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Abstract: Several newly nonlinear models for describing dynamics of COVID-19 pandemic have
been proposed and investigated in literature recently. In light of these models, we attempt to reveal the
role of fractional calculus in describing the growth of COVID-19 dynamics implemented on Saudi
Arabia’s society over 107 days; from 17 Dec 2020 to 31 March 2021. Above is achieved by operating
two fractional-order differential operators, Caputo and the Caputo-Fabrizio operators, instead of the
classical one. One of expanded SEIR models is utilized for achieving our purpose. With the help of
using the Generalized Euler Method (GEM) and Adams-Bashforth Method (ABM), the numerical
simulations are performed respectively in view of the Caputo and Caputo-Fabrizio operators.
Accordance with said, the stability analysis of the two proposed fractional-order models is discussed
and explored in view of obtaining the equilibrium points, determining the reproductive number (R0)
and computing the elasticity indices of R0. Several numerical comparisons reveal that the
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fractional-order COVID-19 models proposed in this work are better than that of classical one when
such comparisons are performed between them and some real data collected from Saudi Arabia’s
society. This inference together with the cases predictions that could easily deduced from the
proposed fractional-order models can allow primary decision makers and influencers to set the right
plans and logic strategies that should be followed to face this pandemic.

Keywords: COVID-19 pandemic; SEIR model; Caputo fractional-order operator; Caputo-Fabrizio
fractional-order operator; stability; basic reproductive number and elasticity indices
Mathematics Subject Classification: 34A08

1. Introduction

Throughout the ages, the world has witnessed the spread of various diseases. It claimed the lives of
many, but soon faded by finding an effective and rapid vaccine. Recently, specifically March 11, 2020,
the World Health Organization (WHO) announced the outbreak of the Corona pandemic globally [1].
During that period till now, the number of deaths has exceeded the barrier of 2 million deaths. The
world was forced to follow a lot of precautionary laws such as imposing quarantine and using masks
and sanitizers. Eventually, several vaccines of different efficacy were reached.

From the point of view of mathematicians, it was necessary to take slightly different approach and to
have a mathematical model describing the development of COVID-19 disease and the effect of different
vaccinations to ensure complete immunity, (see [2–7]). In fact, the Susceptible-Exposed-Infectious-
Removed model (or simply SEIR model) is considered one of the most popular mathematical models
that used to describe the pandemic dynamics and to estimate feasible infection scenarios. The SEIR
model might be very helpful to evaluate the efficiency of several actions, such as lock-down, since the
infectious disease outbreak. This model relies typically on a set of ordinary differential equations that
take the population’s amount into account subject to infection, the direction of persons who recover
after infection over a given time, and the persons who unfortunately die.

The extended SEIR model that considered here involves seven classes: Susceptible, exposed,
infectious, quarantined, recovered, deaths, and vaccinated classes. As a matter of fact, this model has
been more recently established by Ghostine et al. in their paper [23]. All parameters’ values are
already estimated based on a real data collected for forecasting the COVID-19 pandemic in Saudi
Arabia. However, this research focuses mainly on studying the effect of this model when converting
its ordinary derivatives to its fractional-order case. In particular, the expanded SEIR models
established in [23] will be fractionalized using two fractional-order differential operators; Caputo and
Caputo-Fabrizio operators. The Generalized Euler Method (GEM) and Adams-Bashforth Method
(ABM) are then implemented, respectively, to deal with the Caputo fractional-order COVID-19 model
and the Caputo-Fabrizio fractional-order COVID-19 model, and consequently to clarify the
interaction of the targeted vaccine with the disease and its immunological aspect. In summary, the
role of fractional calculus in describing the growth of COVID-19 dynamics on Saudi Arabia’s society
from 17 Dec 2020 to 31 March 2021 will be clearly revealed, where the Saudi Minister of Health
(Tawfiq Al-Rabiah) received the first dose of the available coronavirus vaccine at the beginning of that
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period. Besides, the equilibrium of the fractional-order models, the basic reproductive number R0

with its elasticity indices of the COVID-19 model will be also determined and documented in view of
some mathematical analysis.

