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blurred by random Gaussian white noise. We first prove that the considered problem is ill-posed (in the
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1. Introduction

Given an open bounded domain Q c R? which has a smooth boundary I, and a positive real number
T. We consider the non-linear hyperbolic partial different equation with the strong damping aA%u,, as
follows

Uy + au; + BN u = F(x,t,u), (x,0) e Qx(0,T), (1.1)
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associated with the final value functions
u(x, T) =p(x), u(x,T)=E&x), xeQ, (1.2)
and the Dirichlet boundary condition
u(x,t) =0, (x,0)el'x(0,7T), (1.3)

where «, 8 are positive constants, and the source # (x, ¢, u) is a given function of the variable u.

As we all know, the amplitude of a wave is related to the amount of energy it carries. A high
amplitude wave carries a large amount of energy and vice versa. A wave propagates through a certain
environment, its energy will decrease as time goes on, so wave amplitude also decreases (called damped
wave). The damped wave equations are widely used in science and engineering, especially in physics.
They can describe how waves propagate. It applies to all kinds of waves, from water waves [8] to
sound and vibrations [13,21], and even light and radio waves [10].

Let us briefly describe some previous results related to the Problem (1.1). In recent years, much
attention has been paid to the study on the properties and asymptotic behavior of the solution on
Problem (1.1) subject to the initial conditions u(x, 0) = p(x), u,(x,0) = &(x) (pioneering works [1,2,5,
9, 15]). However, to the best of our knowledge, there are not any result on backward problem (1.1)—
(1.3).

In practice we usually do not have these final value functions, instead they are suggested from the
experience of the researcher. A more reliable way is to use their observed values. However, we all
know that observations always come with random errors, these errors are derived from the ability of
the measuring device (measurement error). It is therefore natural that observations are observed usually
in the presence of some noise. In this paper, we will consider the case where these perturbation are an
additive stochastic white noise

p(x) = p(x) + eW(x),  £9(x) = &(x) + eW (), (1.4)

where € is the amplitude of the noise and W(x) is a Gaussian white noise process. Suppose further that
even the observations (1.4) cannot be observed exactly, but they can only be observed in discretized
form

O 0p) =0 0p) + €W, ), (£50p) = (& 0p) + W), p=1,....N, (1.5)

where {¢,} is a orthonormal basic of Hilbert space H; (,) denotes the inner product in H; W, :=
(W, ¢, are standard normal distribution; and {(p¢, ¢,,) are independent random variables for orthonormal
functions ¢,. For more detail on the white noise model see, [3, 11, 12].

It is well-known that Problem (1.1)—(1.4) is ill-posed in the sense of Hadamard (if the solution
exists, then it does not depend continuously on the final values), and regularization methods for it are
required. The aim of this paper is to recover the unknown final value functions p, € from indirect and
noisy discrete observations (1.5) and then we use them to establish a regularized solution by the Fourier
truncation method. To the best of our knowledge, the present paper may be the fist study for ill-posed
problem for hyperbolic equations with Gaussian white noise. We have learned more ideas from these
articles [14, 17, 18,20], but the detailed technique is different.

The organizational structure of this paper is as follows. Section 2 introduces some preliminary
materials. Section 3 uses the Fourier series to obtain the mild solution and analyse the ill-posedness of
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problem. Section 4 presents an example of an ill-posed problem with random noise. In Section 5, we
draw into main results: first we propose a new regularized solution, and then we give the convergent
estimates between a mild solution and a regularized solution under some priori assumptions on the
exact solution. To end this section, we discuss a regularization parameter choice rule. Finally, Section 6
reports numerical implementations to support our theoretical results and to show the validity of the
proposed reconstruction method.

