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Abstract. In this paper we examine boundedness of fractional maximal operator. The main
focus is on commutators and maximal commutators on generalized Orlicz spaces (also known
as Musielak–Orlicz spaces) for fractional maximal functions and Riesz potentials. We prove
their boundedness between generalized Orlicz spaces and give a characterization for functions
of bounded mean oscillation.
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1. INTRODUCTION

The Hardy–Littlewood maximal operator is one of the most central operators in
modern harmonic analysis and theory of partial differential equations. The aim of
this paper is to show boundedness result for fractional maximal operators and their
commutator variants in generalized Orlicz spaces (also known as Musielak–Orlicz
spaces), such as

∥[M, b]f∥Lψ(Rn) ⩽ C∥f∥Lφ(Rn)

where M is a (fractional) maximal function and b belongs to space of bounded
mean oscillation BMO(Rn) (see Section 2). These type of boundedness properties for
commutators have been applied to partial differential equations with discontinuous
coefficients to obtain existence and regularity results of solutions, see for instance
[6,20]. On the other hand, a systematic study of various variational integrals or partial
differential equations under non-standard growth conditions has often started by
proving boundedness of the maximal operator in a related function space, see for
instance [10,14,23].
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Generalized Orlicz spaces (also known as Musielak–Orlicz spaces) started to gain
attraction in study of variational integrals and partial differential equations over the
previous decade, see for example [7, 8, 13, 23, 29]. These Lφ-spaces include many of the
widely studied frameworks under (non-)uniformly elliptic problems such as standard
Lp-spaces for φ(x, t) = tp, Orlicz-spaces for φ(x, t) = φ(t), variable exponent spaces
for φ(x, t) = tp(x) and double phase spaces for φ(x, t) = tp+a(x)tq. They all fall under
the framework of so-called (p, q)-growth conditions dating back to Marcellini [28], see
also [17]. Developing theory in this general setting allows us to capture many delicate
phenomena not present in Lp-scale and describe them with improved accuracy using
assumptions intrinsic to the problem at hand.

The fractional variant of the maximal function introduced in [30] and its bound-
edness properties have also been intensively studied. This version is also related to
fractional integrals such as the Riesz potential. Cianchi [9] first proved necessary
and sufficient conditions for boundedness of fractional maximal operator between
different Orlicz spaces. See also recent work of Musil [31]. In these articles, the
condition between Orlicz functions was described by a concept of domination. In [18]
this condition was proven to be equivalent to presentation used also in this article, i.e.,
a relation between the inverses of the (generalized) Orlicz functions. The boundedness
results have also been investigated in the variable exponent case, see [5, 27]. The
relation between inverses and structural assumptions of the generalized Orlicz function
φ required for the boundedness of the maximal function are collected in the following.
Assumptions 1.1. Let 1 < p ⩽ q < ∞, α

n = 1
p − 1

q and φ,ψ ∈ Φw(Rn) be such that

φ−1(x, t) ≈ t
α
nψ−1(x, t). (1.1)

Let r ∈ (αn ,
1
p ]. Assume that φ satisfies (A0), (A1), (A2), (aInc)p and (aDec)1/r.

Assumptions on φ are explained in Section 2. They are widely used in the functional
analysis of the generalised Orlicz spaces and the calculus of variations under general
growth conditions. See [22] for discussion on their consequences. Note that the as-
sumptions on φ guarantee the existence of described ψ, see [22, Lemma 5.2.3]. We
could also state the assumptions starting from ψ satisfying (A0), (A1), (A2), (aInc)q
and (aDec)1/(r−α/n).

In this paper we study boundedness of fractional operators and their commutator
variants in the generalized Orlicz spaces. We prove that similar structural assumptions
required for boundedness of Hardy–Littlewood maximal operator in generalized Orlicz
spaces also imply boundedness of the fractional variant. For definitions of operators
Mα, Mb,α, [Mα, b], Iα, Ib,α and [Iα, b] see Section 2. Our first result reads as follows.
Theorem 1.2. Under Assumptions 1.1 the fractional maximal operator
Mα : Lφ(Rn) → Lψ(Rn) is bounded.

The proof of this result is direct and does not involve extrapolation arguments.
We present it in Section 3. Theorem 1.2 is closely related to the boundedness of the
Riesz potential, which has already been studied in [21]. Here we work in a slightly
different framework for defining the target space and record that these results do not
require the generating Φ-functions to be N -functions.
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We are in the position to pass to a widely studied topic in the harmonic analysis,
that is a boundedness of commutators [T, b]f = T (bf) − bTf of various operators
T and functions b. One of the most influential paper regarding commutators in
harmonic analysis is due to Coifman, Rochberg and Weiss [11]. They showed that
∥[T, b]f∥Lp(Rn) ⩽ C∥b∥∗∥f∥Lp(Rn), where ∥ · ∥∗ is the BMO-seminorm (see Section 2).
Additionally, they gave a characterization of the space BMO(Rn) in terms of bounded-
ness of commutator [T, b] in Lp(Rn) when T is a Calderón–Zygmund singular integral
operator. Similar characterization of Lipschitz spaces was given by Janson [26]: [T, b]
is bounded from Lp(Rn) to Lq(Rn), where 1 < p < q < ∞ if and only if b ∈ Λβ and
β = n

(
1
p − 1

q

)
. These types of commutator boundedness results have also been used

successfully for research regarding products of functions from real Hardy space H1(Rn)
and BMO(Rn) [4] and giving new characterization of other well known function spaces
such as Campanato spaces [33].

When the operator is a maximal function instead of the Calderón–Zygmund
operator, the boundedness of commutators was studied in [3] and for fractional
maximal function in [35]. These results have had their generalizations from standard
Lp-spaces to their non-standard counterparts such as the variable exponent Lebesgue
and Orlicz spaces [18,36,37] and more refined Morrey type spaces [2, 19]. To achieve
these results in the generalized Orlicz spaces, we first study commutators related to
the Riesz potential in Section 4 with the help of the sharp maximal function.

Theorem 1.3. Under Assumptions 1.1, we have:

1. ∥[Iα, b]f∥Lψ(Rn) ⩽ C∥b∥∗∥f∥Lφ(Rn),
2. ∥Ib,αf∥Lψ(Rn) ⩽ C∥b∥∗∥f∥Lφ(Rn)

for every f ∈ Lφ(Rn) and b ∈ BMO(Rn).

Theorem 1.4. Under Assumptions 1.1, the operator Mb,α : Lφ(Rn) → Lψ(Rn) is
bounded and

∥Mb,αf∥ψ ⩽ C∥b∥∗∥f∥φ
if and only if b ∈ BMO(Rn).

We use the boundedness results from the two theorems above to give a characteri-
zation for functions of bounded mean oscillation BMO(Rn).