The main contribution that can be gained from performing this study is to provide an insight into
the influence of fractional calculus in describing the growth of COVID-19 dynamics implemented on
Saudi Arabia’s society over 107 days; from 17 Dec 2020 to 31 March 2021. In particular, it will be
revealed via certain numerical comparisons that the fractional-order COVID-19 models will be better
than that of traditional one when such comparisons are performed between them and some real data
collected from Saudi Arabia’s society. This conclusion will undoubtedly enable mathematicians to
predict the number of infected cases that may be correctly detected in the whole of society, and hence
allow decision makers and influencers to set the right plans and logic strategies that should be followed
to face this pandemic.

The rest of this paper is structured as follows: In the closest section, some of essential definitions,
concepts and notions related to fractional calculus are inserted. Whereas in Section 3, an overview of
the model configuration is given, as it reported in reference [23]. The fractional-order COVID-19
models are established in Section 4. Whereas some stability analysis related to the proposed models
are discussed in Section 5. Finally, some comments and concluding remarks on what have been
implemented in this research can be found in the conclusion section.

2. Preliminaries

A set of essential definitions and basic facts related to the fractional calculus are addressed in this
section for full explanation.

Definition 2.1. [8] (Riemann-Liouville integrator) Suppose f ∈ L1[a, b], the Riemann-Liouville
fractional-order integral operator is defined by:

Jq f (t) =
1

Γ(q)

∫ t

a
(t − x)q−1 f (x)dx, (2.1)

where q ∈ R+, a ≤ t ≤ b.

Definition 2.2. [9] (Caputo Differentiator) Suppose 0 ≤ n − 1 < q < n ∈ Z+, the Caputo fractional-
order derivative operator is defined by:

Dq f (t) =
1

Γ(n − q)

∫ t

a
(t − x)n−q−1 f (n)(x)dx. (2.2)

Definition 2.3. [10] (Caputo-Fabrizio Differentiator) Suppose 0 < q < 1 and L(q) is the normalized
function in which L(0) = L(1) = 1. The Caputo-Fabrizio fractional-order differential operator Dq

∗ of a
function f ∈H1(a, b) is defined by:

Dq
∗ f (t) =

L(q)
1 − q

∫ t

a
f ′(x) exp(−q

t − x
1 − q

)dx. (2.3)

If f <H1(a, b), then such operator is defined by:
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Dq
∗ f (t) =

qL(q)
1 − q

∫ t

α

( f (t) − f (x)) exp(−q
t − x
1 − q

)dx. (2.4)

Remark 2.1. [11] If µ=
1−q

q ∈ [0,∞), (i.e. q= 1
1+µ
∈ [0, 1]), then (2.3) could be rewritten in the following

form:

Dq
∗ f (t) =

L(q)
µ

∫ t

α

f ′(x) exp(−
t − x
µ

)dx, (2.5)

where L(0)= L(∞) = 1 and

lim
µ→0

1
µ

exp(−
t − x
µ

) = δ(x − t). (2.6)

Definition 2.4. [12, 13] (Caputo-Fabrizio integrator) The corresponding Caputo-Fabrizio fractional-
order integral operator Jq

∗ of the operator Dq
∗ for a function f can be expressed as follows:

Jq
∗ f (t) =

2(1 − q)
(2 − q)L(q)

+
2q

(2 − q)L(q)

∫ t

0
f (x)dx, (2.7)

where 0 < q < 1 and t ≥ 0.

Remark 2.2. [12, 13] From Definition 2.4, we can get the following confirmation:

L(q) =
2

(2 − q)
, f or 0 < q < 1. (2.8)

Based on Remark 2.2, modern version of the parameter has been created as:

Jq
∗ f (t) =

2(1 − q)
(2 − q)L(q)

+
2q

(2 − q)L(q)

∫ t

0
f (x)dx, (2.9)

where 0 < q < 1.

3. An overview of the model configuration

When studying and analyzing the spread out of infectious diseases and the ability to control them,
mathematical modeling come as an effective tool that could be employed to provide better support of
control strategies development which should be followed to face these diseases. Several studies of
SEIR epidemiological models, which are commonly used for the COVID-19 pandemic, have made
minor or major changes to the classical SEIR model. Extremely significant mathematical models have
been developed to study the dynamics transmission of the COVID-19 pandemic, and to illustrate their
relations by structuring them into inputs and outputs, which, in their role, can show the pandemic’s
impact on the whole population. The compartment diagram of the expanded SEIR model established
in [23] can be shown in Figure 1. It exhibits the growth of COVID-19 dynamics on Saudi Arabia’s
society from 17 Dec 2020 to 31 March 2021, where the population has been divided into the following
classes: Susceptible (S), vaccinated (V), exposed (E), infected (I), recovered (R), quarantined (Q), and
dead (D).

