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1. Introduction

Graphs considered in this paper are finite, simple and undirected. For a graph Γ, we denote by
VΓ, EΓ and AΓ the vertex set, the edge set and the arc set of Γ respectively, and by AutΓ the full
automorphism group of Γ. If some G ≤ AutΓ is transitive on VΓ, EΓ or AΓ, then Γ is called G-vertex-
transitive, G-edge-transitive or G-arc-transitive, respectively. An arc-transitive graph is also called
symmetric. If G is transitive on EΓ but intransitive on VΓ, then Γ is called G-semisymmetric, and
Γ is simply called semisymmetric while Γ is AutΓ-semisymmetric. It is easily known that connected
G-semisymmetric graphs are bipartite.

Suppose G is a group acting on a set Ω. The stabilizer of G on a point α ∈ Ω is the subgroup
Gα = {g ∈ G | αg = α}. Then G is said to be semiregular on Ω if Gα = 1 for each point α in Ω, and
regular on Ω if G is semiregular and transitive on Ω. A graph Γ is said to be a Cayley graph on a group
G if G ≤ AutΓ is regular on VΓ, and a bi-Cayley graph on a group G if G ≤ AutΓ is semiregular and
has exactly two orbits (with the same length) on VΓ. In particular, Γ is called normal on G if G is
normal in AutΓ, and nonnormal on G otherwise. Moreover, follow the notion in [5], a semisymmetric
bi-Cayley graph Γ on a group G is called almost-normal if the normalizer NAutΓ(G) is semisymmetric
on Γ.

Cayley graphs on nonabelian simple groups have received much attention in the literature, see [8,10,
11,16–20,25–29] and references therein. Here a remarkable contribution is the complete classification
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of connected cubic nonnormal symmetric Cayley graphs on nonabelian simple groups, which was first
studied by Li [15] in 1996 and completed by Xu et al. [25, 26] in 2007. It finally turns out that such
graphs are only two (A48, 5)-arc-transitive Cayley graphs on A47. Bi-Cayley graphs can be viewed as
natural generalizations of Cayley graphs, and involve many interesting examples that are not Cayley
graphs such as the Petersen graph, the Gray graph [2] (which is the smallest cubic semisymmetric
graph and a bi-Cayley graph on the extraspecial metacyclic group Z9 : Z3 of order 27) and Bouwer
graph [3]. Thus the above remarkable classification naturally motivates us to classify connected cubic
(normal and nonnormal) semisymmetric bi-Cayley graphs on nonabelian simple groups.

Theorem 1.1. Let Γ be a connected cubic semisymmetric bi-Cayley graph on a nonabelian simple
group T . Then either

(1) Γ is normal on T , and AutΓ = T : Z3 or T : S3; or
(2) Γ is nonnormal on T , and AutΓ = (R× S ).O, where S > T, (S ,T ) = (M24,M23) or (An,An−1) with

n ∈ {12, 24, 48, 96, 192, 384}, |R||O| divides 384/|S : T | and O ≤ Out(S ).

Applying Theorem 1.1, the connected cubic nonnormal semisymmetric bi-Cayley graphs on
nonabelian simple groups may be determined by computation with Magma package [1], see Example
3.5 for a specific example with T = M23.

Normal semisymmetric bi-Cayley graphs are definitely almost-normal, but the converse is not
necessarily true. In fact, determining the normality of Cayley or bi-Cayley graphs is difficult in
general for finding the full automorphism groups. However, Theorem 1.1 has the following interesting
consequence which shows that, for connected cubic semisymmetric bi-Cayley graphs on nonabelian
simple groups, the normality and the almost-normality are equivalent.

Corollary 1.2. A connected cubic semisymmetric bi-Cayley graph on a nonabelian simple group T is
normal on T if and only if it is almost-normal on T .

The importance of Corollary 1.2 is that it may lead to an explicit characterization of normal
semisymmetric bi-Cayley graphs on nonabelian simple groups. To express the result, we first introduce
a general construction of bi-Cayley graphs. Let G be a group, R and L be inverse-closed subsets (may
empty) of G \ {1}, and let S be a nonempty subset of G. Define a graph Γ = BiCay(G,R, L, S ) with
vertex set

{g0 | g ∈ G} ∪ {g1 | g ∈ G},

and edge set
{{g0, h0} | hg−1 ∈ R} ∪ {{g1, h1} | hg−1 ∈ L} ∪ {{g0, h1} | hg−1 ∈ S }.

It is easily known that Γ is a bi-Cayley graph on a group isomorphic to G, and each bi-Cayley graph
can be constructed in this way (refer to [29]). Also, one may assume 1 ∈ S up to isomorphism.