Theorem 1.5. Suppose Assumptions 1.1 hold and b ∈ L1
loc(Rn). Then the following

are equivalent:

1. b ∈ BMO(Rn) and b− ∈ L∞(Rn),
2. the commutator [Mα, b] : Lφ(Rn) → Lψ(Rn) is bounded,
3. we have

sup
Q

∥(b− |Q|−α/nMα,Qb)χQ∥Lη(Rn)

∥χQ∥Lη(Rn)
< ∞ (1.2)

for some η ∈ Φw(Rn) for which M : Lη(Rn) → Lη(Rn) is bounded,
4. condition (1.2) holds for all η ∈ Φw(Rn) satisfying (A0), (A1), (A2), (aInc)

and (aDec).
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To our best knowledge Theorems 1.3-1.5 are new already in many of the special cases
such as double phase and its variants.

Due to the structure of the generalized Orlicz spaces, the connection between
boundedness of the maximal operator in a generalized Orlicz space and its dual space
is not yet fully understood and therefore not possible to utilize here. For this reason,
we are forced to state our assumptions in a technical way given in Definition 2.3
instead of just the boundedness of the maximal function. However, some partial results
to alleviate this have been obtained in [15]. Additionally, the assumption linking the
domain and target space is known to be sharp in Orlicz spaces, but the non-autonomous
nature of generalized Orlicz spaces leaves this as an open question. To the best of our
knowledge, this is the case already in variable exponent spaces.

2. PRELIMINARIES

By L-almost increasing we mean that a function satisfies the inequality f(s) ⩽ Lf(t)
for all s < t and some constant L ⩾ 1 and L-almost decreasing is defined analogously.
If there exists a constant C such that f(x) ⩽ Cg(x) for almost every x, then we write
f ≲ g. Additionally, we write f ≈ g if f ≲ g ≲ f holds and the constant C may
vary from line to line. In the case of a measurable set A, we denote its characteristic
function by χA and its Lebesgue measure by |A|. By

ffl
A
f(x) dx we denote the integral

average 1
|A|

´
A
f(x) dx. We reserve Q to mean any cube in Rn with sides parallel to

coordinate axes and specify it to have a center x and side-length 2r, denoted as Q(x, r),
when needed. By p′ we mean the Hölder conjugate p

p−1 of p.

2.1. GENERALIZED Φ-FUNCTIONS

Definition 2.1. We say that φ : Rn × [0,∞) → [0,∞] is a weak Φ-function, and write
φ ∈ Φw(Rn), if the following conditions hold:

– for any function f : Rn → R the function x 7→ φ(x, |f(x)|) is measurable and for
every x ∈ Rn the function t 7→ φ(x, t) is non-decreasing,

– φ(x, 0) = lim
t→0+

φ(x, t) = 0 and lim
t→∞

φ(x, t) = ∞ for every x ∈ Rn,

– t 7→ φ(x,t)
t is L-almost increasing with L independent of x.

If φ ∈ Φw(Rn) and additionally t 7→ φ(x, t) is convex and left-continuous for almost
every x, then φ is a convex Φ-function, and we write φ ∈ Φc(Rn). If φ ∈ Φw(Rn) and
additionally t 7→ φ(x, t) is convex and continuous in the topology of [0,∞] for almost
every x, then φ is a strong Φ-function, and we write φ ∈ Φs(Rn). If φ does not depend
on the x variable, i.e. is an Orlicz function, we denote φ ∈ Φw.

A function φ ∈ Φc(Rn) is called N -function if for almost every x we have φ(x, t) ∈
(0,∞) for all t > 0, limt→0+

φ(x,t)
t = 0 and limt→∞

φ(x,t)
t = ∞. If φ is an N -function,

then t 7→ φ(x, t) is continuous for almost every x ∈ Rn, since it is finite and convex,
and thus a strong Φ-function.
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Two functions φ and ψ are equivalent, φ ≃ ψ, if there exists L ⩾ 1 such that
ψ
(
x, tL

)
⩽ φ(x, t) ⩽ ψ(x, Lt) for every x ∈ Rn and every t > 0. We say two functions

φ and ψ are weakly equivalent, φ ∼ ψ, if there exist L ⩾ 1 and h ∈ L1(Rn) such that
ψ(x, t) ⩽ φ(x, Lt) + h(x) and φ(x, t) ⩽ ψ(x, Lt) + h(x) for all t ⩾ 0 and almost all
x ∈ Rn. Weakly equivalent Φ-functions give rise to the same space with comparable
norms.

By φ−1(x, t) we mean the generalized inverse defined by

φ−1(x, t) := inf{τ ∈ R : φ(x, τ) ⩾ t}.

Functions φ and ψ are equivalent if and only if φ−1(x, t) ≈ ψ−1(x, t).
For φ ∈ Φw(Rn) we define the conjugate Φ-function φ∗ ∈ Φw(Rn) by

φ∗(x, t) := sup
s>0

{st− φ(x, s)}.

We collect two results on how the generalized inverse behaves. For the proofs see
Lemma 2.3.3 and Theorem 2.4.8 in [22].

Lemma 2.2. Let φ ∈ Φw(Rn). Then

a) φ(x, φ−1(x, t)) = t when φ ∈ Φs(Rn),
b) φ−1(x, t) (φ∗)−1 (x, t) ≈ t.

We define the following conditions. They guarantee boundedness of maximal
operators and density of smooth functions.

Definition 2.3. We say that φ : Rn × [0,∞) → [0,∞) satisfies:

(aInc)p if t 7→ φ(x,t)
tp is Lp-almost increasing in (0,∞) for some Lp ⩾ 1 and a.e. x ∈ Rn,

(aDec)q if t 7→ φ(x,t)
tq is Lq-almost decreasing in (0,∞) for some Lq ⩾ 1 and a.e.

x ∈ Rn,
(A0) if there exists β ∈ (0, 1] such that β ⩽ φ−1(x, 1) ⩽ 1

β for a.e. x ∈ Rn,
(A1) if there exists β ∈ (0, 1) such that

βφ−1(x, t) ⩽ φ−1(y, t)

for every t ∈ [1, 1
|Q| ], a.e. x, y ∈ Q and every cube Q with |Q| ⩽ 1,

(A2) if there exists φ∞ ∈ Φw, h ∈ L1(Rn) ∩L∞(Rn), β ∈ (0, 1] and s > 0 such that

φ(x, βt) ⩽ φ∞(t) + h(x) and φ∞(βt) ⩽ φ(x, t) + h(x)

for a.e. x ∈ Rn when φ∞(t) ∈ [0, s] and φ(x, t) ∈ [0, s], respectively.