2. Preliminaries

Throughout this paper, let us denote the Hilbert space H := L*(Q), and (-, -) is the inner product

of H. Since Q is the bounded open set, there exists a Hilbert orthonormal basic {gp)2, In H (¢, €

7{(}(9) N C*(Q)) and a sequence {/l,g};":1 of real, 0 < 4; < A, < ... £ lim4, = +oo, such that

p—)DO
—Ap,(x) = A,p,(x) for x € Q and ¢,(x) = 0 for x € Q. We say that A, are the eigenvalues of of —A
and ¢, are the associated eigenfunctions. The Sobolev class of function is defined as follows

Wﬂ:{feﬂzz/lg<f,¢pp>2<oo}.
p=1

2
It is a Hilbert space endowed with the norm || flléﬂ, = Z‘;’:l /l’,‘, < f gop> . For 7,v > 0, following [4, 6],
we introduce the special Gevrey classes of functions

Goy = {f eH: i e f.e,) < +oo}.
p=1

We remark that G, is also the Hilbert space endowed with the norm || f ||éw = Z;":] e‘”ﬂﬂ}’,( f.en?.

Definition 2.1 (Bochner space [22]). Given a probability measure space (§~2, M, w), a Hilbert space
H. The Bochner space L*(Q, H) = L*((Q, M, n); H) is defined to be the functions u : Q +— H such
that the corresponding norm is finite

1/2 12
lell 290, = ( f~ ||u(w)||§,du(w)) = (Bllully) " < +oo. 2.1)
Q
Definition 2.2 (Reconstruction of the final value functions). Given p,& € H* (u > 0), which have

sequences of n (is known as sample size) discrete observations {p%,¢,) and (¢¢,¢,), p = 1,...,n.
Non-parametric estimation of p and & are suggested as

Pu(0) = > (050000, E(0) = D (E @)y, (2.2)
p=1 p=1
Lemma 2.1. Given p,& € H" (u > 0), then the estimation errors are
_ 1 — 1
Ello, — pllz, < €n+ ?npn%m, EllE" - 3, < €n+ ?néuiﬂ. (2.3)

Here n(€) := n depends on € and satisfies that lim._,y+ n(€) = +oo.

AIMS Mathematics Volume 7, Issue 7, 12620-12634.



12623

Proof. Our proof starts with the observation that

EIp" - plix = E[Z«f -p ¢p>2) + ) ) = B [Z W,%) IR AN

p:1 p:I’H'l p:l p:I’H'l
n 1 00
< €E (Z Wﬁ] + Z o, 007,
p=1 n p=n+1

The assumption W, = (W, ¢,) YN (0, 1) implies that EWI% = 1. We then have the desired the first

result. The same conclusion can be drawn for the remaining case. O
3. Mild solution

Taking the inner product on both side of (1.1) and (1.2) with ¢,, and set u, (1) = (u(-, 1), ), pp(t) =
(P, 0p)s Ep(1) = (€, ¢p), and F(u) = (F (-, 1, u(-, 1)), ¢,), then

{u”p(t) + @l (1) + BAu, = Fplu)(0), o

up(T) = pp, ' (T) = &)

In this work we assume that A, := a*A; — 482> > 0 then a quadratic equation k> — a3k +BA) = 0

- = z ; 1 3 . .
has two different solutions k, = 2 ZN/A_/’, k, = Ap+2\/A_p, Multiplying both sides the first equation of
System (3.1) by ¢,(r) = €L

P —e

Vvl and integrating both sides from 7 to 7,
P

T T T T
f ¢p(Duy (D)7 + @ f ¢p(Du(T)dT + BA2 f ¢,(T)u,dr = f ¢,(0)F,(w)(7)dr.  (3.2)

The left hand side of (3.2) now becomes

T
|6, (1) = 6, (D, (7) + aﬂf,@(ﬂup(ﬂ]f + f |¢/(1) = a2, (1) + B2 (D) u, (7).

