Opuscula Math. 42, no. 6 (2022), 849-865
https: //doi.org/10.7494/OpMath.2022.42.6.849 OPUSCULA MATHEMATICA

ON OSCILLATORY BEHAVIOUR OF
THIRD-ORDER HALF-LINEAR DYNAMIC EQUATIONS
ON TIME SCALES

Said R. Grace and Gokula Nanda Chhatria

Communicated by Josef Diblik

Abstract. In this work, we study the oscillation and asymptotic behaviour of
third-order nonlinear dynamic equations on time scales. The findings are obtained
using an integral criterion as well as a comparison theorem with the oscillatory
properties of a first-order dynamic equation. As a consequence, we give conditions
which guarantee that all solutions to the aforementioned problem are only oscillatory,
different from any other result in the literature. We propose novel oscillation criteria
that improve, extend, and simplify existing ones in the literature. The results are
associated with a numerical example. We point out that the results are new even for
the case T=R or T = Z.

Keywords: oscillation, asymptotic behaviour, dynamic equation on time scales,
comparison method, Riccati technique.

Mathematics Subject Classification: 34C10, 34K11, 34N05, 39A10.

1. INTRODUCTION

This paper is concerned with oscillatory behaviour of all solutions of the half-linear
third-order dynamic equations of the form

(r() (@20)") " + gt (i) =0, (1)

where supT = oo, ¢ € [tg,00)r = [to,00) N T with ¢y € T. A solution of (1.1) is
a function z(t) continuous on [T,,00), T, > to, which satisfies (1.1) on [T}, c0)T.
Solutions vanishing identically in some neighbourhood of infinity will be excluded from
our consideration. Such a solution is said to be oscillatory if it is neither eventually
positive nor eventually negative, and to be nonoscillatory otherwise.
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Throughout the remaining part of the paper, we always assume that:

(A1) «is a quotient of positive odd integers, o > 1,
(A2) r(t) and q(¢t) € Crq ([to, 00)T, Ry) and ¢(t) Z£ 0,
(A3) w € Crq([to,0)T, T) such that w(t) < ¢ and lim;, o w(t) = oo.

For r(t) € Crq ([to,00)T,Ry4), we let

v t

R(v,u) :/TI/AO;ZS) and  R(t,to) :/%—)ooast%oo. (1.2)

u to

There are numerous applications of nonlinear differential/difference equations
in science and engineering to understand natural and physical phenomena. This
can only be accomplished by establishing a theory before its experimental veri-
fication. A third-order delay differential/difference equation can also be used to
model a wide range of applications, including control systems, boundary layer theory,
radio technology, electrodynamics, neural networks, and population models (see, e.g.,
[3,29,38,39,42]). In addition to these, there are some natural mechanisms that occur
both over a continuous and over a discrete time period, see, for example, [7]. So, it is
more realistic to model a physical process that incorporates both continuous and
discrete times. The idea of time-scale calculus, developed by Hilger [28] in 1990, allows
the theory of differential equations and difference equations to be unified. Due to this,
we are mainly focusing on studying dynamic equations on time scales in order to have
a comprehensive analysis of the dynamical systems. We suggest the reader consult the
works of Bohner and Peterson [1,9,10] for more information on the theory of dynamic
equations on time scales and its applications, as well as basic concepts and notations.

The study of qualitative outcomes, notably oscillatory behaviours of dynamic
equations on time scales, has been highly popular over the past few years, see, for
example, [4-6,8,11-14,18-26,37,44]. In particular, Erbe et al. [15] initiated the study
of third-order dynamic equations on time scales of the form:

(c()(r)a™(1)2)> + a(t)F(z(t) =0, (1.3)

where ¢, r,q € Crq(tg,00)r, F € C(R,R) such that F(u)/u > M > 0, zF(x) > 0 for
all x # 0. Upon using the Riccati transformation technique, they found some sufficient
conditions such that every solution of (1.3) is oscillatory or converges to zero. In this
context, one can figure out that many scholars have studied various generalizations
of third-order dynamic equations and improved the oscillation conditions by using
different methods such as the Riccati transformation technique, integral averaging
method, comparison method, and inequality technique, see [16,17,34-36,41,43,45]
and references cited therein.

Inspired by the above discussion, the objective of this work is to find new improved
conditions for the oscillation of (1.1) via the Riccati transformation technique as well
as comparison with the oscillatory behaviour of first-order dynamic equations.
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2. SOME LEMMAS

Lemma 2.1 ([22]). Let g € Cra([to, 00)1,Ry), g € Cral[to, o0)T, T) such that g(t) <t
and g(t) = 0o ast — oo. The associated delay dynamic equation (i.e., g(t) < t)

WA(L) +q(t)W(9(1))) = 0
has an eventually positive solution if the first-order delay inequality
WA(E) + q(t)W(9(1)) <0

does.