Theorem 1.3. A graph Γ is a connected cubic normal semisymmetric bi-Cayley graph on a nonabelian
simple group T if and only if that

Γ � BiCay(T, ∅, ∅, {1, s, ssg})

for some s ∈ T and g ∈ Aut(T ) satisfying

o(g) = 3, ssgsg2
= 1, 〈s, sg〉 = T,

and there exists no element h ∈ Aut(T ) satisfying {s, ssg}h = {s−1, (ssg)−1}.
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Theorem 1.3 helps us finding many specific examples or proving the nonexistence of examples for
certain nonabelian simple groups via searching in Magma [1]. For example, computation shows that
there is no example for T = A5 and A6, but exist examples for T = A7 and A8, see Examples 4.1 and
4.2.

We remark that a result of Tutte [24, P.59] states that an edge-transitive graph of odd valency is either
symmetric or semisymmetric, thus this paper together [9] and [21] completes the characterization of
cubic edge-transitive bi-Cayley graphs on nonabelian simple groups.

After making some preparations in Section 2, we prove Theorem 1.1 and Corollary 1.2 in Section
3, and Theorem 1.3 in Section 4.

2. Preliminaries

2.1. Background results

Bi-coset graph is an important tool for understanding semi-symmetric graphs. Let G be a group and
L,R be subgroups of G such that L∩ R is core-free in G (namely L∩ R does not contain any nontrivial
normal subgroup of G). Define a bi-coset graph with vertex set [G : L]∪ [G : R], and Lx is adjacent to
Ry with x, y ∈ G if and only if yx−1 ∈ RL. This bi-coset graph is denoted by Cos(G, L,R).

The following lemma is known, refer to [13, Section 3].

Lemma 2.1. Using notation as above, then Cos(G, L,R) is G-semisymmetric. Conversely, each G-
semisymmetric graph is isomorphic to Cos(G,Gα,Gβ), where α and β are adjacent vertices.

In particular, Cos(G,Gα,Gβ) is connected cubic G-semisymmetric if and only if G,Gα, Gβ satisfy
the following conditions:

• 〈Gα,Gβ〉 = G,
• |Gα : Gα ∩Gβ| = |Gβ : Gα ∩Gβ| = 3, and
• Gα ∩Gβ is core-free in G.
In 1980, a landscape work of Goldschmidt [14] determined all the triples (Gα,Gβ,Gαβ) satisfying

the above conditions (refer to [22, Table 3]), which are called Goldschmidt amalgams after him.

Theorem 2.2 ( [14]). Let Γ be a connected cubic G-semisymmetric graph. Then there are exactly
fifteen possible amalgams (Gα,Gβ,Gαβ) with α, β adjacent vertices. In particular, |Gα| = |Gβ| = 3 · 2i

where 0 ≤ i ≤ 7.

Investigating normal quotients of graphs has been very successful in studying various families of
graphs. Let Γ be a G-edge-transitive graph and let N be an intransitive normal subgroup of G. The
normal quotient ΓN of Γ with respect to N is defined to be the graph with the set of N-orbits as its
vertex set and two N-orbits B1, B2 are adjacent if and only if some vertex in B1 is adjacent in Γ to some
vertex in B2. The original graph is said to be a normal cover of ΓN if |Γ(α) ∩ B2| = 1 for each edge
{B1, B2} in ΓN and α ∈ B1.

Lemma 2.3. Let Γ be a connected cubic G-semisymmetric graph with bipartitions ∆1 and ∆2. Let
N CG and α ∈ VΓ. Then either

(1) N acts transitively on at least one of ∆1 and ∆2; or
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(2) N is semiregular and intransitive on both ∆1 and ∆2, and the following statements are true:

(i) Γ is a normal cove of ΓN .
(ii) GVΓN = G/N, (G/N)αN = GαN/N and ΓN is a connected cubic G/N-semisymmetric graph.

Proof. We only need to prove that (G/N)αN = GαN/N because the other statements are known, see [13,
Lemma 5.1] or [19, Lemma 2.3]. For Ng ∈ G/N, one has the following equivalences:

Ng ∈ (G/N)αN ⇐⇒ (αg)N = (aN)Ng = αN

⇐⇒ αg = αn f or some n ∈ N
⇐⇒ g ∈ NGα

⇐⇒ Ng ∈ NGα/N.

Therefore (G/N)αN = GαN/N. In particular, if Nα = 1, then (G/N)αN � Gα/(N∩Gα) = Gα/Nα = Gα. �

For a bi-Cayley graph BiCay(T, ∅, ∅, S ) and τ ∈ Aut(T ), with bipartitions T0 := {t0 | t ∈ T } and
T1 := {t1 | t ∈ T }. Define

στ,s : t0 → (tτ)0, t1 → (stτ)1, f or each t ∈ T.