We say φ satisfies (aInc) if it satisfies (aInc)p for some p > 1 and similarly (aDec)
if it satisfies (aDec)q for some q < ∞. Conditions (aInc) and (aDec) correspond to
the ∇2 and ∆2 conditions respectively from the classical Orlicz space theory and rule
out the often problematic L1 and L∞ spaces. (A0) rules out degenerate or singular
Φ-functions and is required for density of smooth functions in the generalized Orlicz
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space, for example. (A1) on the other hand is a regularity assumption generalizing for
instance the log-Hölder continuity of the variable exponent. It is a key assumption
for boundedness of the Hardy–Littlewood maximal function. Lastly, (A2) says that
there is an Orlicz function φ∞ which is asymptotically weakly equivalent to φ. This is
likewise required for the boundedness of the maximal function on unbounded sets.

Remark 2.4. We use the following properties without mentioning them explicitly.
For the proofs see [22].

a) The conditions (A0), (A1), (A2), (aInc)p and (aDec)q are invariant under equiva-
lence (≃).

b) (A0), (A1) and (A2) hold for φ if and only if they hold also for φ∗. Additionally,
φ satisfies (aInc)p and (aDec) if and only if φ∗ satisfies (aDec)p′ and (aInc)q′ ,
respectively.

c) For any p, q > 0 any φ ∈ Φw(Rn) satisfies (aInc)p and (aDec)q if and only if φ−1

satisfies (aDec)1/p and (aInc)1/q, respectively.
d) If φ satisfies (aDec)q1 , then it satisfies (aDec)q2 for all q2 > q1.

The generalized Orlicz space Lφ(Rn) comprises of measurable functions f that
satisfy ˆ

Rn
φ(x, λ|f(x)|) dx < ∞

for some λ > 0. The space Lφ(Rn) is a (quasi)Banach space when equipped with
a (quasi)norm

∥f∥Lφ(Rn) := inf
{
λ > 0 :

ˆ
Rn
φ

(
x,

|f(x)|
λ

)
dx ⩽ 1

}
.

We often abbreviate ∥f∥Lφ(Rn) as ∥f∥φ. To lighten the notation, we also often omit
absolute values in φ(x, |f(x)|) since we can without loss of generality consider only
non-negative functions. A comprehensive presentation of generalized Orlicz spaces can
be found in [22].

We extend the classical Hölder’s inequality to generalized Orlicz spaces.

Lemma 2.5 ([22, Lemma 3.2.11]). Let φ ∈ Φw(Rn), f ∈ Lφ(Rn) and g ∈ Lφ
∗(Rn).

Then
ˆ
Rn

|f(x)||g(x)| dx ⩽ 2∥f∥Lφ(Rn)∥g∥Lφ∗ (Rn).

Here the constant cannot be lower than 2 in general.

We can also have a φ-norm on the left-hand side.

Lemma 2.6 (Generalized Hölder’s inequality). Let φi ∈ Φw(Rn) for i = 1, 2, 3. If for
all t ⩾ 0 and almost every x ∈ Rn we have

φ−1
1 (x, t)φ−1

2 (x, t) ⩽ φ−1
3 (x, t),
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then
∥fg∥Lφ3 (Rn) ⩽ 2C∥f∥Lφ1 (Rn)∥g∥Lφ2 (Rn)

for every f ∈ Lφ1(Rn) and g ∈ Lφ2(Rn). If φi ∈ Φc(Rn), then C = 1.

Proof. Without loss of generality, we may assume ∥f∥Lφ1 (Rn) = ∥g∥Lφ2 (Rn) = 1. If
φi ∈ Φc(Rn), then the proofs in [32] apply verbatim. Suppose then we are not in
the convex regime, that is φi ∈ Φw(Rn). There exist ψi ∈ Φc(Rn) such that φi ≃ ψi
[22, Lemma 2.2.1]. Now using the Young’s inequality for convex functions ψi and the
equivalence, we end up with

φ3

(
x,
st

L3

)
⩽ ψ3

(
x,
st

L2

)
⩽ ψ1

(
x,
s

L

)
+ ψ2

(
x,
t

L

)
⩽ φ1(x, s) + φ2(x, t)

where L is the largest equivalence constant of the three Φ-functions. Denoting the
(aInc)1-constant of φ3 as L1, we have

ˆ
Rn
φ3

(
x, f(x)g(x)

2L1L3(1+ε)2

)
dx ⩽ 1

2

ˆ
Rn
φ1

(
x, f(x)

1+ε

)
+ φ2

(
x, g(x)

1+ε

)
dx ⩽ 1.

Thus ∥fg∥φ3 ⩽ 2L1L
3(1 + ε)2 → 2L1L

3 as ε → 0 and the inequality is proven.

The explicit norms of functions are often difficult to calculate, but under suitable
assumptions this can be done for characteristic functions of simple sets such as cubes.

Lemma 2.7 ([22, Proposition 4.4.8]). Let φ ∈ Φw(Rn) satisfy (A0), (A1) and (A2).
Then for every cube Q ⊂ Rn we have

∥χQ∥Lφ(Rn)∥χQ∥Lφ∗ (Rn) ≈ |Q|.

Here the implicit constant is independent of the cube Q.

The previous lemma combined with boundedness of averaging operator yields the
following result (see [22, Proposition 4.4.11]).

Lemma 2.8. Let φ ∈ Φw(Rn) satisfy (A0), (A1) and (A2). Then for every cube
Q ⊂ Rn we have

∥χQ∥Lφ(Rn) ≈ 1ffl
Q
φ−1

(
x, 1

|Q|

)
dx
.

2.2. OTHER FUNCTION SPACES AND OPERATORS

Next we introduce other function spaces appearing in this paper. Functions of bounded
mean oscillation, that is functions b ∈ L1

loc(Rn) satisfying

sup
Q⊂Rn

1
|Q|

ˆ
Q

|b(x) − bQ| dx < ∞, where bQ =
 
Q

b(x) dx
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and Q is a cube, play an essential role in the theory of commutators. They form
a function space BMO(Rn) when equipped with a seminorm

∥b∥∗ = sup
Q⊂Rn

1
|Q|

ˆ
Q

|b(x) − bQ| dx.

We define the negative part of a function b−(x) := − min{b(x), 0} and similarly the
positive part b+(x) = max{b(x), 0}. It immediately follows that for every x we have
|b(x)| − b(x) = 2b−(x).

The space of compactly supported and smooth functions is denoted as C∞
0 (Rn).

This space is dense in Lφ(Rn) if φ satisfies (A0) and (aDec) [22, Theorem 3.7.15].
Lastly, we define various operators investigated in this paper. All of the maximal

operators are derived from non-centred Hardy–Littlewood maximal function

Mf(x) := sup
Q∋x

1
|Q|

ˆ
Q

|f(y)| dy.

