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Communicated by Aurelian Gheondea

Abstract. The A-model for finite rank singular perturbations of class H−m−2 r H−m−1,
m ∈ N, is considered from the perspective of boundary relations. Assuming further that the
Hilbert spaces (Hn)n∈Z admit an orthogonal decomposition H−n ⊕H+

n , with the corresponding
projections satisfying P±n+1 ⊆ P±n , nontrivial extensions in the A-model are constructed for
the symmetric restrictions in the subspaces.
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1. INTRODUCTION

Consider a lower semibounded self-adjoint operator L in a Hilbert space H0. Let
Hn+1 ⊆ Hn, n ∈ Z, be the scale of Hilbert spaces associated with L. Let also {ϕσ} be
the family of linearly independent functionals of class H−m−2 rH−m−1, m ∈ N, where
σ ranges over an index set S of dimension d ∈ N. Then, the symmetric restriction
Lmin ⊆ L to the domain of f ∈ Hm+2 such that 〈ϕσ, f〉 = 0, for all σ, is an essentially
self-adjoint operator in H0. Sequentially, traditional methods, see e.g. [2, 20], for
describing nontrivial extensions of Lmin (i.e. perturbations of L) in H0 are insufficient.
The classical examples of higher order singular perturbations are the point-interactions
modeled by the Dirac distribution and its derivatives.

To construct nontrivial realizations of Lmin in Hilbert or Pontryagin spaces, one
considers instead the so-called cascade (A or B) models [15–17,25,27] and the peak
model [24, 26]. In these models the Weyl (or Krein Q-) function is the sum of
a Nevanlinna function associated with Lmin in Hm and a generalized Nevanlinna
function associated with a certain multiplication operator in a reproducing kernel
Pontryagin space [5, Theorem 4.10]; more on reproducing kernel spaces can be found
in [3, 6, 7, 10]. Successively, singular perturbations are interpreted by means of the
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compression to the reference space H0 of the resolvent of an appropriate extension in
the model space.

Here we study the cascade A-model for rank-d higher order singular perturbations.
More precisely, for a specific choice of model parameters, we extend the main results
obtained in [15] to the case of an arbitrary d ∈ N (see Theorem 3.2). The exposition
utilizes the techniques based on the notion of boundary triples [11–14]. Then, by
assuming that the Hilbert space Hn is expressed as the Hilbert sum H−n ⊕ H+

n of its
subspaces H±n , we examine nontrivial realizations that account for the above described
Hilbert space decomposition (Theorem 7.3). We assume that the corresponding or-
thogonal projections P±n from Hn onto H±n satisfy the inclusions P±n+1 ⊆ P±n . This
further implies that the subspaces H±n reduce the self-adjoint restriction to Hn+2 of L
(Theorem 5.6). As a natural consequence of our hypothesis is that the Weyl function
associated with the symmetric operator Lmin in Hm is the sum of the Weyl functions
associated with the symmetric restrictions to H±m of Lmin.

The projection of the model to the subspaces just described has a natural application
in quantum mechanics when, for example, one wishes to account for the contribution to
the eigenvalues of antisymmetric (resp. symmetric) eigenfunctions. For instance, if one
takes L such that Hn = Wn

2 ⊗C4, where Wn
2 is the Sobolev space (Example 4.3), then

the projections P−n and P+
n onto the spaces of antisymmetric spin states,Wn

2 ⊗C1, and
onto the spaces of symmetric spin states, Wn

2 ⊗ C3, satisfy our hypothesis. However,
a concrete application of the present model will be demonstrated elsewhere.

Another motivation for considering the A-model, as opposed to the peak model,
arises from an attempt to elude a too restrictive condition imposed on the Gram
matrix G = (Gσj,σ′j′) ∈ [Cmd] of the peak model; namely, G must be diagonal in
j ∈ {1, . . . ,m}. Although initially contemplated as an advantageous feature [26], this
restriction is not satisfied for some operators L, for m > 1, for a simple reason that
the eigenvectors of the triplet adjoint of Lmin for the Hilbert triple Hm ⊆ H0 ⊆ H−m
are not necessarily orthogonal for distinct eigenvalues (Example 3.4).