In order to gain more depth in understanding these model and their impact on reality, it is useful to
set the initial values of the model’s states (S 0,V0, E0, I0,R0,D0) as well as all the parameters’ values.
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In particular, the initial values of the model’s states can be listed, as reported in [14,15,18], in Table 1,
where S 0 = ℵ − V0 − E0 − I0 − R0 − D0, so that ℵ represents the size of population. On the other hand,
the parameters’ values of the model at hand can be shown in Table 2 [23].

Figure 1. Disease transmission flow of the proposed model.

Table 1. Initial values of the extended SEIR model [14, 15, 18].

Variable of compartment Value

ℵ 3.4218 × 107

E(0) 0
V(0) 1
I(0) 174
R(0) 208
Q(0) 10
D(0) 10

Table 2. Description of the model’s parameters [23].

Parameters Description Initial Value References

Λ New births and new residents 2300 [14]
β1 Transmission rate before intervention 8.58 × 10−9 assumed
β2 Transmission rate during and after intervention 3.43 × 10−9 assumed
α Vaccination rate 3.5 × 10−4 [15]
µ Natural death rate 3 × 10−5 [14]

1/γ Incubation period 5.5 days [16]
σ Vaccine inefficacy 0.05 [17]

1/δ Infection time 3.8 days [16]
κ Case fatality rate 0.014 [18]

1/λ Recovery time 10 days [16]
1/ρ Time until death 15 days [16]
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Generally, the Ordinary Differential Equations (ODEs) applied to expound the extended SEIR
model with the vaccination impact can be given by the following system [23]:

dS
dt

= Λ − (βI(t) − α − µ)S (t),

dE
dt

= (βS (t) + σβV(t))I(t) − (γ + µ)E(t),

dI
dt

= µE(t) − (δ + µ)I(t),

dQ
dt

= δI(t) − ((1 − κ)λ + ρκ + µ)Q(t),

dR
dt

= (1 − κ)λQ(t) − µR(t),

dD
dt

= ρκQ(t),

dV
dt

= αS (t) − (σβI(t) + µ)V(t),

(3.1)

where t ≥ 0, and the initial conditions S (0) = S 0, V(0) = V0, I(0) = I0, Q(0) = Q0, D(0) = D0,
E(0) = E0 and R(T ) = R0.

4. Fractional-order COVID-19 models

In this section, we aim to propose two new versions of the extended SEIR model given in [23].
These two versions will be established by operating the Caputo and the Caputo-Fabrizio fractional-
order operators instead of the ordinary operator applied to the model at hand. Below, these two versions
are clearly listed.

• COVID-19 model in Caputo sense

dqS
dt

= Λ − (βI(t) − α − µ)S (t),

dqE
dt

= (βS (t) + σβV(t))I(t) − (γ + µ)E(t),

dqI
dt

= µE(t) − (δ + µ)I(t),

dqQ
dt

= δI(t) − ((1 − κ)λ + ρκ + µ)Q(t),

dqR
dt

= (1 − κ)λQ(t) − µR(t),

dqD
dt

= ρκQ(t),

dqV
dt

= αS (t) − (σβI(t) + µ)V(t).

(4.1)
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• COVID-19 model in Caputo-Fabrizio sense

dq
∗S
dt

= Λ − (βI(t) − α − µ)S (t),

dq
∗E
dt

= (βS (t) + σβV(t))I(t) − (γ + µ)E(t),

dq
∗ I

dt
= µE(t) − (δ + µ)I(t),

dq
∗Q
dt

= δI(t) − ((1 − κ)λ + ρκ + µ)Q(t),

dq
∗R
dt

= (1 − κ)λQ(t) − µR(t),

dq
∗D
dt

= ρκQ(t),

dq
∗V
dt

= αS (t) − (σβI(t) + µ)V(t).