This is comparable with the centred variant

M cf(x) := sup
Q(x,r)

1
|Q(x, r)|

ˆ
Q(x,r)

|f(y)| dy

as they enjoy pointwise inequalities M cf(x) ⩽Mf(x) ⩽ 2nM cf(x). We can also have
a restricted maximal function in each cube Q0 as

MQ0f(x) := sup
Q∋x
Q⊂Q0

1
|Q|

ˆ
Q

|f(y)| dy.

We also define the sharp maximal function as

M ♯f(x) = sup
Q∋x

1
|Q|

ˆ
Q

|f(x) − fQ| dx.

If a measurable function b is given, we define the maximal commutator as

Mbf(x) := sup
Q∋x

1
|Q|

ˆ
Q

|b(x) − b(y)||f(y)| dy

and the commutator of a maximal function is defined as

[M, b]f(x) := M(bf)(x) − b(x)Mf(x).

For α ∈ (0, n), the focus of this article is the fractional maximal function

Mαf(x) := sup
Q∋x

1
|Q|1−α

n

ˆ
Q

|f(y)| dy

and its variations similar to previously given to the Hardy–Littlewood maximal
function, denoted as Mα,Q0f(x),Mb,αf(x) and [Mα, b]f(x).
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Closely related to fractional maximal function is the Riesz potential of a function f

Iαf(x) :=
ˆ
Rn

f(y)
|x− y|n−α dy.

For the Riesz potential we also have the variants

[Iα, b]f(x) = Iα(bf)(x) − b(x)Iαf(x) and Ib,αf(x) =
ˆ
Rn

|b(x)−b(y)|
|x−y|n−α f(y) dy.

Note that Ib,α is often denoted in the literature as |Iα, b| or |b, Iα|, but to unify notation
with maximal functions we use a different notation.

Boundedness of Hardy–Littlewood maximal operator in generalized Orlicz spaces
with the current framework was proven by Hästö [23]. In particular, if φ ∈ Φw(Rn)
satisfies (A0), (A1), (A2) and (aInc), we have

∥Mf∥φ ⩽ CM∥f∥φ (2.1)

for all f ∈ Lφ(Rn).

3. BOUNDEDNESS OF THE FRACTIONAL MAXIMAL OPERATOR

In this section we prove boundedness properties of the fractional maximal operator.
The result follows also from pointwise inequality Mαf(x) ≲ Iαf(x) and [21] or from
extrapolation arguments [12] but here we give a direct proof of the result and simplify
the presentation of function spaces. To obtain this, we exploit the fact that φ can be
regularized to a function φ̃, while preserving the function spaces and having equivalent
norms. This construction was developed in [21] but we demonstrate the steps involved
and show that our approach, that is assuming Assumptions 1.1 instead of using
compositions of the type φ◦

(
λ−1), is the same. The main reason to consider regularized

Φ-function is to extend the range of t in (A1) to
[
0, 1

|Q|

]
(see [21, Proposition 4.5]).

Note that we do not need to assume that φ is an N -function as was done in [21],
since the critical result, φ−1(x, t) (φ∗)−1 (x, t) ≈ t, is now known to hold for weak
Φ-functions, too.
1. We start with a generalized Orlicz function φ satisfying (A0), (A1), (A2), (aInc)p

and (aDec)1/r, where r ∈ (αn ,
1
p ] and p > 1.

2. Choose φ1 ∈ Φs(Rn) such that φ1(x, 1) = φ−1
1 (x, 1) = 1 and φ1 ≃ φ

[22, Lemma 3.7.3].
3. Define φ2(x, t) = max{φ1(x, t), 2t − 1}. We have φ2 ≃ φ1 ≃ φ and therefore φ2

satisfies (A0), (A1), (A2), (aInc)p and (aDec)1/r.
4. Define

φ̃(x, t) =
{

(φ2)∞(t) when t < 1,
2φ2(x, t) − 1 when t ⩾ 1,

where (φ2)∞(t) = lim sup|x|→∞ φ2(x, t).
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In [21, Proposition 4.2] it was shown that Lφ(Rn) = Lφ̃(Rn) with comparable norms
and thus φ ∼ φ̃.

[21, Proposition 4.5] shows that the if φ satisfies (A0), (A1) and (A2), then so does
φ̃ (condition (A0) follows automatically, since φ̃(x, 1) = 1 by construction). We add
to this by noting that regularization preserves also (aInc) and (aDec): for t < s < 1
we have

φ̃(x, t)
tp

= lim sup
|x|→∞

φ2(x, t)
tp

≲ lim sup
|x|→∞

φ2(x, s)
sp

= φ̃(x, s)
sp

,

for 1 < t < s we have
φ̃(x, t)
tp

= 2φ2(x, t) − 1
tp

≲ 2φ2(x, s)
sp

⩽ 22φ2(x, s) − 1
sp

= 22φ̃(x, s)
sp

and finally for t < 1 < s (aInc) follows since φ̃ is increasing. (aDec) is proven similarly.
There is still the question whether there exists a regularized function ψ̃ which is

weakly equivalent to ψ and satisfies the relation (1.1) with φ̃. Since φ̃ satisfies (A0),
(A1), (A2), (aInc)p and (aDec)1/r, then by [22, Lemmas 3.7.3 and 5.2.3] there exists
ψ0 ∈ Φs(Rn) satisfying (aInc)q and (aDec)1/(r−α/n) such that φ̃−1(x, t) ≈ t

α
nψ−1

0 (x, t).
Let us show that ψ0 ∼ ψ when φ−1(x, t) ≈ t

α
nψ−1(x, t). Equivalently this means

that ψ−1
0 (x, t) ≈ ψ−1(x, t + h(x)), where h ∈ L1(Rn). Since (aDec)n/α of φ implies

(aInc)α/n of φ−1 and we know that φ ∼ φ̃, we estimate

ψ−1
0 (x, t) ≈ φ̃−1(x, t)

tα/n
≲ φ̃−1(x, t+ h(x))

[t+ h(x)]α/n ≈ φ−1(x, t+ 2h(x))
[t+ h(x)]α/n

≲ φ−1(x, t+ 2h(x))
[t+ 2h(x)]α/n ≈ ψ−1(x, t+ 2h(x)),

i.e. ψ0 ∼ ψ. From now on, we denote ψ̃ := ψ0 since it possesses all the relevant proper-
ties of a regularized function: weak equivalence, (A0) and (A1) in range t ∈

[
0, 1

|Q|

]
.

Remark 3.1. In the paper of Harjulehto and Hästö [21], the target space of Iα was
constructed in a slightly different way than in our presentation. Let us show that they
are in fact equivalent: We show that under suitable structural conditions on φ, the
Riesz potential maps functions from Lφ(Rn) → Lψ(Rn), where φ and ψ satisfy the
relation φ−1(x, t) ≈ t

α
nψ−1(x, t). In [21] the target function space is Lφ♯α(Rn), where

φ♯α is a convex Φ-function equivalent to φ(x, λ−1(x, t)) with λ(x, t) := tφ(x, t)−α
n .

