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Abstract. We study the relationship between the solutions of stationary integrable partial
and ordinary differential equations and coefficients of the second-order ordinary differen-
tial equations invariant with respect to one-parameter Lie group. The classical symmetry
method is applied. We prove that if the coefficients of ordinary differential equation sat-
isfy the stationary integrable partial differential equation with two independent variables
then the ordinary differential equation is integrable by quadratures. If special solutions of
integrable partial differential equations are chosen, then the coefficients satisfy the stationary
KdV equations. It was shown that the Ermakov equation belong to a class of these equations.
In the framework of the approach we obtained the similar results for generalized Riccati
equations. By using operator of invariant differentiation we describe a class of higher order
ordinary differential equations for which the group-theoretical method enables us to reduce
the order of ordinary differential equation.
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1. INTRODUCTION

Second-order ordinary differential equation

yxx − V y = λy, where V = V (x), y = y(x, λ), (1.1)

where λ ∈ R is an arbitrary parameter and V = V (x), y = y(x, λ) are real-valued
functions is related to hierarchy of KdV equations integrable by inverse scattering trans-
form method. The class of stationary (i.e. when Vt = 0) higher order KdV-equations
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or their arbitrary nontrivial linear combinations are called Novikov’s equations. It
is known that if the potential V (x) satisfies at least one equation from the family
of Novikov’s equations, which are nonlinear ordinary differential equations then the
Schrödinger equation (1.1) is integrable by quadratures [1, 3–5]. It turns out that this
result can be obtained by applying group-theoretical methods [1]. In this paper we
study the invariance property of the equation

yxx − uy = 0, (1.2)

where y, and u are functions of independent variable x and parameter variable z.
We study the symmetry of (1.2) and its nonlinear generalizations with respect to
a one-parameter Lie transformation group of dependent and independent variables. It
turns out that the coefficients of the infinitesimal generator of the symmetry group and
the coefficients of ordinary differential equations under study are related to solutions
of stationary integrable differential equations. Our purpose is to extend the class of
differential equations (1.2) and the Riccati equation, which possesses a nontrivial
symmetry and therefore can be integrated or simplified via the Lie symmetry method.

In Section 2 we derive the infinitesimal generator of the Lie symmetry group.
Then we establish the relationship between the stationary twoo-dimensional nonlinear
partial differential equations integrable by inverse scattering transform method and
the integrability by quadratures of equation (1.2) and its nonlinear generalizations. By
using operator of invariant differentiation we describe a class of higher order ordinary
differentia equations admitting one-parameter Lie transformation group and therefore
for which lowering of the order could be realised by group-theoretical methods. Section
3 deals with the Riccati equation and generalized Riccati equations, which are obtained
from the Riccati equation by adding nonlinear terms. We study the symmetries and
integrability of these equations by quadratures.

As we know the symmetry of equations (2.20), (2.26), (2.28), (2.31), (2.33) when
coefficients u and w satisfy stationary integrable equations with two independent
variables has not been studied before. We pick out equations (2.31), (2.33) integrable
by quadratures from the class (2.26). To our knowledge the proof of the integrability of
the equations (2.20), (2.31), (2.33), (3.19) has also not been described in the literature.

Note that the the wide class of differential equations describing the diffusion
processes for example neutron diffusion process in nonhomogeneous media [8] leads to
equation (1.2). In Section 4 we discuss the obtained results and their applications in
solving mathematical physics problems.