(4.2)

Of course, the above two fractional-order models are established subject to the initial conditions
given in Table 1. It is worth noting that the GEM has been successfully employed to solve the
fractional-order system (4.1), while the ABM has confirmed its ability in providing an efficient
numerical solution of system (4.2). The reader may understand the merits of these two methods and
the modality to use them in various researches by referring to the references [19, 20]. However, in
order to see the numerical solutions of system (4.1) and system (4.2), the GEM and ABM are
respectively implemented to produce Figures 2 and 3 according to different values of α. Actually,
these two simulations represent the size of all classes over the time for system (4.1) and system (4.2)
in view of different values of α.

For the purpose of investigating the fractional-order COVID-19 models, certain numerical
comparisons are carried out between the two vector-valued solutions of systems (4.1) and (4.2). Such
comparisons are performed by considering the initial values provided in Table 1, and the same values
of parameters provided in Table 2. The whole numerical simulations of these comparisons are
exhibited in Figure 4. The executed graphs compare the number of each class of the whole
compartments’ classes based on simulating all dynamics of the two proposed systems (system (4.1)
and system (4.2)) from 0 to 500 day. It should be mentioned that the behaviour of the two proposed
systems’ dynamics are likewise and close in terms of results. Overall, there is a steadily increase of
the recovered and vaccinated people over the period given. On contrary, there is a steadily decrease of
susceptible people over the same period. For quarantined, infectious and exposed cases, it can be
observed that such cases began with a few persons and then climbed dramatically to the top in the
middle of the period. From that point, they have fluctuated in gradual downward trends to same of
beginning at the end of period.
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Figure 2. Size of all classes over the time t (in days) for system (4.1) in view of different
values of α using GEM via Caputo operator.
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Figure 3. Size of all classes over the time t (in days) for system (4.2) in view of different
values of α ABM via Caputo-Fabrizio operator.
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Figure 4. Comparison results between the dynamics of system (4.1) via GEM and the
dynamics of system (4.2) via ABM.

5. Stability analysis

This section is devoted to exploring some mathematical aspects related to fractional-order of the
COVID-19 model with its two types Caputo operator (4.1) and Caputo-Fabrizio operator (4.2) and
deducing results of the stability analysis. Which is represented in discussing the equilibrium points and
the non-negative solution such system, calculating the basic reproductive of and its elasticity indices.
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5.1. The equilibrium points

In order to obtain epidemiological stability of the COVID-19 model, it is necessary to determine its
equilibrium points. In fact, there are generally two types of equilibrium points of the epidemiological
models. The first one is the Disease-Free Equilibrium (TDFE) point that typically occurs when assuming
I = 0, and equating the left-hand side of the considered system to zero. For instance, one can deduce
the following point:

TDFE = (
Λ

µ + α
, 0, 0, 0, 0, 0,

αΛ

µ + α
). (5.1)

On the other hand, the second type of equilibrium points is the Endemic Equilibrium (TEE) point. Such
point can be yielded by setting I , 0, and then equating the left-hand side of the system to zero too. In
particular, the TEE point of the system at hand can be expressed as follows:

TEE = (S ∗, E∗, I∗,Q∗,D∗,V∗), (5.2)

where
E∗ =

F
γ

I∗, Q∗ =
δ

G
I∗, S ∗ =

Λ

βI∗ + N
, V∗ =

ΛγβI + Λαγ − MF(βI + N)I
γµ(βI + N)

, (5.3)

N = α + µ,M = γ + µ, F = δ + µ, G = µ + λ(1 − κ) + ρκ, α2I∗2 + α1I∗ + α0 = 0, (5.4)

and where
α0 = µNMF(1 − R0), α2 = µNMF + µMF + Λγβ2σ, α3 = βMF. (5.5)

In light of obtaining equilibrium points of the system at hand, we can find that the so-called basic
reproductive number R0, which can be commonly fruitful in guiding various monitor strategies to face
the pandemic in all. This is, actually, what we will discuss and present in the upcoming subsection.