Recall that equivalence of Φ-functions is an equivalent condition to comparability
of their inverses. The claim is invariant under equivalence of Φ-functions so we can
assume that φ,ψ ∈ Φs(Rn) and therefore by Lemma 2.2 (a)

(
φ♯α
)−1(x, t) ≈ λ(x, φ−1(x, t)) = φ−1(x, t) φ(x, φ−1(x, t))−α

n

= t−
α
nφ−1(x, t) ≈ ψ−1(x, t).

Thus φ♯α ≃ ψ and they generate the same function spaces with comparable norms and
we resume to denote ψ for the function generating the target space.
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We collect these observations to the following lemma. Note that (A1) is now valid
for cubes of all sizes, not just those with |Q| ⩽ 1.
Lemma 3.2. Let φ and ψ satisfy Assumptions 1.1. Then there exist φ̃, ψ̃ ∈ Φs(Rn)
such that φ ∼ φ̃, ψ ∼ ψ̃, φ̃−1(x, t) ≈ t

α
n ψ̃−1(x, t) and ψ̃−1(x, t) ≲ ψ̃−1(y, t) for every

cube Q, almost every x, y ∈ Q and every t ∈
[
0, 1

|Q|

]
.

Proof of Theorem 1.2. Recall the centred fractional maximal function

M c
αf(x) := sup

r>0
1

|Q(x,r)|1−α/n

ˆ
Q(x,r)

|f(y)| dy

and recall that M c
αf(x) ≈ Mαf(x). Thus, we can prove the boundedness for the

centred fractional maximal operator.
Let Φ-functions φ̃ and ψ̃ be as in Lemma 3.2. Let Q(x, r) be any cube and split

a function f as f = f1 +f2, where f1(y) = f(y)χQ(x,r)(y), and f2(y) = f(y)χQ(x,r)c(y).
By sublinearity of the maximal operator we have M c

αf(x) ⩽ M c
αf1(x) + M c

αf2(x).
We start by estimating the last term

M c
αf2(x) ≲ sup

t>0
1

|Q(x,t)|1−α/n

ˆ
Q(x,t)∩Q(x,r)c

|f(y)| dy

≲ sup
t>r

1
|Q(x,t)|1−α/n

ˆ
Q(x,t)

|f(y)| dy.

We proceed with Hölder’s inequality, Lemma 2.8 and Lemma 2.2 b)

M c
αf2(x) ≲ sup

t>r
∥f∥φ̃|Q(x, t)|α/n−1∥χQ(x,t)∥φ̃∗

≲ sup
t>r

∥f∥φ̃|Q(x, t)|α/n−1

( 
Q(x,t)

(φ̃∗)−1 (y, |Q(x, t)|−1) dy
)−1

≲ sup
t>r

∥f∥φ̃|Q(x, t)|α/n−1

( 
Q(x,t)

1
|Q(x,t)|

1
φ̃−1(y,|Q(x,t)|−1) dy

)−1

.

By convexity of z 7→ 1
z with Jensen’s inequality and Lemma 3.2 we continue

M c
αf2(x) ≲ sup

t>r
∥f∥φ̃|Q(x, t)|α/n

 
Q(x,t)

φ̃−1(y, |Q(x, t)|−1) dy

≲ ∥f∥φ̃ sup
t>r

tα
 
Q(x,t)

φ̃−1(y, t−n) dy

⩽ ∥f∥φ̃ sup
t>r

ψ̃−1(x, t−n) ⩽ ∥f∥φ̃ψ̃−1(x, r−n).

For f1 we have M c
αf1(x) ≲ rαM cf(x) ≈ rαMf(x) (see for example [24, Lemma. (b)]),

so returning to non-centred maximal functions we see

|Mαf(x)| ≲ rαMf(x) + ∥f∥φ̃ψ̃−1(x, r−n)

≲Mf(x) ψ̃
−1(x,r−n)

φ̃−1(x,r−n) + ∥f∥φ̃ψ̃−1(x, r−n).
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Recall that φ̃ ∈ Φs(Rn) so it is increasing and continuous, therefore surjective from
[0,∞) onto [0,∞). Thus we can choose r in such a way that φ̃−1(x, r−n) = Mf(x)

CM∥f∥φ̃ ,
where CM is the constant in (2.1), and get

|Mαf(x)| ≲ ∥f∥φ̃ψ̃−1
(
x, φ̃

(
x, Mf(x)

CM∥f∥φ̃

))
.

Since ψ̃ ∈ Φs(Rn), by Lemma 2.2 a) it follows that

ψ̃
(
x, |Mαf(x)|

CM∥f∥φ̃

)
≲ ψ̃

(
x, ψ̃−1

(
x, φ̃

(
x, Mf(x)

CM∥f∥φ̃

)))
= φ̃

(
x, Mf(x)

CM∥f∥φ̃

)
.

Integrating both sides we have
ˆ
Rn
ψ̃
(
x, |Mαf(x)|

CM∥f∥φ̃

)
dx ≲

ˆ
Rn
φ̃
(
x, Mf(x)

CM∥f∥φ̃

)
dx ⩽ 1.

In other words ∥Mαf∥ψ̃ ≲ ∥f∥φ̃. But φ̃ and ψ̃ are weakly equivalent to φ and ψ so
they have comparable norms, respectively, and all in all

∥Mαf∥Lψ(Rn) ≲ ∥f∥Lφ(Rn).

Remark 3.3. Contrary to the regular Orlicz case, we do not know if the assump-
tion φ−1(x, t) ≈ t

α
nψ−1(x, t) is necessary. To the best of our knowledge, this is an

open question already in the variable exponent case. Following the proof of Orlicz
case in [18], the problem arises as ∥χQ∥φ cannot always be estimated pointwise as(
φ−1(x, |B|−1)

)−1 but only in the integral from as in Lemma 2.8.

4. COMMUTATORS OF RIESZ POTENTIAL

It turns out that the boundedness of [Iα, b] can be tackled with the sharp maximal
function. Our methods are based on [25]. There is no pointwise inequality between
a function f and the sharp maximal function M ♯f but a norm estimate can be achieved
as is done in Lemma 4.1. Due to density of C∞

0 (Rn) in Lφ(Rn) (see [22, Corollary
3.7.10]) and (2.1), the proof follows as in [16, Lemma 6.2.4].
Lemma 4.1. If φ ∈ Φw(Rn) satisfies (A0), (A1), (A2), (aInc) and (aDec), then

∥f∥Lφ(Rn) ≲ ∥M ♯f∥Lφ(Rn)

for all f ∈ Lφ(Rn).
The next lemma has been proven by Shirai in the case of [Iα, b] but the proof

works without changes also for the operator Ib,α.
Lemma 4.2 ([34, Lemma 4.2]). Suppose 0 < α < n and s ∈ (1,∞). Then for every
b ∈ BMO(Rn) and f ∈ C∞

0 (Rn) we have pointwise estimates:
1. M ♯([Iα, b]f)(x) ≲ ∥b∥∗

(
Iα|f |(x) + Iαs(|f |s)(x)1/s),

2. M ♯(Ib,αf)(x) ≲ ∥b∥∗
(
Iα|f |(x) + Iαs(|f |s)(x)1/s) .
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The following lemma is the main result of [21] taking account Remark 3.1.
Lemma 4.3. If φ and ψ satisfy Assumptions 1.1, then the Riesz potential
Iα : Lφ(Rn) → Lψ(Rn) is bounded.
Combining these lemmas, we get the boundedness of Riesz type.