: - : : 2 2 2 _ ’” 2 g7 2 _
Since kp, k; satisfy the equation £~ — a//lpk +B4, = 0, then ¢" (1) — a//lpgbp(‘r) +B4, = 0. Hence, (3.2)

becomes

T
[8(00,(0) = 8,0y (1) + @l (D, ()] = f $(OF pu)(T)dr. (3.3)

& e(Tﬂ)kl*, _ k;; e(T*I)k;

It is worth noticing that ¢,() = 0, ¢;}(t) = 1 and —¢;,(T) + a/llz,d)p(T) = £ Ny . Therefore,
(3.3) now becomes
kteT-0k, _ f—eT-0k; eT-0k; _ o(T-0k; T @Dk, _ =Dk,
uy(t) = = P 0, — + f L L F,(u)(T)dr.
P ,—Ap p ,—Ap P . ,—Ap p
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Lemma 3.1. Let p, & € H. Suppose that the given problem (1.1)—(1.3) has a solution u € C([0,T], H),
then the mild solution is represented in terms of the Fourier series as follows

T
u(x,t) = R(T — Hp(x) — S(T — 1)é(x) + f S(t — F (x, 7, u)dr, 3.4)
where the operators R(t) f and S(t) f are
k e”‘+ »— e’ 1k,
R(O)f = Z uwﬂ%m S(f = Z( U%ﬂmm (3.5)
VA,

4. The ill-posedness of the problem

In this section, we present an example of Problem (1.1)—(1.3) with random noise (1.4) which is
ill-posed in the sense of Hadamard (does not depend continuously on the final data). We consider the
particular case as follows

i+ aA2 + BA2E = F (@), (x,1) € Q% (0,7),
"'(x,T)y=0, xeQ,

i'(x,T) = &(x), xeQ,

i"(x,1) =0, (x,1)elx(0,T),

4.1)

—(1/2
where F (i1")(x,t) = Z;o=1 %(ﬁ"(-, 1), ¢,)¢p(x). For simple computation, we assume that Q = (0, 7).
It immediately follows that 4, = p*. We assume further that the function &(x) = 0 (unknown) has
observations (£¢, ¢,) = €W, ¢,,), p = 1,...,n. Then the statistical estimate of £(x) 1s in the form.

n

£ = ) (W 0,)p,(0). 4.2)

p=1

Using Lemma 3.1, System (4.1) has the mild solution

T
i"(x,t) = -S(T - t)EZ + f S(r — HF (@")(7)dr. 4.3)

We first show that this nonlinear integral equation has unique solution &#" € L*([0, T1; L3(Q, H)).
Indeed, let us denote

T
Dw)(x, 1) = —S(T - t)g,i + f S(t — HF (u)(7)dr. “4.4)

Let uy,u, € L*([0,T1; Lz(f), ‘H)). Using the Holder inequality and Parseval’s identity, we obtain
2

T
Ell®(u))(-, 1) = @), )l = B f S(T = 0)(F (), 1) = F (u2)(-, 7))d7

H
T O o0k _ ot-0k; 2
< TEf ( ¢ ?(Vl)(% T) - T(VZ)(" T)’ @ ) dr
2\ 2

HT
e » (T
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Since |e"% — e~ 05| < (7 - Nlks — k| < T /A, and (t — 0)(k; + k) < Tad, then

| ~(t-0k; _ a—(t=DK}

< TeT (4.5)

N <

From defining the function ¥ as above, it follows that HT(T) 2T2 (ul( T) — uy(+,7),p). Thus

|Hp (T)l — e(‘r—l)(k; +k;)

Ell® (), 1) — ®(uz)(, t)||H<—Ef Z(m(-,f)—uz(-ﬁ),soﬁzdf
=1

||Ll] u2||L°°([O T] Lz(Q‘]’())
Hence, we have that ||®(u;) — (Il(ug)lle([O RO S 4|| 1 - 2||L°°([0 L@ This mear}s that ® i‘s a
contraction. The Banach fixed point theorem leads to a conclude that ®(«) = u has a unique solution
u € L=([0, T1; L*(Q, H)).