From [29, Theorem 1.1], we have the following assertion which is important for characterizing normal
bi-Cayley graphs.

Lemma 2.4. Let Γ = BiCay(T, ∅, ∅, S ) be a normal bi-Cayley graph on a group T . Then

A10 = 〈στ,s | τ ∈ Aut(T ), s ∈ S , S τ = s−1S 〉.

The next lemma is similar to [13, Lemma 6.2], we include a proof here for the convenience of the
readers.

Lemma 2.5. Let Γ be a connected cubic G-semisymmetric graph with bipartitions ∆1 and ∆2, where G
is faithful on both ∆1 and ∆2. Suppose further that K CG is transitive on ∆1 and ∆2, and Kα , 1 for a
vertex α of Γ. Then KΓ(v)

v ≥ Z3 is transitive for each vertex v of Γ.

Proof. Assume α ∈ ∆i with i ∈ {1, 2}. Since G is faithful on ∆3−i, there exists β ∈ ∆3−i such that Kα

does not fix β. By the connectivity of Γ, there exists a path (α0, α1, · · · , αt) with α0 = α such that Kα

fixes α0, . . . , αt−1 but moves αt. It follows that

1 , KΓ(αt−1)
αt−1

CGΓ(αt−1)
αt−1

.

Since Γ is a G-semisymmetric cubic graph, GΓ(αt−1)
αt−1 is primitive, hence KΓ(αt−1)

αt−1 is transitive.
Without loss of generality, we may assume αt−1 ∈ ∆1 and αt ∈ ∆2. Let {β1, β2} be an edge of Γ

with β1 ∈ ∆1 and β2 ∈ ∆2. Since K is transitive on ∆1, there is x ∈ K such that βx
1 = αt−1, hence

{β1, β2}
x = {αt−1, β

x
2} is an edge of Γ. Now both αt and βx

2 are in Γ(αt−1), the transitivity of KΓ(αt−1)
αt−1

implies that there is y ∈ Kαt−1 such that (βx
2)y = αt. It follows that y−1x−1 ∈ K such

{αt−1, αt}
y−1 x−1

= {β1, β2},

namely Γ is K-edge-transitive. Thereby KΓ(v)
v ≥ Z3 is transitive for each vertex v ∈ VΓ. �
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Let G = N.H be a group extension. If N is contained in Z(G), the center of G, then the extension
is called a central extension, and if further G is perfect, that is, the commutator subgroup G′ equals to
G, we call G a covering group of H. Schur [23] proved that every nonabelian simple group T admits a
unique maximal covering group M such that each covering group of T is a homomorphic image of M;
the center Z(M) is called the Schur multiplier of T , denoted by Mult(T ). The next result states that each
central extension N.T with T nonabelian simple can derive a covering group of T , refer to [20, Lemma
2.11].

Lemma 2.6. Let G = N.T be a central extension with T a nonabelian simple group. Then G = NG′

and G′ = Z(G′).T is a covering group of T , where Z(G′) = N ∩G′ is a quotient of Mult(T ).

The next lemma can be read out from [11, Lemma 3.3].

Lemma 2.7. Let T < S be nonabelian simple groups. If |S : T | | 384, then either

(1) (S ,T ) = (An,An−1) with n ≥ 6 dividing 384; or
(2) (S ,T ) = (M11,PSL2(11)), (M12,M11) or (M24,M23).

With similar arguments as in [8, P. 143], the following lemma is easy to prove by checking the
nonabelian simple groups contained in GL(e, 2) for 3 ≤ e ≤ 7.

Lemma 2.8. Let L = R : T be a split extension, where |R| | 384 and T is a nonabelian simple group.
Then either

(a) L = R × T; or
(b) L , R × T, T ≤ GL(e, 2) with 2e | |R|, and e and T satisfy one of the following:

(b.1) e = 3 and T = PSL3(2).
(b.2) e = 4 and T ∈ {PSL3(2),PSL4(2),A5,A6,A7}.
(b.3) e = 5 and T ∈ {PSL3(2),PSL4(2),PSL5(2),A5,A6,A7}.
(b.4) e = 6 and T ∈ {PSLk(2) (3 ≤ k ≤ 6),PSL2(8),A5,A6,A7,PSU3(3),PSU4(2), PSp6(2)}.
(b.5) e = 7 and T ∈ {PSLk(2) (3 ≤ k ≤ 7),PSL2(8),A5,A6,A7,PSU3(3),PSU4(2), PSp6(2)}.

2.2. Preparatory lemmas

The solvable radical of a group is its largest solvable normal subgroup.