2. APPLICATION OF CLASSICAL LIE SYMMETRY METHODS
TO DIFFERENTIAL EQUATIONS ASSOCIATED WITH EQUATION (1.2)

Firstly we introduce notions and explanations related to the Lie transformation
group. Let V be an open set in Rn and N(0, δ), where δ > 0 is a neighborhood of 0,
N(0, δ) ⊂ R. A local one-parameter Lie group G1 of local transformations of the
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space Rn is the local transformations f : V ×N(0, δ) → Rn possessing the following
properties:

1. f(x, 0) = x for any x ∈ V,

2. f(f(x, a), b) = f(x, a+ b) for any a, b, a+ b ∈ N(0, δ), x ∈ V,

3. ifa ∈ N(0, δ) and f(x, a) = x for all x ∈ V, then a = 0,
4. f ∈ C∞(V ×N(0, δ)),

where a is the group parameter. Each transformation fa ∈ G1, a ∈ N(0, δ) is written
in the coordinate form

fa : x′i = f i(x, a), i = 1, . . . , n.

The formula
ξi(x) = ∂f i(x, a)

∂a

∣∣∣
a=0

, i = 1, . . . , n

yields the tangent vector field ξ : V → Rn of G1. We can construct group transforma-
tions if we know tangent vector field ξ(x) by using the following Lie equations with
initial conditions

df i

da
= ξi(f1, . . . , fn), f i(x1, . . . , xn, 0) = xi, i = 1, . . . , n.

S. Lie established the existence of a one-to-one correspondence between group G1 and
its tangent vector field ξ(x) up to an arbitrary nonzero numerical multiplier. This leads
to a one-to-one correspondence between the group G1 and its infinitesimal generator

Q =
n∑

i=1
ξi(x)∂xi .

Hence, we arrive at the conclusion that the group G1 can be characterized by its
infinitesimal generator. One of the most important applications of Lie group theory is
the theory of differential equations. Suppose that the variables under consideration
are split into independent variables x1 . . . , xn and dependent variable ψ. In this case
the infinitesimal generator Q has the form

Q =
n∑

i=1
ξi(x, ψ)∂xi + η(x, ψ)∂ψ, (2.1)

where

fa : x′i = f i(x, ψ, a), i = 1, . . . , n.
ga : ψ′ = g(x, ψ, a),

(2.2)

ξi(x, ψ) = ∂f i(x, ψ, a)
∂a

∣∣∣
a=0

, η(x, ψ) = ∂g(x, ψ, a)
∂a

∣∣∣
a=0

, i = 1, . . . , n.
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In this case the Lie equations take the following form

df i

da
= ξi(f1, . . . , fn, g), f i(x1, . . . , xn, g, , 0) = xi, i = 1, . . . , n,

dg

da
= η(f1, . . . , fn, g), g(x1, . . . , xn, g, , 0) = ψ.

(2.3)

The k-th prolongation Q(k) of infinitesimal generator is used to formulate the criterion
of invariance of k-th order differential equations under the group transformations (2.2)
regarded as a change of variables. (See [6,7] for more details.) The infinitesimal criterion
of invariance of given differential equation results in linear differential equations for the
coefficient functions ξi, η of the infinitesimal generator (2.1), called the determining
equations for the symmetry group of the given equation. Note that the system of
determining equations is linear regardless of whether the equation under study is linear
or nonlinear. One can obtain group transformations by solving Lie equations (2.3). In
this section and Section 3 we show the applications of this method.

For the aims of this article, it is sufficient to work with an infinitesimal generator
(2.1) without the description of finite group transformations (2.2).

We study the symmetry of ordinary differential equation (1.2) with respect to the
Lie group with infinitesimal generator

X = β(x, z)y∂y − α(x, z)∂x (2.4)

where α(x, z), β(x, z) are unknown smooth functions. X is an infinitesimal generator of
symmetry group G1 of differential equation if and only if its evolutionary representative

Q = (α(x, z)yx + β(x, z)y) ∂y, (2.5)

is. For the proofs we refer the reader to [6]. We use the infinitesimal generator written
in evolutionary form (2.5) in this case.