Proof of Theorem 1.3. We give the proof for (1) as the proof of (2) is identical. Let
us denote φs = φ

(
x, t1/s

)
for any weak Φ-function. Recall that ψ satisfies similar

assumptions to φ but with different parameters in (aInc) and (aDec). Therefore,
choosing any s ∈ (1, p) and applying first Lemma 4.1 and then Lemma 4.2, we see
that for any f ∈ C∞

0 (Rn) and b ∈ BMO(Rn)

∥[Iα, b]f∥ψ ≲ ∥M ♯([Iα, b]f)∥ψ ≲ ∥b∥∗∥Iα|f | + Iαs(|f |s)1/s∥ψ
⩽ ∥b∥∗

(
∥Iα|f |∥ψ + ∥Iαs(|f |s)∥1/s

ψs

)
.

(4.1)

By Lemma 4.3, Iα : Lφ(Rn) → Lψ(Rn) is bounded so let us show boundedness of
Iαs : Lφs(Rn) → Lψs(Rn). It is easy to check that (ψs)−1 (x, t) = ψ−1(x, t)s. Next,
it immediately follows that

(ψs)−1 (x, t) = ψ−1(x, t)s ≈ t−
αs
n φ−1(x, t)s ≈ t−

αs
n φ−1

s (x, t).

In [22, Proposition 5.2.2] it is shown that φs satisfies (A0), (A1), (A2), (aInc)p/s and
(aDec)1/rs. Since p

s > 1 and rs ∈ (αsn ,
s
p ], Lemma 4.3 shows that Iαs is bounded from

Lφs(Rn) to Lψs(Rn) and likewise

∥Iαs(|f |s)∥
1
s

ψs
≲ ∥|f |s∥

1
s
φs .

Coming back to (4.1) and definition of φ-norm, we have

∥[Iα, b]f∥ψ ≲ ∥b∥∗
(

∥f∥φ + ∥fs∥1/s
φs

)
≲ ∥b∥∗∥f∥φ.

Since φ satisfies (A0) and (aDec), we know that C∞
0 (Rn) is dense in Lφ(Rn)

[22, Corollary 3.7.10]. Now we get the result for all f ∈ Lφ(Rn) since the commutator
is linear and bounded on a dense set.

5. MAXIMAL COMMUTATORS

In this section we show boundedness of both maximal commutators

Mb : Lφ(Rn) → Lφ(Rn) and Mb,α : Lφ(Rn) → Lψ(Rn).

We start with the simpler non-fractional version but first we collect some lemmas. The
first lemma was essentially proven in [1, Corollaries 1.11, 1.12]. Authors’ main results
lead to pointwise estimates

Mbf(x) ≲ ∥b∥∗M
2f(x) and |[M, b]f(x)| ≲ (∥b+∥∗ + ∥b−∥∞)M2f(x)

where b ∈ BMO(Rn), so the following lemma holds for any (quasi) Banach space where
M is bounded, especially for Lφ(Rn).
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Lemma 5.1. If b ∈ BMO(Rn) and φ ∈ Φw(Rn) satisfies (A0), (A1), (A2) and (aInc),
then

∥Mbf∥φ ≲ ∥b∥∗∥f∥φ.
If additionally b− ∈ L∞(Rn), then also the commutator [M, b] : Lφ(Rn) → Lφ(Rn)
is bounded.

It is straightforward to prove that b ∈ BMO(Rn) is also a necessary condition for
boundedness of the maximal commutator and we get the following characterization
of BMO(Rn).

Proposition 5.2. Let b ∈ L1
loc(Rn) and φ ∈ Φw(Rn) satisfy (A0), (A1), (A2) and

(aInc). Then Mb : Lφ(Rn) → Lφ(Rn) is bounded if and only if b ∈ BMO(Rn).

Proof. If b ∈ BMO(Rn), the claim follows directly from Lemma 5.1.
Let us then assume that Mb : Lφ(Rn) → Lφ(Rn) is bounded and take any cube

Q ⊂ Rn. Using Hölder’s inequality (Lemma 2.5), the assumption and Lemma 2.7 in
this order, we see that

 
Q

|b(x) − bQ| dx ⩽
 
Q

(ˆ
Q

|b(x) − b(y)|χQ(y) dy
)
dx ⩽ 1

|Q|

ˆ
Rn
MbχQ(x) dx

≲ 1
|Q| ∥MbχQ∥φ∥χQ∥φ∗ ⩽ 1

|Q| ∥χQ∥φ∥χQ∥φ∗ ⩽ C.

Taking the supremum over all cubes Q, we see that b ∈ BMO(Rn).

As the fractional commutators are closely related, we get the boundedness of
maximal fractional commutator also in a similar fashion.

Proof of Theorem 1.4. Let us first assume that b ∈ BMO(Rn). Since we have the
pointwise estimate Mb,αf ≲ Ib,α(|f |), Theorem 1.3 (2) immediately yields

∥Mb,αf∥ψ ≲ ∥Ib,α(|f |)∥ψ ≲ ∥b∥∗∥f∥φ.

Let us then assume that Mb,α is bounded and Q is an arbitrary cube. This and
Hölder’s inequality give

 
Q

|b(x) − bQ| dx ⩽ 1
|Q|1+α

n

ˆ
Q

(
1

|Q|1−α
n

ˆ
Q

|b(x) − b(y)|χQ(y) dy
)
dx

⩽ 1
|Q|1+α

n
∥Mb,αχQ∥ψ∥χQ∥ψ∗ ≲ 1

|Q|1+α
n

∥χQ∥φ∥χQ∥ψ∗ .

Now we need to estimate ∥χQ∥φ in terms of ∥χQ∥ψ. This is done with the help of
Lemma 2.8:

∥χQ∥φ ≈ 1ffl
Q
φ−1

(
x, 1

|Q|

)
dx

≈ |Q|α/nffl
Q
ψ−1

(
x, 1

|Q|

)
dx

≈ |Q|α/n∥χQ∥ψ. (5.1)
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Therefore Lemma 2.7 and the previous two displays yield

1
|Q|

ˆ
Q

|b(x) − bQ| dx ≲ 1
|Q| ∥χQ∥ψ∥χQ∥ψ∗ < C.