Lemma 2.9. Let T be a nonabelian simple group, and let Γ be a connected cubic semisymmetric
bi-Cayley graph on T . Suppose R is the solvable radical of AutΓ and 3 | |R|. Then RT = R × T.

Proof. Write L = RT , A = AutΓ and let α ∈ VΓ. As R ∩ T is solvable and normal in T , we have
R ∩ T = 1 and L = R : T is a split extension. Since Γ is a semisymmetric bi-Cayley graph on
T , we obtain |L : Lα| = |VΓ|/2 = |T |, so |Lα| = |R| is divisible by 3. By Theorem 2.2, |R| = |Lα|
divides 3 · 27 = 384, and the kernel of Aα acting on Γ(α) is a 2-group, we deduce 3

∣∣∣ |LΓ(α)
α |, and Γ is

L-semisymmetric. If 23 - |R|, Lemma 2.8 leads to L = R×T , as required. Thus assume in the following
that 23 | |R|. Then 24 | |R| as 3 | |R|.

Let R2 be a Sylow 2-subgroup of R and let S = {Rr
2 | r ∈ R}, the set of the conjugate subgroups of

R2 in R. Since |R| divides 384, |S | = |R : NR(R2)| divides 3, then the nonabelian simplicity of T implies
that T acts trivially on S by conjugation, that is, T normalizes R2. Thereby P := R2T = R2 : T ≤ L,
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|P : Pα| = |T | and |L : P| = 3. Let K be the kernel of L acting on [L : P] by right multiplication. Then K
is the largest normal subgroup of L contained in P ( [7, Example 1.3.4]) and Z3 ≤ L/K ≤ S3, implying
K ≥ T . Since |P| = |R2||T | = |T ||Pα|, Kα ≤ Pα is a 2-groups.

If A acts unfaithfully on the bipartitions of Γ, by [13, Lemma 5.2], Γ = K3,3 is arc-transitive, a
contradiction. Hence A acts faithfully on the bipartitions of Γ. If Kα , 1, then Lemma 2.5 implies
that KΓ(α)

α ≥ Z3, contradicting that Kα is a 2-group. Thus Kα = 1. Consequently, T = K C L, and so
L = R × T . �

Denote by soc(G) the socle of a group G, that is, the product of all minimal normal subgroups of
G.

Lemma 2.10. Let Γ be a connected cubic G-semisymmetric graph, and let G have a nonabelian simple
subgroup T which has two orbits of the same length on VΓ. Suppose further G has a trivial solvable
radical. Then G is almost simple, and either

(a) soc(G) = T; or
(b) soc(G) > T, soc(G)α ≥ Z3 for α ∈ VΓ, and Γ is soc(G)-semisymmetric. Further, one of the

following is true:

(b.1) (soc(G),T ) = (An,An−1) with n = 6 or n ≥ 12 dividing 384.
(b.2) (soc(G),T ) = (M24,M23).

Proof. By Theorem 2.2, |Gα| | 384. Since |G : Gα| = |VΓ|/2 = |T : Tα|, it follows that |G| divides
384|T |.

Let N be a minimal normal subgroup of G. Since G has a trivial solvable radical, N = S 1 × S 2 · · · ×

S d = S d, where each S i � S is nonabelian simple and d ≥ 1. Since T is nonabelian simple, either
T ∩N = 1 or N ≥ T . For the former, |N||T | divides 384|T |, so |N| divides 384, hence N is a {2, 3}-group
and thus solvable, a contradiction. Therefore N ≥ T . As distinct minimal normal subgroups of G
intersect trivially, by the arbitrariness of T , we obtain that N is the unique minimal normal subgroup
of G, namely soc(G) = N. If T = N, then soc(G) = T , as in Lemma 2.10(a).

Now suppose T < N. Then |N : Nα| = |T : Tα|, hence |N| = |T ||Nα : Tα| divides 384|T |. Assume
d ≥ 2. Since S 1 C N and T < N, we have S 1 ∩ T C T , so S 1 ∩ T = 1 or T . For the former, then
|S 1T | = |S 1||T | divides |N |, and so divides 384|T |. It follows that S 1 is a {2, 3}-group and solvable, a
contradiction. If the latter occurs, then T ≤ S 1 and |S |d = |N| divides 384|S |, implying |S |d−1 | 384,
also a contradiction.

The above contradiction shows that d = 1, namely soc(G) = S > T . Since |S : T | = |S α : Tα|

divides 384, the pair (S ,T ) satisfies Lemma 2.7. In particular Out(S ) ≤ Z2
2. Notice that Gα ≥ Z3 and

Gα/S α = Gα/(S ∩Gα) � S Gα/S = G/S ≤ Out(S ) ≤ Z2
2,

we conclude that S α ≥ Z3 is transitive on Γ(α), thus Γ is S -semisymmetric. Now to complete the
proof, we only need to prove (S ,T ) , (A8,A7), (M11,PSL2(11)) and (M12,M11).