We work within the local approach.
The infinitesimal criterion of invariance [6]

Q(2)(yxx − uy)
)∣∣∣
yxx=uy,yxxx=uxy+uyx

= 0, (2.6)

where Q(2) is the second prolongation of Q is used. The second prolongation of Q is
given by formulas [6]

Q(2) = Q+ η1∂yx + η2∂yxx , (2.7)

η1 = Dx(η) =
(
∂

∂x
+ yx

∂

∂y
+ yxx

∂

∂yx

)
(η)

= αyxx + (αx + β)yx + βxy,

η2 = Dx(η1) =
(
∂

∂x
+ yx

∂

∂y
+ yxx

∂

∂yx

)
(η1)

= αyxxx + (2αx + β)yxx + (αxx + 2βx)yx + βxxy.

(2.8)
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From (2.6), (2.7) we obtain

η2 − u(αyx + βy) = 0, (2.9)

which must be satisfied whenever yxx = uy, yxxx = uxy + uyx. Substituting (2.8) into
(2.9), and replacing yxx by uy and yxxx by uxy + uyx we obtain

α(uxy + uyx) + (2αx + β)uy + (αxx + 2βx)yx
+ βxxy − u(αyx + βy) = 0.

(2.10)

Splitting (2.10) with respect to yx and y we find the determining equations

αxx + 2βx = 0, (2.11)

αux + 2αxu+ βxx = 0 (2.12)

for α(x, z), β(x, z). From (2.11), (2.12) it follows that

αux + 2αxu− 1
2αxxx = 0, (2.13)

and
β = −1

2αx + C, (2.14)

where C(z) is smooth function. We set C = 0 because Q = C(z)y∂y generates the
obvious trivial symmetry group given by y′ = eCay. Next, we choose

α = wz, u = wx, (2.15)

where w(x, z) is a smooth function. Substituting (2.15) in (2.12) yields

4wzxwx + 2wzwxx − wzxxx = 0. (2.16)

In [2] F. Callogero and A. Degasperis considered the class of partial differential
equations with three independent variables t, x, y

wxt = a0wxx + a1(wxxxx + 6wxxwx) + γ0wxy

+ γ1(wxxxy + 4wxywx + 2wxxwy)

solvable via the spectral transform based on Schrödinger spectral problem. Putting
a0 = a1 = γ0 = 0, γ1 = 1, and (wt = 0) one derives the stationary equation

wxxxy + 4wxywx + 2wxxwy = 0. (2.17)

Replacing w → −w, y → z in (2.17) we obtain (2.16).
As the next theorem shows, the class of differential equations invariant with respect

to Lie group with infinitesimal generator given by (2.4), (2.14), (2.15), (2.16) is not
exhausted by (1.2) where u = wx.
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Theorem 2.1. Equation (1.2) is invariant with respect to the Lie transformation
group with infinitesimal generator

Q̃ = 2wz∂x + wzxy∂y,

where w(x, z) is a solution of (2.16) if and only if

u = wx + f(z)
w2
z

,

where f(z) is an arbitrary function.

Proof. Equation (1.2) is invariant with respect to the Lie transformation group with
infinitesimal generator Q̃ if and only if it satisfies the infinitesimal invariance criterion
(2.6) applied to the twice prolongated operator Q̃(2)

Q̃(2)(y′′ − uy)
)∣∣∣
y′′=Y,y′′′=uxy+uy′

= 0, (2.18)

where
Q̃ = (2wzyx − wzxy)∂y.

The criterion (2.18) results in

2wzxu+ wzux − 1
2wzxxx = 0,

by (2.13). We have to construct the general solution of linear nonhomogeneous ordinary
differential equation

ux − 2wzx
wz

u = wzxxx
2wz

to find the general form of u. Since w is a solution of (2.16), we have

wzxxx = 4wzxwx + 2wzwxx.

Hence
ux − 2wzx

wz
u = 2wzxwx + wzwxx

wz
. (2.19)

By using the method of variation of a constant we find the general solution of (2.19)
in the form

u = C(x, z)
w2
z

= wx + f(z)
w2
z

,

where f(z) is an arbitrary function.