We then point out that System (4.1) does not depend continuously on the final data. We start by

Ellii" (-, 03, > E||S(T -

1 ! y 2
&l 52 f S(r - nF @) (|, (4.6)

It is easy to verify that
g f S ACA S Ellu( DI,

This leads to g
Bl (-, 0lly, > GE|S(T - 4.7)
. . — 2
It is worth recalling that E< <, go,,) = €2, S0
_ n [ eT-0ky _ o0k 12 2 [eT-Dki _ oT-0k, 17
BIS(T — 03 = Z[ pra ] B en) 2|~ ] e (4.8)
p~ p n — Kn

p=1

We note that k} — k, = /A, = \Ja?A} — B2 > [a?A} — BA2, then we have

+ 12 + 2
[e(T"W _ Tk ]2 e2T-0k; [1 — e~ (T-0(; —k,l)] e2(T-0k; [1 _ e—(T—t)\/au‘l‘—waf]
= >
ky =k (ks = k)2 @’} - 4BA;

The function A(r) = 7% [1 —e T V"z”?“‘ﬁﬂ%] is a decreasing function with respect to variable
t € [0,T], so supy.,. (1) = h(0). This leads to

oo [TV | V]
su = >
0szng @2 —4B22 @? 4 — 4BA2 a1t — 4B22

4.9)
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Combining (4.7)—(4.9) yields

3 62“"[1 —-eT ‘/‘W]z eZT”Z[l —e T ‘/‘T‘*ﬁ]z

8
~n 2 2 ?

Let us choose n(e) := n = /5 In(%). When € — 0%, we have Ellg;lli, = €’n(e) — 0. However,

g i-etVH]
9 @[3 In(L )] ~ 48[ In(X ]

~ny2
Bll# e qo.ryean =

Thus, we can conclude that Problem (1.1)—(1.3) with random noise (1.4) which is ill-posed in the sense
of Hadamard.

5. Main results

To come up with a regularized solution, we first denote a truncation operator ¥yf =
ZI,Y:l (fsep)ep(x) for all f € H. Now, let us consider a problem as follows

UY + aA2UN + BA2UN = kyF (x,1, UN),  (x,1) € Q% (0,7),
UN(x,T) = ¥ypa(x), x€Q,

UN(x,T) = kyE(x), x€Q,

UV(x,n) =0, (x,1)elx(0,T),

(5.1)

where p,(x), E;(x) as in Definition 2.2 and N, n are called the regularized parameter and the sample
size respectively. Applying Lemma 3.1, Problem (5.1) has the mild solution

T
UN(x,1) = RV(T - 1)p5(x) — SV(T — )& (x) + f SY(r - nF (x, 7, UV)dr, (5.2)
where
+ tk k e ], tk’
RY(0f = Z S (fo ey (0); SM(f = Z ———— (L. (53)
p=1 p=1 \/—

The non-linear integral equation is called the regularized solution of Problem (1.1)—(1.3) with the
perturbation random model (1.4). And N serves as the regularization parameter.

Lemma 5.1 ([16,19]). Given f € H and t € [0, T]. We have the following estimates:
IRY()f12, < Cre®™ ™ IIfI2;:  IS¥Of15, < Cse™ ™ M £11,. (5.4)
where Cyg, Cg are constants dependent on a, T.
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Theorem 5.1. Given the functions p, & € H. Assume that F € C(Q X [0, T] X R) satisfies the globally
Lipschitz property with respect to the third variable i.e., there exists a constant L. > 0 independent of
X, t,uy, Up such that

||7:(a t, ul('a t)) - T(a z, 1/[2(', t))”q,{ < L||I/l1(', t) - MZ(', t)”(]_(
Then the nonlinear integral equation (5.2) has a unique solution UV e L>([0, T], LZ(EE; H)).
Proof. Define the operator P : L*([0, T'], Lz(ﬁ; H)) — L=(0,T], Lz(?); ‘H)) as following

T
P()(x, 1) = RY(T - 0)p5(x) — SV(T - 1)&<(x) + f SN(r - HF (x, 1, v)dr.

t
For integer m > 1, we shall begin with showing that for any v, v, € L*([0, T], L2(§; H))