Next, we present the following preliminary lemmas to obtain the sign properties of
possible nonoscillatory solutions of Eq. (1.1).

Lemma 2.2. Let (A1)—(4s) and (1.2) hold. Then the equation (1.1) has no eventually
positive solution satisfying x(t) > 0 and x22(t) < 0 eventually.

Proof. Let x(t) be a nonoscillatory solution of (1.1) such that z(¢t) > 0, z(w(t)) >0
for t > t; > to. Since 222 (t) < 0 for t > t, then we can find a constant ¢ > 0 and
ty € [t1,00)r such that (7(t)(z22(t))* < —c < 0 for t > t, or

where ¢ = r(ty)w®? (t). Integrating the preceding inequality from t5 to ¢, we obtain

20 < e - [ s

An application of condition (1.2) gives 2 (t) — —oo as t — co. Therefore, there exists
ts € [t2,00)r such that
() < 2%(t3) <0,

which on integration form t3 to ¢ yields lim;_, o 2(t) = —o0, a contradiction to the fact
that z(¢) > 0. O

Lemma 2.3. Let (A1)—(A43) and (1.2) hold. If the delay equation

w(t) «a
WA(t) + ;( / R(s,tﬂAs) gEW(w(t)) =0 (2.1)

is oscillatory, then (1.1) has no eventually positive solution satisfying x(t) > 0,
z2(t) > 0 and 222 (t) > 0 eventually.
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Proof. Suppose that z(t) is a nonoscillatory solution of (1.1) such that xz(t) > 0,
x(w(t)) > 0 for t > t; > tq satisfying 2 (¢) > 0 and 222 (¢) > 0 for ¢ > t,. From (1.1),
we see that

r(t)(@32 () = (K ()22 (1)
Taking A-derivative of the above inequality, we get
[r(6) (@22(6)°1% = [(rV*(£)a?2 (1))
> a(rt/e (a2 () (e ()22 (1),
Using (2.2) in Eq. (1.1), we have

(r/ e ()2 (1)> + é(Tl/“(t)mAA(t))1*°‘Q(t)x°‘(w(t)) <0. (2.2)

Indeed,

s iy [T e aagy [ L AL
2 t) = a*(0) = | gy Az e (t)/rl/a(s)A,

t1 t1

which implies that
2B(t) > Rt 1) (rY )z (1)).

Integrating this inequality from ¢; to ¢, one can easily get

xz(t) > z(t) —z(ty) > /’R(s,tl)(rl/o‘(s)xAA(s))As

t1

implies that

z(t) > (r/e )zt (1) / R(s,t1)As.

As a result,

w(t)
2(w(t) = (M (w(t)a® (w(1))) / R(s,t1)As. (2.3)

t1
Since the function /()24 (t) is nonincreasing and a > 1, then we have

(r/ (@2 ()7 > (rV (w(t) 22 (@ (1)) 0 (2.4)
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Using (2.3) and (2.4) in (2.2), we get
1

(07

[P/ (a2 (0] < —— (a2 () g8 (w(1))

w(t)

< ()t w0) ) | [ Ristas

(e

x (! (w(t)z (w(1)))*

w(t)

= — a0 / Ris t)As [t/ (w(t)a® (w(t),

[0

Setting W(t) = r1/*(t)x?2(t), in the last inequality, we have

(63

w(t)
WA(t) + é / R(s,t1)As | q(t)W(w(t)) <O0.

It follows from Lemma 2.4 that the corresponding dynamic equation (2.1) also has
a positive solution, which is a contradiction. O

Lemma 2.4. Let (A1)—(A3) and (1.2) hold. Assume that there exists a nondecreasing
function n(t) € Crq([to, 00)r, R) such that

n(t) >t nwt) >w) and n(nw(t))) <t (2.5)

If the delay equation

X0+ o) | [ ROe).9)As | X)) =0 (26)

is oscillatory, then (1.1) has no eventually positive solution satisfying x(t) > 0,
z2(t) < 0 and 222 (t) > 0 eventually.