It is obvious that the linear homogeneous equation

yxx −
(
wx + f(z)

w2
z

)
y = 0 (2.20)
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is also invariant with respect to one-parameter Lie group with generator

X1 = y∂y.

Thus, we know at least two-dimensional Lie algebra with basic elements Q̃ and X1
and commutator relation

[Q̃,X1] = 0

admissible by equation (2.20). Therefore equation (2.20) is integrable by quadratures
[6]. Next we give the symmetry integration method for (2.20). We use the property
of straightening of vector field also known as a method of canonical variables. Let
introduce new variables

t =
∫

dx

2wz
, y = √

wzΨ

satisfying the conditions
Q̃(t) = 1, Q̃(Ψ) = 0,

where Ψ = Ψ(t). Changing to these variables reduces (2.20) to the form

1
4Ψtt +

(
1
2wzwzxx − 1

4w
2
zx − wxw

2
z + f(z)

)
Ψ = 0. (2.21)

In the (t, ψ)-coordinates the symmetry generator Q̃ has the simple translational form
Q̃ → Q̃′ = ∂t. Thus equation (2.21) must be independent of t. It is easy to check that

d

dx

(
1
2wzwzxx − 1

4w
2
zx − wxw

2
z

)
= 1

2wz (wzxxx − 2wzwxx − 4wxwzx) = 0

by virtue of (2.16) so that

1
2wzwzxx − 1

4w
2
zx − wxw

2
z = K(z),

where K(z) is an arbitrary function of z only. Therefore the resulting equation

Ψtt + 4 (K(z) + f(z)) Ψ = 0

does not contain the independent variable t and is integrable. Hence, we can easily
construct its general solution

y =√
wz

[
C1(z) exp

(
−

√
−δ

∫
dx

2wz

)
+ C2(z) exp

(√
−δ

∫
dx

2wz

)]

if δ(z) = K(z) + f(z) < 0,

y =√
wz

[
C3(z) sin

(√
δ

∫
dx

2wz

)
+ C4(z) cos

(√
δ

∫
dx

2wz

)]

if δ(z) = K(z) + f(z) > 0,
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y = √
wz

[
C5(z)

∫
dx

2wz
+ C6(z)

]
if δ(z) = K(z) + f(z) = 0,

where C1(z), C2(z), C3(z), C4(z), C5(z), C6(z) are arbitrary functions.
By using differential invariants we can generalize the family of invariant equations

(2.20). Taking into account (2.4), (2.14) we obtain the infinitesimal generator of Lie
group of point transformations in the form

Q1 = 2α∂x + α′y∂y (2.22)

where Q1 = −2X. Next we construct the second prolongation of Q1 [7]

Q
(2)
1 = Q1 + σ1∂yx

+ σ2∂yxx
,

where
σ1 = Dx(αxy) − 2yxDx(αxy) = αxxy − αxyx,

σ2 = Dx(αxxy − αxyx) − 2yxxDx(α) = αxxxy − 3αxyx.

We find invariants of the Lie group with infinitesimal generator (2.22)

ω = y2

α
, ω1 =

√
αyx − α′

xy

2
√
α

(2.23)

satisfying conditions
Q1ω = 0, (Q1 + σ1∂yx

)ω1 = 0.

ω1 is called the differential invariant of the first order. We also constructed the
differential invariant of the second order

ω2 = (yxx − uy) y3 (2.24)

which satisfies the condition Q(2)ω2 = 0 provided that α, u satisfy equation (2.13).
One can construct differential invariants of higher order by using operator of invariant
differentiation which has the form

δ · ∂ = αDx, (2.25)

where Dx = ∂x + yn+1∂yn , n ∈ N, ∂x = ∂/∂x, ∂yk
= ∂/∂yk, yk = ∂ky/∂xk in this

case. (See [7] for more details). We assume summation over repeated indices. Recall
that the operator (2.25) is said to be an operator of invariant differentiation if for
any differential invariant Ω the mapping (δ · ∂)Ω is also a differential invariant of this
group. Hence we have