If (S ,T ) = (M11,PSL2(11)), by Frattini argument, S = TS α. Notice that |Sα| | 384, by [12, Theorem
1.1], no such factorization exists, a contradiction.

Let α, β be adjacent vertices of Γ. Then |S α| = |S β|, |Tα| = |Tβ|, |S α : S α∩S β| = 3, and 〈S α, S β〉 = S .
Recall |S α| = |S : T ||Tα| divides 384.
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Set k = |Tα|, and define

Sk = {H | H ≤ S , |H| = k|S : T |}, T = {H | H ≤ S ,H � T },

Pk = {(H1,H2) | H1,H2 ∈ Sk, |H1 : H1 ∩ H2| = 3, 〈H1,H2〉 = S },

Qk = {(|H1 ∩ T |, |H2 ∩ T |) | T ∈ T , (H1,H2) ∈ Pk}.

Then (S α, S β) ∈ Pk and (|Tα|, |Tβ|) ∈ Qk.
Assume (S ,T ) = (A8,A7). By [6], A8 has no subgroup with order 384, so |S α| , 384. Then since

3 | |S α| and |S α| = |S : T ||Tα| = 8k divides 384, we conclude k ∈ {3, 6, 12, 24}. But searching in
Magma [1] shows |Pk| = 0 for each k ∈ {3, 6, 12, 24}, a contradiction.

Now assume (S ,T ) = (M12,M11). Then |S α| , 384 as M12 has no subgroup with order 384 by [6].
Since |S α| = |S : T ||Tα| = 12k divides 384, we deduce k ∈ {1, 2, 4, 8, 16}. However, computation
with Magma [1] shows |P4| = |P8| = 0, so k , 4 and 8. For k = 1, 2, 16, computation shows
Q1 = {(1, 3), (3, 1)}, Q2 = {(2, 6), (2, 3), (3, 2), (6, 2)} and Q16 = {(24, 16), (48, 16), (16, 24), (16, 48)},
contradicting |Tα| = |Tβ|. �

3. Proof of Theorem 1.1

For convenience, we make the following hypothesis in this section.

Hypothesis 3.1. Let T be a nonabelian simple group, and let Γ be a connected cubic semisymmetric
bi-Cayley graph on T . Denote by ∆1 and ∆2 the bipartitions of Γ. Set A = AutΓ and α ∈ VΓ.

Lemma 3.2. Under Hypothesis 3.1, then T , A5.

Proof. If T = A5, then Γ is of order 120. Checking the census of connected semisymmetric cubic
graphs on up to 768 vertices ( [4]), there is no such graph of order 120 admitting a semiregular
automorphism group A5, a contradiction. �

Lemma 3.3. Under Hypothesis 3.1, and suppose that A has a trivial solvable radical, and T is not
normal in A. Then part (2) of Theorem 1.1 is true with R = 1.

Proof. Set S = soc(A). By Lemma 3.2, T , A5. Then we see from Lemma 2.10 that S > T is a simple
group, S α ≥ Z3 and either (S ,T ) = (M24,M23) or (An, An−1) with n ≥ 12 a divisor of 384. If the latter
case occurs, by Frattini argument, S = TS α, then the semiregularity of T derives that n = |S : T | = |S α|

is divisible by 3. This together with that n ≥ 12 divides 384 implies n = 12, 24, 48, 96, 192 or 384, as
required. �

Lemma 3.4. Under Hypothesis 3.1, and suppose that A has a nontrivial solvable radical R, and T is
not normal in A. Then part (2) of Theorem 1.1 is true with R , 1 and n , 384.

Proof. If A acts unfaithfully on ∆1 or ∆2, by [13, Lemma 5.2], Γ = K3,3 is arc-transitive, a contradiction.
Thus A acts faithfully on ∆1 and ∆2. Write L = RT . As R ∩ T is solvable and normal in T , we obtain
that R ∩ T = 1 and |Lα| = |R| , 1. By Theorem 2.2, |A| = |T ||Aα| divides 384|T |, so |L| divides 384|T |.
Hence |R| | 384. If R is transitive on ∆1 or ∆2, then |T | divides |R|, thus T is a {2, 3}-group and solvable,
a contradiction. Therefore R is not transitive on both ∆1 and ∆2. It then follows from Lemma 2.3 that
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R is semiregular on both ∆1 and ∆2, A/R ≤ Aut(ΓR), and the quotient ΓR is a connected cubic A/R-
semisymmetric graph. Moreover, notice that A/R has a trivial solvable radical, and L/R � T has two
orbits with equal length on VΓR, hence the triple (ΓR,G/R, L/R) (as (Γ,G,T ) there) satisfies Lemma
3.3. Consequently (note T , A5 by Lemma 3.2), A/R is almost simple, and either

(a) soc(A/R) = L/R; or
(b) soc(A/R) > L/R � T , soc(A/R)α ≥ Z3 and ΓR is soc(A/R)-semisymmetric. Further, one of the

following is true:

(b.1) (soc(A/R), L/R) = (An,An−1) where n ≥ 12 divides 384.
(b.2) (soc(A/R), L/R) = (M24,M23).