Proof. Suppose that z(t) is a nonoscillatory solution of (1.1) such that xz(t) > 0,
z(w(t)) > 0 for t > t; >ty satisfying 2 (¢) < 0 and 222 (¢) > 0 for t > t5. Clearly,

n(t)rl/a S DA (g
2 (n(t)) - (t) = 7“(1/)‘1(8)()A8
n(t) 1
>T1/a(n(t)>xAA(77(t))/Tl/a(S)AS,
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which implies that
—z2(t) = Rn(t), )(r/* (n(t)a>> (n(t))).
Integrating the last inequality from ¢ to n(t), we obtain

n(t)
z(t) = x(t) — 2(n(t) = /(7"1/“(U(S))xM(n(S)))R(U(S),S)AS

As a result,

Using (2.7) in (2.2), we get

[P/ (a8 ()]

(0%

n(w(t)) “
+1(7“1/“(n(n(w(t))))xM(n(n(w(t)))))l“( / R(n(S),S)AS)

X q(t)(r/* (n(n(w())) 22 (n(n(w(t))))* <0,

that is,

n(w(t)) “
[Tl/“(t)wM(t)]AJrl( / R(n(s%s)As) q(t)

o
w(t)

x (Y (n(n(w())a>2 (n(n(w(1))))) < 0.
Setting X (t) = /@ (t)222(t), in the last inequality, we have

n(w(t) “
XA(tH;q(t)( / R(n(s),S)A«?) X(n(n(w(t)))) < 0.

2.7)

It follows from Lemma 2.4 that the corresponding dynamic equation (2.6) also has

a positive solution, which is a contradiction.

O
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Lemma 2.5. Let (A1)—(43) and (1.2) hold. If

[e3

t w(l)
limsup/q(l) /R(w(l),s)As Al > 1, (2.8)

t—o0

w(t) w(s)

then (1.1) has no eventually positive solution satisfying x(t) > 0, 2®(t) < 0 and
28 (t) > 0 eventually.

Proof. Suppose that z(t) is a nonoscillatory solution of (1.1) such that z(t) > 0,
z(w(t)) > 0 for t > t; > to satisfying 22 (¢) < 0 and 222(t) > 0 for ¢t > t5. Clearly,
for v > wu,

[ ri/o(s)zPB (s
2 (v) — 2% (u) = / 7"(1/)6‘(5)()A8

> 7‘1/‘3“(1))95AA (v) /

u

1
—A
ri/e(s) s

As a result,
—z®(u) = R(v, u) (r/ ()22 (v)),

which for v > u > t; is equivalent to
z(u) > x(u) —z(v) > (rl/“(v)xAA(v)) /R(U,S)As.

For ¢t > s > to for some ty > t1, setting v = w(s) and v = w(¢) in the preceding
inequality gives

w(w(s)) = (1 (w(t)z®2 (w(1)) / R(w(t), 5)As. (2.9)

Upon integrating (1.1) from w(¢) to ¢, we have

1/ (w(t))a®2 (w(t))

> 71/ wl)e 2 (w(0) 000 2 [ als)a(w(s)a
w(t)

t w(l) ¢

> ()t @0) [ a0 | [ Reo.98s | A
w(t) w(s)
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which implies that

t w(l @

)
/ o) / Rw(l), s)As | Al<1,
w(t) w(s)
a contradiction to (2.9). O
Lemma 2.6. Let (A1)—(As) and (1.2) hold. Assume that equation (1.1) has eventually

positive solution satisfying x(t) > 0, z®(t) < 0 and z2*(t) > 0 eventually. If one of
the following condition

761(8) = o, (2.10)
77 % /Ooq(s) : AvAu = 00 (2.11)

hold, then lim;_, o x(t) =

Proof. Indeed, lim;_,o, 2:(t) = £ > 0 for t > t; for some t; > tg. We assert that £ = 0.
If not, then we can find ¢y > t; such that x(¢) > £ > 0 and hence x(w(t)) > L* for
t > to. The rest of the proof follows from the proof of [35, Lemma 2.4]. This completes
the proof. O

3. OSCILLATION RESULTS

We are ready to present our novel comparison theorem, which reduces the oscillation
problem of third-order nonlinear dynamic equations (1.1) to a set of first-order linear
delay dynamic equations. The assumption of the existence of a positive solution in
equation (1.1) leads to a contradiction because the proof for the opposite case is
similar.

Theorem 3.1. Let (A1)—(As) and (1.2) hold. Assume that there exist nondecreasing
function n(t) € Cra([to, o0), R) such that (2.5) holds. If the first-order delay dynamic
equations

w(t) “

20+ 2a) | [ Risss | ) =0

and
) n(w(t))
WA(t)JraQ(t) / R(n(s),s)As [ W(n(n(w(t)))) =0
w(t)

are oscillatory for t > t1 > tg, then every solution of equation (1.1) is oscillatory.
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Proof. On the contrary, assume that x(t) is a nonoscillatory solution of (1.1) such
that z(t), and x(w(t)) positive eventually for ¢ > t; > to. It follows from (1.1) that

(r() (@2 ()" = —q()2*(w(t)) <0. (3.1)

Hence 7(t)(z®?(t))® is nonincreasing and is of one sign. That is, there exists a ty > t;
such that 22 (t) > 0 or, 244(¢) < 0 for t > t5. We shall distinguish the following
cases:

Case I. 22(t) > 0, 222(t) > 0. Following the line of proof of Lemma 2.3, we obtain
the desired conclusion.