Taking supremum over all cubes Q we see that b ∈ BMO(Rn).

6. COMMUTATORS OF FRACTIONAL MAXIMAL OPERATORS

In this section we combine previous estimates of maximal operators to show bounded-
ness of commutators of fractional maximal operators generalizing the ideas of Zhang,
Si and Wu in [36, 37]. In [3] the authors showed the following characterization for
functions with bounded mean oscillation and negative part. The proof of b ∈ BMO(Rn)
is similar to the proof of Lemma 6.3. However, the L1 nature of assumption with
non-fractional maximal function is needed for b− ∈ L∞(Rn) and it is not known if
assumption like the norm estimate in Lemma 6.3 with fractional maximal function
implies this.

Lemma 6.1. Suppose b ∈ L1
loc(Rn) and

sup
Q

1
|Q|

ˆ
Q

|b(x) −MQb(x)| dx < ∞.

Then b ∈ BMO(Rn) and b− ∈ L∞(Rn).

The next result is a weaker form of Proposition 6.4, but it will be used later when
we have commutator with |b| which is clearly non-negative.

Lemma 6.2. Let Assumptions 1.1 hold. If 0 ⩽ b ∈ BMO(Rn), then the commutator
[Mα, b] : Lφ(Rn) → Lψ(Rn) is bounded.

Proof. As |b(x)| = b(x) for all x ∈ Rn, we see that

|[Mα, b]f(x)| ⩽ sup
Q∋x

1
|Q|1−α/n

ˆ
Q

|b(x) − b(y)||f(y)| dy = Mb,αf(x).

By Theorem 1.4 we see that the commutator is bounded.

Let us separate the following result as a lemma.

Lemma 6.3. Let Assumptions 1.1 hold and suppose [Mα, b] : Lφ(Rn) → Lψ(Rn)
is bounded, where b ∈ L1

loc(Rn). Then b ∈ BMO(Rn) and

∥(b− |Q|−α/nMα,Qb)χQ∥ψ
∥χQ∥ψ

< C

for every cube Q and some finite constant C independent of Q.
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Proof. Let us first prove the norm estimate. First of all, we have the following identities
for maximal functions of a characteristic function

MαχQ(x) = Mα,QχQ(x) = sup
Q̃∋x

1
|Q̃|1−α/n

ˆ
Q̃

χQ(x) dx = |Q|α/n (6.1)

and

Mα(bχQ)(x) = Mα,Qb(x) = sup
Q̃∋x

1
|Q̃|1−α/n

ˆ
Q̃

b(x)χQ(x) dx (6.2)

for x ∈ Q. These combined with the assumption that [Mα, b] : Lφ(Rn) → Lψ(Rn)
is bounded, we have the following estimate

∥(b− |Q|−α/nMα,Q(b))χQ∥ψ ⩽ |Q|−α/n∥bMαχQ −Mα(bχQ)∥ψ
= |Q|−α/n∥[Mα, b]χQ∥ψ ≲ |Q|−α/n∥χQ∥φ.

We proceed as in (5.1) to estimate ∥χQ∥φ ≲ |Q|α/n∥χQ∥ψ. Thus

∥(b− |Q|−α/nMα,Qb)χQ∥ψ ≲ ∥χQ∥ψ (6.3)

for every cube Q, so we have proved the desired norm estimate.
Now we are ready to prove that b ∈ BMO(Rn). Let us denote for any cube Q sets

E := {x ∈ Q : b(x) ⩽ bQ} and F := {x ∈ Q : b(x) > bQ}.
It is immediate that E = F c and this combined withˆ

Q

b(x) − bQ dx = 0

yields ˆ
E

|b(x) − bQ| dx =
ˆ
F

|b(x) − bQ| dx.

Also, for any x ∈ E it holds that b(x) ⩽ bQ ⩽ |bQ| ⩽ |Q|−α/nMα,Qb(x). Therefore

|b(x) − bQ| ⩽ |b(x) − |Q|−α/nMα,Q(b)(x)|
in the set E.

Let us estimate the mean oscillation of the function b 
Q

|b(x) − bQ| dx = 2
 
E

|b(x) − bQ| dx ⩽ 2
 
E

|b(x) − |Q|−α/nMα,Qb(x)| dx

⩽ 2
 
Q

|b(x) − |Q|−α/nMα,Qb(x)| dx.

We estimate the last integral with Hölder’s inequality, (6.3) and Lemma 2.7 to get 
Q

|b(x) − bQ| dx ≲ 1
|Q| ∥(b− |Q|−α/nMα,Qb)χQ∥ψ∥χQ∥ψ∗ ⩽ C. (6.4)

Thus, by definition, b ∈ BMO(Rn).
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In the next proposition we characterize BMO(Rn) in terms of boundedness of
commutators with fractional maximal operators. In Theorem 1.5 we improve condition
(3) to a more intrinsic condition containing the fractional maximal operator.

Proposition 6.4. Let Assumptions 1.1 hold. If b ∈ L1
loc(Rn), then the following are

equivalent:

1. b ∈ BMO(Rn) and b− ∈ L∞(Rn).
2. The commutator [Mα, b] : Lφ(Rn) → Lψ(Rn) is bounded.
3. We have

sup
Q

∥(b−MQb)χQ∥Lψ(Rn)

∥χQ∥Lψ(Rn)
< ∞.

Proof. We proceed to prove (1) ⇒ (2) ⇒ (3) ⇒ (1). For the first implication we start
with the following pointwise estimates

|[Mα, b]f(x) − [Mα, |b|]f(x)|
⩽ |Mα(bf)(x) −Mα(|b|f)(x)| + |2b−(x)Mαf(x)|
= 2b−(x)Mαf(x).

In other words, we have a direct estimate for the commutator

|[Mα, b]f(x)| ⩽ |[Mα, b]f(x) − [Mα, |b|]f(x)| + |[Mα, |b|]f(x)|
⩽ 2b−(x)Mαf(x) + |[Mα, |b|]f(x)|.

Since b ∈ BMO(Rn) implies that |b| ∈ BMO(Rn), recalling the assumption
b− ∈ L∞(Rn) we can combine Theorem 1.2 and Lemma 6.2 to get

∥[Mα, b]f∥ψ ⩽ 2∥b−∥∞∥Mαf∥ψ + ∥[Mα, |b|]f∥ψ ≲ ∥f∥φ.