ωk = (δ · ∂)ωk−1,

where k ≥ 3, ωk and ωk−1 are differential invariants of k-th and (k − 1)-th order,
respectively. Our next claim is that the (k + 2)-th order ordinary differential equation

(δ · ∂)kω2 = F (ω, ω1, · · · , ωk+1), (2.26)
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where F is a smooth function is obviously invariant with respect to the Lie
group with infinitesimal generator (2.22) provided condition (2.13) holds. Hence
it follows that the (k + 2)-th order differential equation (2.26) reduces to
a (k + 1)-th ordinary differential equation plus a quadrature. For the proofs we
refer the reader to [6]. We clarify the statement with an example of a second order
ordinary differential equation. Let us consider the special case of (2.26)

ω2 = ω4H(ω, ω1), (2.27)

where H is a smooth function of two variables. Substituting (2.23), (2.24) into (2.27)
we have

yxx − uy = y

α2H

(
y2

α
,
√
αyx − α′

xy

2
√
α

)
. (2.28)

According to the symmetry integration method we introduce new variables

s =
∫

dx

2α, y =
√
αq (2.29)

satisfying the conditions
Q1(s) = 1, Q1(q) = 0,

where q = q(s). In terms of canonical variables s(x.y), q(x, y) equation (2.28) is written
in the form

1
4qss +

(
1
2ααxx − 1

4α
2
x − α2u

)
q = qH

(
q2,

1
2qs

)
.

Since
d

dx

(
1
2ααxx − 1

4α
2
x − α2u

)
= 0

by virtue of (2.13), it follows that

1
4qss + C1q = qH

(
q2,

1
2qs

)
, C1 ∈ R. (2.30)

We see that equation (2.30) does not contain independent variable s and therefore its
order can be lowered by one. Moreover choosing H(ω, ω1) = g(ω), where g is a smooth
function of one independent variable, we have differential equation

yxx − uy = y

α2 g

(
y2

α

)
(2.31)

which can be written in terms of canonical variables s, q
1
4qss + C1q = qH

(
q2)

, C1 ∈ R,

and its solution reduces to quadratures
∫

dq√∫
(H(q2) − C1q)dq + C2

= 2
√

2s+ C3.
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In particular, we get the Ermakov equation

yxx − uy = b

y3 b ∈ R (2.32)

from (2.31) in the case when g(ω) = b

ω2 . Taking H(ω, ω1) = p
(
ω1√
ω

)
, where p is

a smooth function, yields

yxx − uy = y

α2 p

(
α
yx
y

− 1
2αx

)
. (2.33)

Introducing variables (2.29) we can rewrite (2.33) as

qss + 4C1q = qg

(
qs
2q

)
, C1 ∈ R. (2.34)

Equation (2.34) admits the two-parameter Lie transformation group with generators
Q′

1 = ∂s, Q
′
2 = q∂q and therefore is integrable by quadratures. Hence we obtained

the two classes of nonlinear second order ordinary differential equations which are
integrable by quadratures via the symmetry group method.

Assume α = Rm[u], where the differential polynomial Rm[u] is chosen that

Dx(Rm[u]) = Km+1[u] = 0

gives the (m+1)-th order stationary KdV equation. Then (2.13) is written as a hierarchy
of higher order stationary KdV equations

R2m(u)ux + 2Dx(R2m(u))u− 1
2D

3
x(R2m(u)) = 0, m = 0, 1, 2, . . .

constructed by virtue of recursion operator [6]. Since the set of infinitesimal generators
form a Lie algebra, we see that α can be chosen as a linear combination ofR1, R2, . . . , Rp
with arbitrary constant coefficients C1, . . . , Cp ∈ R

α =
p∑

i=1
CiRi[u].