Case II. (22 (t) < 0, 222(t) > 0). Following the line of proof of Lemma 2.4, we obtain
the desired conclusion.

This completes the proof of the theorem. O

Applying known oscillation criteria to first-order dynamic equations, one can obtain
sufficient conditions for oscillation of (1.1). In particular, on the basis of [2, Theorem 1]
and Theorem 3.1, the following corollary is immediate.

Corollary 3.2. Let (A1)—(As) and (1.2) hold. Assume that there exists nondecreasing
function n(t) € Cra([to, o0)r, R) such that (2.5) holds. If

t w(u) @
litm inf | q(u) < / R(s,tﬂAs) Au=o00 fort>t, (3.2)
—00
w(t) t1
and
t n(w(u)) o
lim inf q(u)< R(n(s),s)As> Au > % (3.3)

n(n(w(t))) w(u)
then every solution of equation (1.1) is oscillatory.
The following example is illustrative.

Example 3.3. For T = R, consider the third-order differential equation

<t13 (x"(t))g)/ + tggx?’ <;) =0, t > to, (3.4)

where a = 3, 7(t) = %, w(t) = £, and ¢(t) = & with a constant C' > 0. We let
n(t) = 2t, then n(w(t)) = % and n(n(w(t))) = & Now R(t,s) = & — < for t > s > ;.
A straightforward verification shows that all conditions of Corollary 3.2 are satisfied for

certain appropriate value of the constant C' > 0 and conclude that (3.4) is oscillatory.

Next, we have the following comparison result with third-order linear dynamic
inequalities.
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Theorem 3.4. Let (A1)—(A43) and (1.2) hold. Assume that there exists nondecreasing
function n(t) € Cra([to, o0)r, R) such that (2.5) holds. If the inequality

w(t) a—1
(r/ () YA2(0) ( / R(s,t1)A ) q(t)Y(w(t)) <0 (3:5)

has no eventually positive nondecreasing solution for t >ty > tg and the inequality

n(w(t) a—1
1( / R(n(s»sms) JOW) <0 (3.6)

(/o (WA @) + &
w(t)

has no eventually positive nonincreasing solution, then equation (1.1) is oscillatory.

Proof. On the contrary, assume that x(t) is a nonoscillatory solution of (1.1) such that
x(t), and x(w(t)) are positive eventually for ¢t > t; > to. Proceeding as in the proof of
Theorem 3.1, we obtain the two cases I and 11, and the inequalities (2.3) and (2.7).

Case I. From (2.3), we can easily see that

—1
o) zAB () < r(w(t))z? ) < (/Rs t1)A ) z(w(t)),

and so
w(t)

(rY o)A () > (/R(s,tl)As> 2 (w(t)).

Using the last inequality in (2.2), we obtain

(r/o ()28 (1) (/Rs A ) ()7 (w (1)) (w(t)) < 0,

or
a—1
(e () (1 ( / R(s,1)A ) g(D)(w(t)) < 0.
By condition (3.5), we arrive at the desired contradiction.

Case II. From (2.7) we find that

-1

n(w()
m(w(t))( / R(n<8)7S>AS> > (n(n(w () Y22 (n(n(w(t))))-
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Using this inequality in (2.2), we get

n(w(t)) a—1
<r1/a<t>xM<t>>A+;< / R(n(s»s)As) (B~ (w(0)" (1)) < 0,

or,
n(w(t))

(r/ (@) ()™ + é ( R(n(s), 8)A8> q(t)z(w(t)) <0.

t
By (2.5), we arrived at the desired contradiction. This completes the proof. O

Next, we present the following interesting criterion for the oscillatory and asymptotic
behaviour of equation (1.1). For this, we let

Theorem 3.5. Let (A1)—(A43) and (1.2) hold. Assume that there exist nondecreasing
function n(t), ®(t) € Cra([to, o), R) such that (2.5) holds and w™ > 0. If (2.11) and

| (85(5))” _
h?isogp/ [@(S)Q(s) — 4<I>(s)wA(s)R(w(s),t1)} As =00 (3.7)

ty

hold fort >ty for some t1 > to, then every solution x(t) of equation (1.1) is oscillatory
or converges to zero.