Next we prove (2) ⇒ (3) and start with Lemma 6.3, which yields

∥(b−MQb)χQ∥ψ ⩽ ∥(b− |Q|−α
nMα,Qb)χQ∥ψ + ∥(|Q|−α

nMα,Qb−MQb)χQ∥ψ
≲ ∥χQ∥ψ + |Q|−α

n ∥(Mα,Qb− |Q|αnMQb)χQ∥ψ.
(6.5)

Letting x ∈ Q and taking (6.1) and (6.2) into account, we have

[Mα, |b|]χQ(x) = Mα(bχQ)(x) − |b(x)|MαχQ(x) = Mα,Qb(x) − |Q|αn |b(x)|

together with |Q|αn [M, |b|]χQ(x) = |Q|αnMQb(x) − |Q|αn |b(x)|. We subtract the second
from the first and get

[Mα, |b|]χQ(x) − |Q|αn [M, |b|]χQ(x) = Mα,Qb(x) − |Q|αnMQb(x).

This and (6.5) combine to

∥(b−MQb)χQ∥ψ ≲ ∥χQ∥ψ + |Q|−α
n ∥[Mα, |b|]χQ − |Q|αn [M, |b|]χQ∥ψ

⩽ ∥χQ∥ψ + |Q|−α
n ∥[Mα, |b|]χQ∥ψ + ∥[M, |b|]χQ∥ψ.
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As 0 ⩽ |b| ∈ BMO(Rn), the commutators are bounded (Lemma 5.1 and Lemma 6.2),
and thus

∥(b−MQb)χQ∥ψ ≲ ∥χQ∥ψ + |Q|−α
n ∥χQ∥φ + ∥χQ∥ψ.

Finally, using (5.1) for the second term on the right-hand side, we have

∥(b−MQb)χQ∥ψ ≲ ∥χQ∥ψ.

Then we show (3) ⇒ (1). Hölder’s inequality and Lemma 2.7 yield

1
|Q|

ˆ
Q

|b(x) −MQb(x)| dx ≲ 1
|Q| ∥(b−MQb)χQ∥ψ∥χQ∥ψ∗

≲ 1
|Q| ∥χQ∥ψ∥χQ∥ψ∗ ⩽ C.

Now Lemma 6.1 shows that b ∈ BMO(Rn) and b− ∈ L∞(Rn).

Now we prove our main theorem regarding commutators of fractional maximal opera-
tors. The main difference of Theorem 1.5 to previous proposition is that the norm condi-
tion includes fractional maximal operator instead of a standard Hardy–Littlewood maxi-
mal operator. Also, it is enough for the norm condition to hold for any weak Φ-function η
with structural conditions guaranteeing boundedness of the Hardy–Littlewood maximal
operator.

Proof of Theorem 1.5. Equivalence (1) ⇔ (2) was proven in Proposition 6.4. As the
implication (4) ⇒ (3) is immediate, we proceed to prove (3) ⇒ (1) and (2) ⇒ (4).

We first assume (3). Choosing any cube Q we get
 
Q

|b(x) −MQb(x)| dx ⩽
 
Q

|b(x) − |Q|−α/nMα,Qb(x)| dx

+
 
Q

||Q|−α/nMα,Qb(x) −MQb(x)| dx =: I1 + I2.

We first estimate the term I1 with Hölder’s inequality, Lemma 2.7 and the assumption
as follows

I1 ≲ 1
|Q| ∥(b− |Q|−α/nMα,Qb)χQ∥ψ∥χQ∥ψ∗ ≲ ∥(b−|Q|−α/nMα,Qb)χQ∥ψ

∥χQ∥ψ ⩽ C.

For I2 let us choose any x ∈ Q. Then (6.1) and (6.2) guarantee us that for x ∈ Q
we have MχQ(x) = 1 and M(bχQ)(x) = MQb(x) for the maximal function and
MαχQ(x) = |Q|α/n and Mα(bχQ)(x) = Mα,Qb(x) for the fractional maximal function.
With these observations we estimate the integrand in I2 as a sum of commutators

∣∣|Q|−α/nMα,Qb(x) −MQb(x)
∣∣ ⩽

∣∣∣Q|−α/n|Mα,Qb(x) − |Q|α/n|b(x)|
∣∣∣

+ ||b(x)| −MQb(x)|
= |Q|−α/n|[Mα, |b|]χQ(x)| + |[M, |b|]χQ(x)|.
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This yields

I2 ⩽ 1
|Q|1+α/n

ˆ
Q

|[Mα, |b|]χQ(x)| dx+ 1
|Q|

ˆ
Q

|[M, |b|]χQ(x)| dx =: I1
2 + I2

2 .

Now the assumption (3) and a similar argument as in latter part of Lemma 6.3
show that b ∈ BMO(Rn) which further implies that |b| ∈ BMO(Rn). Therefore, we can
apply Lemma 6.2 to see that [Mα, |b|] and [M, |b|] are bounded operators. I1

2 can be
shown to be bounded in the following way using Hölder’s inequality, the boundedness
of the commutator, (5.1) and Lemma 2.7

I1
2 ≲ 1

|Q|1+α/n ∥[Mα, |b|]χQ∥ψ∥χQ∥ψ∗ ≲ 1
|Q|1+α/n ∥χQ∥φ∥χQ∥ψ∗ ⩽ C.

In a similar fashion the second term is shown be bounded

I2
2 ≲ 1

|Q| ∥[M, |b|]χQ∥φ∥χQ∥φ∗ ≲ 1
|Q| ∥χQ∥φ∥χ∥φ∗ ⩽ C.

Therefore by Lemma 6.1 we have b ∈ BMO(Rn) and b− ∈ L∞(Rn).
Let us then assume (2) and prove (4). Lemma 6.3 shows that (1.2) holds when

η = ψ satisfying the relation with φ. Let η then be any weak Φ-function such that
the maximal operator is bounded from Lη(Rn) → Lη(Rn). We choose ψ(x, t) =
η(x, tr), where r > n

n−α to guarantee that φ satisfies (aInc). Let us denote ξ(x, t) =
η(x, tr′), where r′ is the Hölder conjugate of r. Now

η−1(x, t) = η−1(x, t)1/rη−1(x, t)1/r′
= ψ−1(x, t)ξ−1(x, t)

so the generalized Hölder’s inequality, Lemma 2.6, is valid with η, ψ and ξ. Applying
first it and then (1.2) with η = ψ we get

∥(b−|Q|−α/nMα,Qb)χQ∥η
∥χQ∥η ≲ ∥(b−|Q|−α/nMα,Qb)χQ∥ψ∥χQ∥ξ

∥χQ∥η ≲ ∥χQ∥ψ∥χQ∥ξ
∥χQ∥η .

From the definitions of ψ and ξ we finally have

∥(b− |Q|−α/nMα,Qb)χQ∥η
∥χQ∥η

≲ ∥χQ∥ψ∥χQ∥ξ
∥χQ∥η

≲ ∥χQ∥1/r
η ∥χQ∥1/r′

η

∥χQ∥η
= 1.
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