It is easy to see that the same conclusion can be drawn for hierarchie of the
Harry–Dym equations. Take for example α = R0[u] = u and α = H0[u] = u−1/2.
We then obtain the stationary KdV equation

uxxx − 6uux = 0

and the Harry–Dym equation
(u−1/2)xxx = 0

respectively from (2.13). From this it follows that if u(x) is a solution of an equation
of the KdV hierarchy of the form

p∑

i=1
C̃jK2j+1[u] = 0, C̃j ∈ R, j = 0, . . . , p, (2.35)
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then equation (2.26) is invariant with respect to the Lie transformation group with
infinitesimal generator (2.22). This property of invariance of (2.26) is also fulfilled for
u(x) satisfying the stationary Harry–Dym equation

l∑

i=1
C̃ ′
jH2j+1[u] = 0, C̃j ∈ R, j = 0, . . . , l. (2.36)

Therefore the order of equation (2.26) can be lowered by one via symmetry method.
Moreover, equations (2.31) and (2.33) are integrable by quadratures in this case.

3. SYMMETRY OF GENERALIZED RICCATI EQUATIONS

Generalized Riccati differential equations are obtained from standard Riccati equations
by adding a nonlinear term that preserves the symmetry of the equation. We study
the invariance of Riccati equation

yx − y2 + v(x) = 0, (3.1)

where y = y(x) with respect to the Lie group with infinitesimal generator

X = a(x)∂x + [b(x)y + γ(x)]∂y, (3.2)

where a(x), b(x), γ(x) are smooth functions. We find a(x), b(x), γ(x) so that the
one-parameter Lie group with infinitesimal generator (3.2) is a symmetry group of
(3.1). In this case the infinitesimal criterion of invariance [6, 7] takes the form

X(1)(yx − y2 + v(x)
)∣∣∣
yx=y2−v(x)

= 0, (3.3)

where X(1) is given by formulae

X(1) = X + ηx∂yx
, (3.4)

and
ηx = Dx (b(x)y + γ(x)) − yxDx(a(x)) = bxy + byx + γx − axyx. (3.5)

From (3.3) we have

(
ηx − 2y(b(x)y + γ(x)) + a(x)vx

)∣∣∣
yx=y2−v(x)

= 0. (3.6)

Condition (3.6) now leads to

bxy + (b− ax)(y2 − v) + γx − 2y(by + γ) + avx = 0 (3.7)
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Since a, b, γ, v depend only on x, (3.7) decomposes into three equations

b− ax − 2b = 0, (3.8)

bx − 2γ = 0, (3.9)
−bv + axv + γx + avx = 0. (3.10)

This follows by the same method as in Section 2.
From (3.8), (3.9), (3.10) it follows that

avx + 2axv − 1
2axxx = 0, (3.11)

b = −ax,

γ = −1
2axx.

From this we obtain the infinitesimal generator

X = 2a(x)∂x − [2axy + axx]∂y (3.12)

of the Lie transformation group, which is a symmetry group of equation (3.1), where
a(x), v(x) satisfy (3.11).

Let us consider the generalised Riccati equation

yx − y2 + v(x) = F (x, y), (3.13)

where F (x, y) is a smooth function. The following is an application of the Lie method
to equation (3.13).
Theorem 3.1. Equation (3.13) is invariant with respect to the Lie transforma-
tion group with infinitesimal generator (3.12), where v is a solution of (3.11)
if and only if

F = 1
a2h(ω),

where ω = 2ay + ax, a ̸= 0, h(ω) is a smooth function.
Proof. Equation (3.13) is invariant with respect to the Lie transformation group with
infinitesimal generator X (3.12) if and only if

X(1)(yx − y2 + v(x) − F (x, y)
)∣∣∣
yx=y2−v(x)+F (x,y)

= 0. (3.14)

From (3.4), (3.5), (3.12) we have

X(1) = 2a(x)∂x − [2axy + axx]∂y − (axxx + 2axxy + 4axyx)∂yx . (3.15)

(3.14) now becomes

− axxx − 2axxy − 4ax(y2 − v + F ) + 2y(axx + 2axy) + 2avx
= 2aF ′

x − (axx + 2axy)F ′
y.