Assume (a) occurs. Then LCA. Since A acts faithfully on ∆1 and ∆2, and |Lα| = |R| , 1, by Lemma
2.5, LΓ(α)

α ≥ Z3, so 3 | |R|. It then follows from Lemma 2.9 that L = R×T , hence T CA, a contradiction.
Assume (b) occurs. If L , R × T , as |R| | 384, T satisfies part (b) of Lemma 2.8, which violates that

T � L/R satisfies (b.1) or (b.2) above, a contradiction. Thus L = R×T . Suppose S = M/R = soc(A/R)
and C = CM(R). Then T ≤ CCM and C∩R = Z(R) ≤ Z(C). Observe 1 , C/(C∩R) � CR/RCM/R = S ,
we derive that M = CR, C ∩ R = Z(C) and C = (C ∩ R).S is a central extension. Now Lemma 2.6
implies that C′ = (C′ ∩ Z(C)).S is a covering group of S , and C′ ∩ Z(C) = Z(C′) is a quotient of
Mult(S ). Notice that Mult(M24) = 1 and Mult(An) � Z2 for n ≥ 12.

Suppose Z(C′) > 1. Then Z(C′) = Mult(S ) = Z2, C′ � Z2.An and (S ,T ) = (An,An−1) with n ≥ 12
dividing 384. Since Z(C′) C M, M/R = S and RT = R × T , we deduce that Z(C′) ≤ R and C′ has
a subgroup TZ(C′) = T × Z(C′) � T × Z2. However, by [8, Proposition 2.6], the covering group
C′ = Z2.An with n ≥ 8 has no subgroup isomorphic to Z2 × An−1, a contradiction.

Therefore Z(C′) = 1, and C′ � S is normal in M, so C′ ∩ R = 1 and M = R × C′ as M/R = S .
It follows A = (R × C′).O with O ≤ Out(S ). Since |A : Aα| = |M : Mα| = |T |, we deduce |R||O| =

|Aα|/|S : T | divides 384/|S : T |. Finally, for the case (S ,T ) = (An,An−1) with n ≥ 12 dividing 384,
as |R| > 1, n , 384. Since C′ C A, by Lemma 2.5, C′α ≥ Z3, then the semiregularity of T implies
that n = |S : T | = |C′ : T | = |C′α| is divisible by 3. Now since n ≥ 12 divides 384, we derive that
n ∈ {12, 24, 28, 96, 192}, as in part (2) of Theorem 1.1. �

Now we are ready to prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. Let T be a nonabelian simple group, and let Γ be a connected cubic
semisymmetric bi-Cayley graph on T . Set A = AutΓ. If Γ is nonnormal on T , by Lemmas 3.3
and 3.4, part (2) of Theorem 1.1 holds.

Assume Γ is normal on T . Since Γ is semisymmetric, Γ is bipartite, and so we may suppose that
Γ = BiCay(T, ∅, ∅, S ), with bipartitions T0 := {t0 | t ∈ T } and T1 := {t1 | t ∈ T }, and S = {1, a, b}. By
Lemma 2.4,

A10 = 〈στ,s | τ ∈ Aut(T ), s ∈ S , S τ = s−1S 〉,

which is transitive on Γ(10) = {11, a1, b1} by the semisymmetry of Γ. If στ,s fixes each vertex in Γ(10),
then

11 = (11)στ,s = (s1τ)1 = s1, a1 = (a1)στ,s = (saτ)1, b1 = (b1)στ,s = (sbτ)1.