5.2. Basic reproductive number R0

Epidemiology defines the basic reproductive number R0 as the number of infections caused by the
first disease case, that appeared in an appointed population where assume everyone is susceptible to
infection. The importance of R0 lies in knowing the rapidity of the spread of the emerging disease
among the inhabitants and the proportion of the population to be immunized. To be precise, the
population spread of the epidemic will occur when R0 > 1, where it is difficult to control. The method
to numerate the basic reproductive ratio by finding the spectral radius of the next generation matrix Y
(i.e. R0 = ρ(Y)). The matrix Y is a multiplication of F by W−1, where:

F =
[
∂Fi(TDFE)

∂t j

]
and W =

[
∂Wi(TDFE)

∂t j

]
, (5.6)

where Fi refers to the stream of freshly infected cases into compartment t j, and Wi refers to the
entering/leaving streams connected with t j, for i, j = 1, 2, 3, ...,m such that m is the total of
compartments demonstrated in the model. Based on the aforesaid argument, one might calculate R0

for any the fractional-order models ((4.1) or (4.2)) by first obtaining the two primary matrices F and
W. These matrices have the following forms:

F =

[
0 β(S 0 + σV0)
0 0

]
and W =

[
µ + γ 0
−γ µ + δ

]
. (5.7)

AIMS Mathematics Volume 7, Issue 7, 12842–12858.



12853

In this regard, the basic reproductive number R0 can be then calculated to be as follows:

R0 =
βγΛ(µ + ασ)

µ(µ + γ)(µ + δ)(µ + α)
. (5.8)

With the help of the above resultant relation, it is possible to estimate the epidemiological situation in
the community as a whole [21, 22], where the value of R0 is deemed very important in medical sense.
In particular, an epidemic is predictable climb up if R0 > 1, and to end if R0 < 1 [21]. Along the same
lines, the aforementioned discussion lays the foundation to explore further result connected with the
local stability analysis of the TDFE point. This result is stated and derived below.

Theorem 5.1. The disease-free equilibrium point TDFE of the systems (4.1) and (4.2) is locally stable
if R0 < 1, and unstable if R0 > 1.

Proof. It is possible to express systems (4.1) and (4.2) more clearly with the Jacobin matrix by deleting
the equation expressing the death compartment (D) where its importance appears only in the following
differential equation:

D = N − S − E − I − Q − R − V. (5.9)

The Jacobian matrix of the reduced model at TDFE point is then given by:

J(TDFE) =



−N 0 −βS 0 0 0 0
0 −M β(S 0 + σW0) 0 0 0
0 γ −F 0 0 0
0 0 δ −G 0 0
0 0 0 λ(1 − κ) −µ 0
α 0 −σβW0 0 0 −µ


. (5.10)

The eigenvalues of the above matrix will be then as:

λ1 = −N, λ2 = −G, λ3 = λ4 = −µ,

λ5 = −
1
2

(
M + F +

√
(M − F)2 + 4MFR0

)
,

λ6 = −
1
2

(
M + F −

√
(M − F)2 + 4MFR0

)
.

Obviously, we have λi < 0, ∀i = 1, 2, 3, 4. At the same time, if one assumes R0 < 1, then λ5 < 0,
and λ6 < 0. Thus, due to all eigenvalues of the matrix are negative, then the TDFE point is locally
asymptotically stable. On the contrary, if one assumes R0 > 1, then we have λ5 < 0 and λ6 > 0, which
leads to assert that the TDFE point is locally asymptotically unstable. �

5.3. Impact of vaccination

In order to evaluate the performance of the two fractional-order systems (systems (4.1) and (4.2))
and their impacts, we will make certain predictions through using such proposed systems based on
some numerical comparisons that have been performed between their dynamics and some real data
collected from Saudi Arabia’s society over 107 days; from 17 Dec 2020 to 31 March 2021 [14,15,18].
Actually, these numerical comparisons are deemed one of the main focuses of this research, as they
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clearly show the agreement of the numbers of people recovering from the COVID-19 disease with the
results of the two fractional-order epidemiological models proposed previously. In other words, Figure
5 reveals that the fractional-order COVID-19 models given in systems (4.1) and (4.2) are better than the
traditional system (3.1) especially when we make a comparison between their dynamics and certain
real data collected throughout the aforesaid period. In particular, we note that those data aggregate
and come closer to the recovering cases curve for systems (4.1) and (4.2) more than they aggregate
and come closer to the recovering cases curve for system (3.1). It means that the fractional-order
systems (4.1) and (4.2) formulated at α = 0.9 have proved their efficiency in describing the dynamics
of the recovery cases against the integer-order system (3.1). This outcome will undoubtedly enable
specialists to predict the number of infected cases that may be correctly detected in the whole of
society, and hence allow decision makers and influencers to set the right plans and logic strategies that
should be followed to face this pandemic.
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Figure 5. Comparison results between the dynamics of the recovery cases and certain real
data collected from Saudi Arabia’s society. (a) Between the integer-order system (3.1) and
the real data. (b) Between the fractional-order systems (4.1) and (4.2) and the real data when
α = 0.9.