(3.16)



On classical symmetries of ordinary differential equations. . . 697

From this we obtain
−4axF = 2aF ′

x − (axx + 2axy)F ′
y (3.17)

taking into account (3.11). The general solution of (3.17) can be obtain by integrating
characteristic system of ordinary differential equations

dx

2a = dy

−axx − 2axy
= dF

−4ax
. (3.18)

The general solution of (3.18) can be written in the form

F = 1
a2h(ω(x, y)),

where ω = 2ay + ax, h(ω) is a smooth function.

Therefore this proves that the equation

yx − y2 + v(x) = 1
a2h(ω(x, y)), (3.19)

where h is an arbitrary smooth function is invariant under one-parameter Lie group of
transformations with infinitesimal generator (3.12). It is well known that if the first
order ordinary differential equation is invariant with respect to one-parameter Lie
group, then it can be integrated by quadrature [6]. By using the symmetry integration
method we introduce new variables

t =
∫

dx

2a(x) , φ = 2a(x)y + ax(x) (3.20)

satisfying the conditions
X(t) = 1, X(φ) = 0,

where φ = φ(t). We next find y from (3.20)

y(x) = 1
2a(x)φ(t) − ax(x)

2a(x) , (3.21)

and calculate
yx = − ax

2a2φ+ 1
4a2φt − axx

2a + a2
x

2a2 . (3.22)

Substituting (3.21), (3.22) into (3.19) yields

φt − φ2 + a2
x − 2aaxx + 4a2v = h(φ).

Note that

d

dx

(
a2
x − 2aaxx + 4a2v

)
= 2axaxx − 2axaxx − 2aaxxx + 8aaxv + 4a2v

= 2a(−axxx + 4axv + 2avx) = 0,
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by (3.11). Therefore

a2
x − 2aaxx + 4a2v = M, M ∈ R.

This gives

φt − φ2 +M = h(φ).

This equation is integrable by quadratures, with

∫
dφ

h(φ) + φ2 −M
= t+ C1

for some constant C1. Analysis similar to that in solving equation (2.20) shows that if
c(x) satisfies partial differential equation (2.16), where v(x) = cx or if v(x) satisfies
ordinary differential equations (2.35) or (2.36), then equation (3.19) is integrable by
quadratures. One can also obtain higher order differential equations from (3.19)
by using operator of invariant differentiation just as in the case of equation (2.26).
Moreover, the method of lowering of the order of differential equations is also applicable
in this case.

4. CONCLUSIONS

We used the symmetry method for finding functions u or v for which equation
(2.20), (2.31), (2.33), and (3.19) are integrable by quadratures. We proved that if we
can determine solutions u or v of stationary partial differential equation (2.16) or
(2.35), (2.36) integrable by inverse scattering transform method explicitly, then the
computation of solutions to differential equations (2.20), (2.31), (2.33), and (3.19)
reduces to quadratures. In particular, we have obtained integrable Ermakov equation
(2.32). We believe that these results are novel.

Note that choosing f(z) = λ = const in (2.20) we obtain the equation with arbitrary
parameter λ. We also present the symmetry integration method for these equations and
obtain the general solutions in explicit form. Note that if we construct the solution of
equation in the form w = φ(x+ z), then we obtain the solutions for which wx satisfies
the stationary KdV equation. By using operator of invariant differentiation we have
also constructed higher order differential equations (2.26) admitting one-parameter Lie
group. Therefore their order can be lowered by one. In the framework of the approach
we obtained the similar results for generalized Riccati equations.

A wide class of the second-order linear ordinary differential equations which appear
in the Mathematical Physics problems in nonhomogeneous media can be reduced to
the form (1.2). Therefore, our results can be used in solving these equations. Moreover,
equations of the form (2.20) are used for constructing the Lax pairs for integrable
nonlinear partial differential equations.
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