2. PRELIMINARIES

Let A be a densely defined, closed, symmetric operator in a Pontryagin space H (see
e.g. [4, Sec. 1.9]) with an indefinite metric [·, ·]H. Let A∗ be the adjoint in H of A.
A triple (H,Γ0,Γ1), where H = (H, 〈·, ·〉H) is a Hilbert space and Γ: f 7→ (Γ0f,Γ1f)
is the operator from domA∗ to H2(:= H×H), is called an ordinary boundary triple
(OBT) for A∗ if Γ is surjective and the Green identity holds:

[f, g]A∗ := [f,A∗g]H − [A∗f, g]H = 〈Γ0f,Γ1g〉H − 〈Γ1f,Γ0g〉H

for all f, g ∈ domA∗; see e.g. [8, Definition 2.1]. It is shown that an OBT for
A∗ in a Pontryagin space (or more generally in a Krein space) exists iff A admits
a self-adjoint extension in H (cf. [5, Proposition 3.4], [9, p. 192]).
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If the assumption on the density of domA is dropped off, that is, if A∗ is a linear
relation [18,22], then an OBT (H,Γ0,Γ1) for A∗ is defined by considering Γi, i ∈ {0, 1},
as a mapping from A∗ onto H. Sequentially, the Green identity reads

[f, g′]H − [f ′, g]H = 〈Γ0f̂ ,Γ1ĝ〉H − 〈Γ1f̂ ,Γ0ĝ〉H

for f̂ = (f, f ′), ĝ = (g, g′) ∈ A∗. The reader may also consult [9, Definition 6], as well
as [21, Definition 2.3], [14, Definition 7.11] in the Hilbert space case. In what follows
we frequently identify operators with their graphs. Then the present definition of
an OBT reduces to the previous definition as long as A becomes densely defined.

A proper extension AΘ of A, i.e. such that A ⊆ AΘ ⊆ A∗, is uniquely determined
by a linear relation Θ in H via Θ = ΓAΘ with AΘ = {f̂ ∈ A∗ |Γf̂ ∈ Θ}; see
e.g. [9, Proposition 2], [21, Proposition 2.5], [14, Proposition 7.12], [8, Proposition 2.1].
In particular, a distinguished self-adjoint extension A0 := A∗ | ker Γ0 corresponds
to a self-adjoint linear relation Θ = {0} × H (and similarly for the transversal one,
corresponding to Θ = H×{0}). A self-adjoint linear relation in a Krein (or Pontryagin)
space may have an empty resolvent set (see e.g. [5, Example 3.7]). However, if there
exists at least one self-adjoint extension of A, say Ã, whose resolvent set res Ã is
nonempty, then there exists an OBT for A∗ such that Ã = A0.

Let A be a closed symmetric operator as above. Let Nz(A∗) := ker(A∗ − z), z ∈ C,
denote the eigenspace of a linear relation A∗ (and similarly for other linear relations
and operators). Let N̂z(A∗) be the set of the pairs (fz, zfz) with fz ∈ Nz(A∗). Let
also π1 denote the orthogonal projection in the Hilbert sum of a Hilbert space with
itself onto the first factor. Assume that the resolvent set resA0 6= ∅. The γ-field γ
and the Weyl function M corresponding to the OBT (H,Γ0,Γ1) for A∗ are bounded
operator valued functions defined by [9, Definition 7], [21, Definition 2.6]

γ(z) := π1γ̂(z), γ̂(z) := (Γ0 | N̂z(A∗))
−1, M(z) := Γ1γ̂(z)

for z ∈ resA0. Then the resolvent of a closed proper extension AΘ, i.e. such
that Θ is closed, is represented by the Krein–Naimark resolvent formula (see e.g. [9, The-
orem 4], [8, Theorem 2.1])