It follows s = 1, aτ = a and bτ = b. Since Γ is connected, 〈a, b〉 = 〈S 〉 = T , hence τ = 1 and στ,s = σ1,1

is the identity automorphism of Γ, namely A10 acts faithfully on Γ(10). Consequently Z3 ≤ A10 ≤ S3.
Now by Frattini argument, we deduce A = T : A10 = T : Z3 or T : S3, part (1) of Theorem 1.1 holds.�
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Proof of Corollary 1.2. We only need to prove the sufficiency.
Suppose on the contrary that T is a nonabelian simple group, and there is a connected cubic

semisymmetric bi-Cayley graph Γ on T such that Γ is almost-normal but not normal on T . Set
A = AutΓ and G = NA(T ). Then Γ is G-semisymmetric, and with the same reason (view G as A
there) as in the previous paragraph, we derive that G = T : Z3 or T : S3. Since, by assumption, T is
not normal in A, we see from Theorem 1.1(2) that

A = (R × S ).O,

where S > T , (S ,T ) = (M24,M23) or (An,An−1) with n ∈ {12, 24, 48, 96, 192, 384}, |R||O| divides
384/|S : T | and O ≤ Aut(S ) ≤ Z2. If R = 1, as T is maximal in S , we obtain G ≤ T.Z2, which is
impossible as Γ is G-semisymmetric. Thus R , 1. Since R centralizes T , R ≤ NA(T ) = G and so
R × T C G. This together with T : Z3 ≤ G ≤ T : S3 implies that R ≥ Z3. Notice that 3 | |S : T |, we
derive that |Aα| = |A : T | is divisible by 32, which is a contradiction by Theorem 2.2. �

We end this section with a specific example of cubic nonnormal semisymmetric bi-Cayley graph on
M23.

Example 3.5. Let

G =〈(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24), (2, 16, 9, 6, 8)
(3, 12, 13, 18, 4)(7, 17, 10, 11, 22)(14, 19, 21, 20, 15), (1, 22)(2, 11)(3, 15)(4, 17)(5, 9)
(6, 19)(7, 13)(8, 20)(10, 16)(12, 21)(14, 18)(23, 24)〉,

L =〈(1, 6, 17, 11)(2, 15, 8, 4)(3, 23, 22, 5)(7, 16, 9, 21)(10, 13, 18, 24)(12, 19, 14, 20),
(1, 2)(3, 19)(4, 6)(5, 14)(7, 24)(8, 17)(9, 13)(10, 21)(11, 15)(12, 23)(16, 18)(20, 22),
(1, 17)(2, 8)(3, 22)(4, 15)(5, 23)(6, 11)(7, 9)(10, 18)(12, 14)(13, 24)(16, 21)(19, 20),
(1, 10, 5, 17, 18, 23)(2, 21, 14, 8, 16, 12)(3, 13, 6, 22, 24, 11)(4, 20, 7, 15, 19, 9)〉,

R =〈(1, 2)(2, 3)(4, 6)(21, 10)(16, 18)(8, 17)(7, 24)(12, 23)(13, 9)(20, 22)(5, 23)(11, 15),
(1, 6, 24)(19, 11, 14)(4, 2, 7)(21, 13, 20)(16, 12, 17)(8, 23, 18)(22, 9, 10)(5, 15, 3),
(1, 17)(19, 20)(4, 15)(21, 16)(6, 11)(8, 2)(18, 10)(7, 9)(12, 14)(13, 24)(22, 3)(5, 23),
(1, 19)(4, 18)(21, 6)(16, 11)(8, 3)(7, 5)(12, 24)(17, 20)(13, 14)(22, 2)(9, 23)(10, 15)〉.

Let Γ = Cos(G, L,R). Then Γ is a connected cubic M24-semisymmetric bi-Cayley graph on M23.

Proof. A direct computation with Magma [1] shows that L � Z3 : D8, R � S4, 〈L,R〉 = G � M24 and
|L : L ∩ R| = 3. By Lemma 2.1, Γ is a connected cubic M24-semisymmetric graph. Notice that both
L and R are transitive on the set {1, 2, ..., 24} and |L| = |R| = 24, they are regular on {1, 2, . . . , 24}. Let
T = G1, the stabilizer of G on the point 1. Then T � M23, G = T L = TR and |G| = |T ||L| = |T ||R|.
It follows that T is regular on the bipartitions of Γ, namely Γ is a bi-Cayley graph on M23. Further,
by [9, Lemma 7.1], Γ is not arc-transitive, hence Γ is semisymmetric. Finally as |G| = 24|M23|, by
Theorem 1.1, Γ is nonnormal on M23. �

4. Proof of Theorem 1.3

For a nonabelian simple group T , we may view T as a normal subgroup of Aut(T ) up to
isomorphism, and then each element in Aut(T ) may acts on T by conjugate action.
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Proof of Theorem 1.3. (Necessity) By assumption, we may assume Γ = BiCay(T, ∅, ∅, S ) with
bipartitions T0 := {t0 | t ∈ T } and T1 := {t1 | t ∈ T }, and 1 ∈ S . Then S 1 = Γ(10) and |S | = 3.
By [29, Theorem 1.1],