Proof. Let z(t) be a nonoscillatory solution of (1.1) such that z(¢) > 0 with
lim; 00 2(t) > 0, and z(w(t)) > 0 for t > t; > ty. Proceeding as in the proof of
Theorem 3.1, we obtain the two cases I and II, and the inequalities (2.3) and (2.7).

Case I. Define the function V(¢) b

e,
YO = =)

Then, V(t) > 0 and applying (3.5), we get

A(f) = (P ()22 (¢ o(t
VA(®) = (/1) [x(w(t)}

for t > tq.

z(w(t)) — @)z (w(t))
z(w(t))z(w(o(t)))

. sy 0)5 2 o(0)
</ Rl 13 ) D+ ) ole®))

+ 7,,1/oz(

rl/aa (o
- oy o) o

z(w(t )) (w(a(®))) ’
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which implies that

®2(t)
@(o (1))
If o(t) > ¢, then by [10, Theorem 1.14] we have

z(w(o(t) —z(w®) _ zw(o(t) —2(Wt) A s a0
o'(t) —t - W(U(t)) _ w(t) (t) > (5) (t)v
(3.9)

where £ € [w(t),w(o(t))). If o(t) = t, then we have w(o(t)) = o(w(t)) = w(t) and
(z(w(®))> = 2" (wt)w'(t). (3.10)
Using (3.9) and (3.10) in (3.8), we get

VA(t) < —2(1)Q(t) +

(2(w(®))® =

Using the fact that w(t) and x(t) is nondecreasing, we have z(w(o(t))) > z(w(t)).
Therefore,

P/ (o (1)) (o (1)) (&)
2@E0)

sy O, 22(©)

3oy DT wmmy Y O e s e )

z2(€) = 2% (w(t)).
Using this in the last inequality, we get

(1) (LW (1), 2 (w(t))

A _ A o — o .
VA() < (I)(t)Q(t)'i-q)(o_(t)) (o(2)) 2o (1)) Vi (t))rl/a(o—(t))xAA(o(t))

) (P (w(t)x®? (w(t))), then using the fact that
o(t) >t > w(t) and r¥/(t)x*A(t) is nonincrasing for ¢t > t1, we get

or
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Therefore,
VA0 < ~0(10(0) + mr v (o)) - LOL DRy,
Hence,
VA0 < 000 + ar VA o) - GV elt), (11
where P(t) = ®(t)w™ (t)R(w(t),t1). On simplification (3.11) yields
v < ~aen + T POy ) 0 (i -1 2
implies that
(@2(1)?

t1

Case II. This case follows from the proof of Lemma 2.6.

This completes the proof. O

Following Theorem 3.5 and Lemma 2.5, finally, we present the following interesting
criterion for the oscillatory behaviour of Eq. (1.1).

Theorem 3.6. Let (A1)—(A3) and (1.2) hold. Assume that there exist nondecreasing
function n(t), ®(t) € Crq([to, o0)T, R) such that (2.5) holds and w™ > 0. If (2.8) and
(3.7) hold, then every solution x(t) of equation (1.1) is oscillatory.

Remark 3.7.

(1) Theorem 2.5 of [30] by Han et al. guarantees that every solution z(¢) of (1.1) with
r(t) =1 is either oscillatory or satisfies lim;_, o x(t) exists. However, Theorem 3.6
we obtained ensures that all solutions of (1.1) are oscillatory only, which means
that our results improve or generalise those in [30].

(2) A similar observation can be made for [35, Theorem 2.1] by Li et al.

(3) Finally, the results reported in [45, Theorem 2.1] by Yu and Wang is not applicable
to Eq. (3.4).
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4. CONCLUSION

This research successfully establishes new results concerning the oscillation of Eq. (1.1).
To prove the main theorem, we developed a novel technique based on a simple inequality
and certain comparative results. As an application of the main results, Corollary 3.2
as well as an example have been provided to demonstrate the validity and relevance
of our findings. It is hoped that the four new lemmas proved here will have future
applications in the field of oscillation theory. Because there are numerous results in
the literature on the oscillation of first-order dynamic equations, several conditions
for the oscillation of equation (1.1) might be formulated based on the findings of this
article. Finally, we propose the following possible next directions for this research.

1. When n > 3 is an odd natural integer, it will be interesting to investigate Eq. (1.1).
2. Tt will be interesting to investigate Eq. (1.1) in the context of condition

t

As
R*(t,tg) = | —— < o0 as t— oo.
( 0) / rla (S)
to
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