ 1, g =2n.
' 8mn +4m, if p=2m,q=2n+1,

8mn, if p=2m,q=2n.

And the unique skew centrohermitian solution X = X; + Xoi + X3j + X4k € Sgcy satisfies

vec(X)

vec(X2) | _ scn scrvi [vec(CR)

VeC(X3) _gpv (7(7:/\/(6#,, )(V€C(F§)) (310)
vec(Xy)

Here, if p=2m+1,g=2n+1,thenu=v=0andr =8mn+4m+4n+3. If p=2m+ 1, g = 2n,
thenu =o,v=candr =8mn+4n. If p=2m,q =2n+ 1, thenu =e,v =0 andr = 8mn + 4m. If
p=2m,q="2n,thenu=v=eandr = 8mn.

Remark 1. It is generally known that quaternion operations are more complex than real operations. In
the present paper, we convert the quaternion least squares problems into the corresponding real least
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squares problems. The final results are expressed only by real matrices and real vectors, and thus they
are portable and convenient.

Remark 2. In [23], the authors studied the matrix nearness problem of the quaternion matrix
equation (1.1) by the complex representation matrices of quaternion matrices. In fact, if Xy = 0 of
Problem 2 in [23], then the solution of Problem 2 is also the solution of Problem I in this paper. We
will compare the accuracy of the solution of Problem I computed by these two methods in Section 4.

4. Numerical algorithms and examples

In this section, we first purpose two numerical algorithms for Problems I and II according to the
results in Sections 3, and then give two examples to verify our purposed algorithms.

Algorithm 4.1. (For Problem I)

(1) Input A, Ay, A3, Ay € R™P, B, By, B3, B, € R™, C,C,,C53,C4 € R™, D, D>, D3, D, € R™P,
E],Ez,E3, E, e qut’ Fq, Fz,F3, F, e Rth, and ]@’ M, Ggf, GZ‘SS

(2) Form AR, DX, BY, EX, C¥, FX. Then we calculate GS)' and K according to Lemma 2.7 and
Theorem 3.1, respectively.

(3) Compute the unique solution Xcy of Problem I on the base of (3.2).
Algorithm 4.2. (For Problem II)
(1) Input Ay, Ay, A3,Ay € R™?, By, By, B3, B4 € R™, C,C,,C3,C4 € R™, Dy, Dy, D3,Dy € R™P,
E\,Ey,,Ez,E, e R F, Fy, F5,F4s € R™ and ¥, M, GSS Gﬁfs

uv
(2) Form AR, DX, Bf, E?, C?, Ff. Then we calculate G5 and K according to Lemma 2.7 and

nv
Theorem 3.3, respectively.
(3) Compute the unique solution Xscy of Problem Il on the base of (3.7).

Now, in order to verify the effectiveness of Algorithms 4.1-4.2, we give two examples. In the first
example, we compute the errors between the actual solutions and the solutions obtained by purposed
algorithms for Problems I and II. In the second example, we compare the error of the solution of
Problem I computed by Algorithm 4.1 and the algorithm in [23].

Example 4.1. Let the quaternion matrix equation (AXB, DXE) = (C, F), where
A=A +A2i+A3j + A4k, B = B; +Bzi+B3j + B4k,

D:D1+D2i+D3j+D4k, E:E1+E2i+E3j+E4k,

and
Ai = rand(m’ p)’ Bi = rand(q’ S), Di = rand(m’ p)’ Ei = rand(CI’ t)’ l = 1’ 2’ 3’ 4

(1) Let Xcy = Xi + Xoi + Xzj + X4k € QP*9, in which X, is a real centrosymmetric matrix, and
X5, X3, Xy are real anti centrosymmetric matrices. Thus Xcy € Q’gf. Let

C =AXB, F =DXE.

Therefore (1.1) has a unique centrohermitian solution Xcy, and Xcy is also the unique solution
of Problem I. According to Algorithm 4.1, we compute X;.,. Let m = k, s = t = 2k. It is noticed
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that the centrosymmetric matrix and anti centrosymmetric matrix have different forms with the

change of matrix order. The order of Xcy can be divided into the following four cases:
(b)p =2k+1,q =2k,

(@p=2k+1,qg=2k+1,
(d)p =2k, q =2k.