(T =" )

11 1 103 2
BIIP" (), 1) = P"(2)(, Dl < [LPCSTe™ ™ [Pty = wal i

(5.5

We now proceed by induction on m. For the base case (m = 1),

T
BIIP(1)( 1) = P2)(, I, = | f §¥(r = O (v v) - F (e m vl

T
< TEf Cse2 W F (-, 1, v1) = F (o1, v)ll5 dr
t

2 20T 3 2
< T(T -l N — _
< T(T = DL Cse™ N lvi = vally o 1y 2@z

where we apply Lemma 5.1 and the Lipschitz condition of . Thus it is correct for m = 1. For the
inductive hypothesis, it is true for m = m,. We show that (5.5) is true for m + 1.

EIP™ (v)(-, 1) = P () (-, D3, = BIP@" (1)), 1) = PR (), Dl
2

T
=E ” f SY(r = O(F (x, 7, P"(n1)) = F(x, 7, P"(v))dr

H
T

< TE f Coe™ B[ F (o1, (1)) = F (o 7, PP ()| dr
t

T m

2 2012, 2 (T -1)
< — _
< [L2CsTe ™5™ v, ) . ft ——dr. (5.6)

From the inductive hypothesis, we have

T m
1 1 2 2 2072 ]! 2 T -7
EIP" (v) (-, 1) = P (va) (-, D)l < [L CsTe N] Vi =vall o 0 71,260 f, —dr.
Hence, by the principle of mathematical induction, Formula (5.5) holds. We realize that,

. [LZCSTeZ”T’lIZV]m
rlgilo m! =0,

AIMS Mathematics Volume 7, Issue 7, 12620-12634.



12628

and therefore, there will exist a positive number m = my, such that P™ is a contraction. It means that
P(UN) = UV has a unique solution UV € L*([0, T]; L*(Q, H)). This leads to P(P™(U")) = P(U").
Since P(P™(UN)) = P™(P(UY)), it follows that P™(P(U")) = P(U"). Hence P(U") is a fixed point of
P"™. By the uniqueness of the fixed point of P, we conclude that P( UV) = UM has a unique solution
UN € L=([0, T1; LA(Q, H)). O

Theorem 5.2. Let p,& € H*, (u > 0). Assume that System (1.1)—(1.3) has the exact solution u €
C([0,T]; Gy2), where o > 2aT. Given € > 0, the following estimate holds

TN 2 —2at23 -2 2CsL2T(T—
EIOC. 1) = u, Dl < 2672 N (2020 ullo.r16, )T

. 1 1 -
+ 262&(T t)/llzv[3CR(€2n + F”P”«i{u) + 3CS(€2n + F||é-‘||§ﬂl)]e3CsL2T(T t), (5.7)

n n

where the regularization parameter N(€) := N and the sample size n(€) := n are choosen such that

, GZGT%@

lim N(e) = +o0,  lim €?n(e)e*? e = lim = 0. (5.8)

e—0* e—0* e—0t

n(e)
Remark 5.1. The order of convergence of (5.7) is
) s ezamg,(s) 1

e 2"vo max { €n(e)e* o, — (- (5.9)

/ln(e) /lN(E)

There are many ways to choose the parameters n(€), N(€), that satisfies (5.8). Since A, ~ (n(€))* 417],
one of the ways we can do by choosing the regularization parameter N(€) such that Ay, satisfies

2T o = (n(e))!, where 0 < a < 2u/d. Then we obtain /112\,(6) = 52 In(n(€)). The sample size n(e) is
chosen as n(e) = (1/€)”“*V (0 < b < 2). In this case, the error will be of order
_th 2-b. L(Lﬂ_a)_ ab 1
T(a+1) a+1\d —  In->.
€ max{e € ’2a(a+1)ne

Proof of Theorem 5.2. Let us define the integral equation

T
u = RN(T - Hp(x) — SN(T - Hé(x) + f SVt = OF (x, 7, u™)dr.
Then, we have
ENUY (¢, 1) = uC,0l3, < 2BITN 1) = u 013, + 2Bl () = ul, D, (5.10)