5.4. Elasticity indices of R0

Among the measures of control that have an effect on the transmission of the disease are the so-
called sensitivity and elasticity indices. The sensitivity index of R0 with respect to a parameter τ is ∂R0

∂σ
,

whereas the elasticity index of R0, which measures the relative change of R0 with respect to τ, denoted
by χR0

τ , and defined as:

χR0
τ =

∂R0

∂τ

τ

R0
. (5.11)

As a result of an explanation, the sign of the elasticity indicator shows a decrease or increase in
R0. By knowing the value of R0, it is easy to infer and accurately calculate the elasticity index of
each parameter. The magnitude of the elasticity indices depends generally on the parameter values
found in the expression of R0. These values can be mostly determined by adopting certain methods of
estimation. According to the parameters’ values presented in Table 2, the baseline parameters’ values
and their corresponding elasticity indices of R0, which are calculated based on the relation (5.11), are
reported in Table 3. For further illustration, these indices can be shown, at the same time, in the bar
graph given in Figure 6.
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Table 3. Baseline parameters’ values and elasticity indices of R0.

Parameter Elasticity index Numerical value

Λ χR0
Λ

1

β χR0
β 1

α χR0
α -0.552632

µ χR0
µ -0.447647

γ χR0
γ 1.64973 × 10−4

δ χR0
δ -0.999886

σ χR0
σ -0.368421

Figure 6. Bar graph illustrating the elasticity indices for each parameter of R0.

In light of the above drawings and results, it appears notably that the two parameters Λ and β are
the most influential in calculating R0. That is, the higher the values of these two parameters, the higher
the number of people infected with COVID-19. In contrast, the parameter δ is appeared as the least
influential. To see how such three parameters impact on R0, we plot Figure 7. In particular, based on
Figure 7(a,b), we can observe that when the two parameter’s values of λ and β are increased, the value
of R0 will be so, indicating that the ratios of the new births and new resident as well as the ratio of the
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transmission before intervention are the most impactful on the society in terms of they have an ability
to yield an pandemic in all. On the contrary, when the value of the parameter δ is decreased, the value
of R0 will be so, as exhibited in Figure 7(c). This, actually, indicates that the ratio of infection time is
the slightest impactful on the society.
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(a) Effect of the parameter Λ on R0.
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(b) Effect of the parameter β on R0.
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(c) Effect of the parameter δ on R0.

Figure 7. Effect of the most and least impactful parameter on R0.

6. Conclusions

In this work, two newly nonlinear fractional-order COVID-19 models have been proposed and
investigated to describe the growth of COVID-19 dynamics implemented on Saudi Arabia’s society
over 107 days; from 17 Dec 2020 to 31 March 2021. In particular, these two models have been
proposed in view of the Caputo and the Caputo-Fabrizio operators. The Generalized Euler Method
(GEM) and the Adams-Bashforth Method (ABM) have been successfully implemented to simulate the
dynamics of the established models, where the stability analysis of the such models has been discussed
and exmined in light of finding the equilibrium points, determining the reproductive number (R0) and
computing the elasticity indices of R0. It has been demonstrated, through some numerical comparisons,
that the fractional-order COVID-19 models are better than the classical one due to what these models
have presented in comparison with some real data collected from Saudi Arabia’s society. In summary,
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the proposed fractional-order models allow specialists to predict the growth of the COVID-19 dynamics
more efficiency than the integer-order one allows. This conclusion can enable primary decision makers
and influencers to set the right plans and logic strategies that should be followed to face this pandemic.
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