(c)p=2k,qg=2k+1,
Let k = 1 : 10 and the error € = logl0(||X;.,; — Xcull). For the above four cases, the errors are

shown in Figure 1.
(2) Let Xscy = X1 + Xoi + X3j + X4k € QP*4, in which X, is a real anti centrosymmetric matrix, and
X5, X3, Xy are real centrosymmetric matrices. Thus, Xscy € Q’S’Z‘L. Let

C =AXB, F =DXE.

Therefore (1.1) has a unique skew centrohermitian solution Xscy, and Xscy is the unique solution
Xsoy Letm =k, s =1t =2k,

of Problem II. According to Algorithm 4.2, we compute the solution
and the values of p, q has the following four cases:
(a)p=2k+1,q=2k+1,

(©)p=2k,qg=2k+1,
Let k = 1 : 10 and the error € = log10(||Xg ., — Xscull). The errors are shown in Figure 2.

(b)p=2k+1,q =2k,
(d)p =2k, q ="2k.

-11.8 T T 12 T -12 T -12 T T
¥ 3
/ * 122 A
12t /4 122+ )(/— 122t * 4 /
* ¥ ¥
/ / / e /
“z2f L a4 /4 az2af . ¥
' 1261 .
/ *
*
-12.4)- / 4 -126F 4 -126f .
/ “128F 4
il ¥
/ /
- f = v v /
S-126 / 4 g-128f -4 g-128F F g 13- ¥ e
w / w 1 1 |
* sz | .
28/ . A3 . NEIS /
RETER .
A3t - 1320 4 1324 -
| 1361 .
132 4 -134H = 1344 -
3 [ -13.81f :
*
-134 . -13.6 . . 138 . -14 —
6 & 10 4 8 8 10 2 3 10 2 4 & 8 10
k, (b) k.(© k. (d)

AIMS Mathematics

Figure 1. The error for Problem I.
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118 : : : 118 . 118 . 118 — )
/ ;“f
/
¥
119 I -mar T -z f— 121 /o
/ / ; /
/ / /
/ 2| . ¥ 220 .
12| - ‘ 1221 -
/ / /
/ 122 E T 12,4 / E
1221 / - fk/( 1240 [ - /-/*
# /
/ / ¥
¥ 1241 / R 1261 f R
-24F / . / 1260 . /
= ¥ o * = - /
s f 5126 / 18 5128 | R
i I ] / i i #*
126 | . / 128+ :
| /
128+ | B 13- %f B
.‘I |
| |
-12.8F 4 | 13k 4 |
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¥ / |
I 1 ] 1
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Figure 2. The error for Problem II.

From Figure 1, we know that the errors £ are no more than —11.8, which illustrate Algorithm 4.1
is effective. For the same number k, when p = 2k + 1,q = 2k + 1, the order of quaternion matrix is
largest. So the corresponding norm is largest. When p = 2k, q = 2k, the order of quaternion matrix
is smallest. Thus the corresponding norm is smallest. Figure 1 is consistent with theoretical analysis.

Figure 2 also reflects Algorithm 4.2 is effective.

Example 4.2. Consider the solution of Problem I, and the orders of the matrices are the same as (1)
in Example 4.1. We compute the errors by Algorithm 4.1 and the algorithm of [23]. Letm =k, s =t =
2k, p = 2k,q = 2k + 1 and the error € = logl10(||X(.;; — Xcull). The errors are shown in Figure 3.

From Figure 3, we can know that the errors obtained by Algorithm 4.1 are smaller than those
obtained by the algorithm in [23], thus our purposed algorithms are more effective.

AIMS Mathematics
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T T
—#—— Algorithm 4.1
—©&—The algorithm in [23] —

-125 1

Figure 3. Error comparison of two methods for solving problem I.

5. Conclusions

In this article, we study the minimal norm centrohermitian least squares solution and skew
centrohermitian least squares solution of quaternion matrix equation (AXB, DXE) = (C, F) by using
of the real representation matrices of quaternion matrices, and give the corresponding algorithms.
This method is effective and convenient to analyze the problems of solution with special structures of
quaternion matrix equation.
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