For easy tracking, we divide the above estimate into two main steps:
Step 1. We have

BV, 1) = u ¢, DIl S3BIRY(T = 0@, - p)lly, + 3BISN(T - D& - O3,

T — 2
+ 3EH f SVt - 0)(F(x, 7, 0V) = Fx, 7, uN))dTHﬂ.
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12629

By Hoder’s inequality and the results in Lemma 5.1, we have
U, 1) — (. 0l <3Cre®™ T OWEIGS — pli3, + 3Cse™ T IBENIE - £,

T — 2
+3TE f Coe | F .7, T - F . mu)|| d.
t

Use the results of Lemma 2.1 and the Lipschitz property of 7, we have

_ . 1 P 1
BTV, 1) — ¥ (|2, <3Cre T '“N(ezn n ann%ﬂ) +3Cge2 'VN(ezn n ann;{u)

n n

T
+3CSL2TE f 08T, ) — (- 1) (5.11)
t
Multiplying both sides (5.11) to e, we derive that

2 -~ 2 1 2 1
S WENUN (-, 1) = uM G, D)l S3CR62“”N(6211 + ?Ilpllgm) + 3C562(’”N(62n + FII&II%)

+3CsL2TE f ' | TV, 1) — (1) d.
‘
Gronwall’s inequality leads to
S WENUV (1) - uM (., DI,
< P TR[3Ck(En+ —loll ) + 3Cs(@n + Il )T a2)

n n

Step 2. To evaluate the remining term, we define the truncation version of the solution u as following

T
XN (x, 1) = RY(T - Hp(x) — SM(T - Hé(x) + f SN(r - HF (x, T, u)dr.
Then, we have

1) = uC, Dlige < 20 ¢, 1) = x3d C 0l + 2l G0 = ul Dl (5.13)

Sub-step 1.1. By Hoder’s inequality, Lemma 5.1 and the Lipschitz property of #, we have

T
f SV(r = (F (x, 1, u™) - Fx,1, u))dTH;

N N 2
1) = X Dl = |
T 2
<T f CSCZ(t(T—t)/lN
t

T
< GsL’TE f IV (1) - u, || dr. (5.14)
t

Fe,nu")-F(, 1, bt)H;dT

Since u € C([0,T]; G»2), then

(o8]

YD =Dl = ) 0,0, <eA2 N (-, 1), ¢,)?

p=N+1 p=N+1

AIMS Mathematics Volume 7, Issue 7, 12620-12634.
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Dty -2
< e VAN, Ol 0,71:600)- (5.15)

Substituting (5.14) and (5.15) into (5.13), we have
V(- 0) = u-, DI, <2CsL*TE f ' 2 NV (-, 7) - u(, T)”;d‘l' + 2672 12Ul 210,716, n)-
t
Multiplying both sides above formula to ¥, we have
2 N (-, 1) — u(-, )|, < 2CsLPTE f ' [ (-, 7) = e, D[ A7 + 202l 0716
'

Using Gronwall’s inequality, we obtain
20122 2 -2 2CsL2T(T-
WV (1) = u, Ol < (247l or6, ) )T, (5.16)

The proof is completed by combining (5.10), (5.12) and (5.16). O
6. Numerical experiments

We propose the general scheme of our numerical calculation. For simplicity, we fix 7 = 1 and
Q = (0,m). The eigenelements of the Dirichlet problem for the Laplacian in Q have the following
form:

2
p = \/jsin(px), /11, = pz, fOI'p =1,2,...
T

6.1. General numerical scheme

To find a numerical solution to Eq (5.2), we first need to define a set of Nx X Nt grid points in the
domain Q X [0,T]. Let Ax = n/Nx is the time step, A = 1/Nt is the spatial step, the coordinates
of the mesh points are x; = jAx, j = 0,...,Nx, and t; = iAt, i = 0,...,Nt, and the values of the
regularized solution v (x, 1) at these grid points are v (xj, 1) = (7,- i» where we denote ﬁij by the
numerical estimate of the regularized solution uv (x, 1) of at the point (x;, ;).