A10 = 〈σθ,s | θ ∈ Aut(T ), s ∈ S , S θ = s−1S 〉

acts faithfully on Γ(10) = S 1, and A10 contains an element σg,s with order 3 which cyclically permutes
all the elements of S 1, where g ∈ Aut(T ) and s ∈ S . It follows S 1 = 1〈σg,s〉

1 = {11, s1, (ssg)1} and
S = {1, s, ssg}. The connectivity of Γ forces 〈s, sg〉 = 〈S 〉 = T . Since o(σg,s) = 3, for each t ∈ T ,
t0 = (t0)σ

3
g,s = (tg3

)0 and t1 = (t1)σ
3
g,s = (ssgsg2

tg3
)1, or equivalently g3 = 1 and ssgsg2

= 1. If g = 1, then
〈S 〉 = 〈1, s, s2〉 = 〈s〉 , T , contradicting the connectivity of Γ. Hence o(g) = 3. Moreover, since Γ
is not vertex-transitive, by [5, Proposition 3.3(a)], there is no h ∈ Aut(T ) such that S h = S −1, namely
{s, ssg}h = {s−1, (ssg)−1}.

(Sufficiency) Suppose Γ = BiCay(T, ∅, ∅, {1, s, ssg}), where s ∈ T and g ∈ Aut(T ) satisfy the
condition in Theorem 1.3. Clearly Γ is a cubic bi-Cayley graph on T . Set P = {1, s, ssg} and
G = 〈T, σg,s〉. By [29, Theorem 1.1], G = T : 〈σg,s〉 ≤ NAutΓ(T ). Since 〈P〉 = T , Γ is connected.
Since P = (11)〈σg,s〉, Γ is G-semisymmetric.

We claim that Γ is semisymmetric (note that a G-semisymmetric graph is not necessarily
semisymmetric in general). If not, as Γ is of valency 3, Γ is symmetric and G < AutΓ. If T C AutΓ,
by [5, Proposition 3.3(a)], there is an element h ∈ Aut(T ) such that {1, s, ssg}h = S h = S −1 =

{1, s−1, (ssg)−1}, which is not possible by the assumption. If T is not normal in AutΓ, by [21, Theorem
1.1(2)], we would have that T = An−1 and AutΓ = (R × An).O, where n ∈ {24, 48, 96} and |R||O| | 96

n .
Notice that An−1 is maximal in An and 96

n | 4, we deduce that |NAutΓ(T ) : T | divides 4, which is also not
possible as T : Z3 ≤ G ≤ NAutΓ(T ).

Therefore, Γ is semisymmetric. Hence Γ is almost-normal as G ≤ NAutΓ(T ). Now Corollary 1.2
implies that Γ is normal on T . �

We finally address two examples of normal cubic semisymmetric bi-Cayley graphs on A7 and A8,
respectively.

Example 4.1. Let s = (1, 6, 2, 5, 4, 3, 7), g = (1, 5, 4) and Γ = BiCay(A7, ∅, ∅, {1, s, ssg}). Then Γ is a
connected cubic semisymmetric normal bi-Cayley graph on A7 and AutΓ = (Z3 × A7) : Z2.

Proof. Obviously val(Γ) = |{1, s, ssg}| = 3. With Magma [1], one may check that 〈s, sg〉 = A7,
ssgsg2

= 1, AutΓ = (Z3 ×A7) : Z2 and there is no element h ∈ S7 such that {s, ssg}h = {s−1, (ssg)−1}. By
Theorem 1.3, Γ is a connected cubic semisymmetric normal bi-Cayley graph on A7. �

Example 4.2. Let s = (1, 6, 8)(2, 7, 3, 5, 4), g = (1, 7, 8)(4, 6, 5) and Γ = BiCay(A8, ∅, ∅, {1, s, ssg}).
Then Γ is a connected cubic semisymmetric normal bi-Cayley graph on A8 and AutΓ = (Z3 ×A8) : Z2.

Proof. Clearly val(Γ) = |{1, s, ssg}| = 3. A computation with Magma [1] shows that 〈s, sg〉 = A8,
ssgsg2

= 1, AutΓ = (Z3 ×A8) : Z2 and there is no element h ∈ S8 such that {s, ssg}h = {s−1, (ssg)−1}. By
Theorem 1.3, Γ is a connected cubic semisymmetric normal bi-Cayley graph on A8. �
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5. Conclusions

This paper classifies cubic semisymmetric bi-Cayley graphs on nonabelian simple groups, which
extends a remarkable classification of cubic nonnormal symmetric Cayley graphs on nonabelian simple
groups, and together with former known results, completes the characterization of cubic edge-transitive
bi-Cayley graphs on nonabelian simple groups.
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