Initialization step. The numerical process starts when time ¢t = 7'. Since uvN (x,T) = RY(0)p¢, then

N N
Uniy ~ UM T) = D (55 00006 = D 405 0p)0p(x), j=1,...,Nx. (6.1)

p=1 p=1

Iteration steps. For ¢; < T, we want to determine

T
UN(x,1;) = RN(T — 1)p — SV(T - 1,)é + f SV(r — t)F(UM)(7)dr, (6.2)

I(z)
where I(#;) is performed in backward time as following

N T o=k} _ o(t=1)k,

1(1;) =
(1) ;[ &
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@p(x)
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N N J(o-1)k (T=1)k,
e r—e b 7
- [ Z f Fo(UN(tr1)dT |, (x).
=

1 k=i Yk \/A_p

It is worth pointing out that, the Simpson’s rule leads to the approximation

Nx
FoU)&) = (FON 1), ) ~ % DGl F @ o 1) an)
h=1

where
1, ifh=0o0rh = Nx,
C,=142, ifh#0,h+# Nxand his odd,
4, ifh#0,h # Nxand h is even.

Error estimation. We use the absolute error estimation between the regularized solution and the exact

solution as follows 12

Nx
Err(s) = ) = T || 6.3)
=0

Nx+1

6.2. Test case
In this example, we fixed & = 0.3, 8 = 0.01 and present the inputs

p(x) =e?sinx+e 'sin2x; &(x) = —2e>sinx — e !sin2x,

1

o where

and source data ¥ (x, t,u) = f(x,t) +

4 -2a+p) (e‘% sin x + e ¥ sin x sin® 2x + e~ sin’ x + 2e sin” x sin 2x)

fxn =

1 + e 2 sin® 2x + e~# sin? x + 2e~3 sin x sin 2x
(1 - 16a + 16f) (e™sin 2x + e~ sin® 2x + e~ sin x sin 2x + 2¢™ sin x sin” 2x)

+
1 + e~2sin® 2x + e~# sin® x + 2e~3' sin x sin 2.x

It is easy to check that the exact solution of Problem (1.1)—(1.3) is given by u(x,t) = e™sin2x +

e 2 sin x.

e=1E - 03

o
—
[\
w
o
—
[\
w
o 4
—
[\
w

I pvé‘ -t 5:17 5751

Figure 1. Comparison between: p and p¢; & andgg (n = 100).
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(a) (b)

15
B\ Lo [, .
0.5
0.0
0 0
=) 1.0
o, 0.5
2 . o0 V¢ 2 5 o0 V¢

xT

0 2 0 2 0 2

—— The exact solution »  The regularized solution

Figure 3. Comparison between regularized solution and exact solution.

Figure 1 compares p(x), £(x) with their estimates p¢(x), E;(x), respectively. When € tends to 0, the
estimates are consistent with that of the exact ones. Figure 2 presents a 3D graph of the exact solution
u and the regularized solution for the case € = 1E — 03. Figure 3 displays the numerical convergence
for different values of € and t.

Table 1 shows the values of Err(¢) from (6.3) calculated numerically. As a conclusion, our proposed
regularization method works properly and the numerical solution method is also feasible in practice.

AIMS Mathematics Volume 7, Issue 7, 12620-12634.
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Table 1. Errors between regularized solution and exact solution for ¢ = le; %; %.

€ Err(;) Err(3) Err(3)

5E - 01 1.071213E + 00 2.464307E - 01 1.124781E — 01

1E - 01 3.161161E — 02 5.976654E — 03 2.063242E — 03

1E -02 1.143085E — 04 1.761839E — 05 4.912298E — 05

1E-03 5.851911E - 06 2.820096E — 07 2.488333E - 10
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