(AΘ − z)−1 = (A0 − z)−1 + γ(z)(Θ−M(z))−1γ(z)∗

for z ∈ resA0 ∩ resAΘ. Moreover, z ∈ resAΘ iff 0 ∈ res(Θ−M(z)).
Let H = (H, [·, ·]H) be a Krein (or in particular Pontryagin) space, let

H = (H, 〈·, ·〉H) be a Hilbert space. Consider a linear relation Γ ⊆ H2 × H2.
Let Γ[+] be its Krein space adjoint:

Γ[+] := {((h◦, h′◦), (g, g′)) ∈ H2 × H2 |
∀((f, f ′), (h, h′)) ∈ Γ : [f, g′]H − [f ′, g]H = 〈h, h′◦〉H − 〈h′, h◦〉H}.

Then Γ is said to be an isometric (resp. unitary) linear relation if the inverse linear
relation Γ−1 ⊆ Γ[+] (resp. Γ−1 = Γ[+]). If Γ is unitary and additionally single-valued
(i.e. an operator identified with its graph), then by [12, Corollary 2.4(i)] ranΓ = H2
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(the closure of the range). If, moreover, dom Γ is closed, then also ran Γ is closed, and
is given by ran Γ = H2 ([12, Corollary 2.4(iii)]).

Throughout we use quite standard notation for the domain domA, the range ranA,
the kernel kerA, and the multivalued part mulA of a linear relation A. The resolvent
set of A is denoted by resA, the point spectrum by σp(A).

3. THE A-MODEL FOR FINITE RANK PERTURBATIONS

Let Hn+1 ⊆ Hn, n ∈ Z, be the scale of Hilbert spaces associated with a lower
semibounded self-adjoint operator L defined in the reference Hilbert space H0 with
domain domL = H2. The scalar product in Hn is defined via the scalar product 〈·, ·〉0
in H0 by scaling according to

〈·, ·〉n := 〈bn(L)1/2·, bn(L)1/2·〉0 , bn(L) := (L− z1)n.

The number z1 ∈ resL ∩ R is fixed and referred to as the model parameter. Let
us mention that the above definition of the Hn-scalar product allows us to avoid
extra technicalities arising when, for example, one chooses bn(L) as the product of
(L − zj) for j ∈ {1, . . . , n} for not necessarily identical model parameters zj , as is
done in [15] (where zj = −aj), or when, on top of that, one assumes L not necessarily
semibounded, in which case one should put |L| in bn(L) instead of L. On the other
hand, our definition of the scalar product predefines the inner structure of the model
space (to be defined later); namely, it is shown in [15, Theorem 3.2(iii)] for d = 1
that the present choice of the model parameters (i.e. aj = −z1 for all j) leads to an
indefinite inner product space, as the model space. Let us moreover advertise that the
current definition of the unitary operator bn(L)1/2 (from Hn to H0) is not allowed in
the peak model [26], which is a purely Hilbert space model (cf. [15, Theorem 3.2(ii)]).

To L = L0 one associates an operator Ln := L |Hn+2 in Hn. Then Ln is self-adjoint
in Hn, and moreover Ln+1 ⊂ Ln and resLn = resL (cf. Section 5). For notational
simplicity we drop-off the subscript when no confusion can arise.

Let us fix m ∈ N. Let Lmax denote the triplet adjoint of Lmin for the Hilbert triple
Hm ⊂ H0 ⊂ H−m; see also [15, Theorem 2.1], [26, Definition 3.1], [24, Proposition 4.2].
The operator Lmax extends L−m+2 to (the direct sum)

dom(Lmax) = H−m+2 uNz(Lmax), z ∈ resL.

Nz(Lmax) is the linear span of the singular elements {gσ(z) ∈ H−m r H−m+1}, each
being defined so that bm(L)−1gσ(z) ∈ HmrHm+1 is a deficiency element of the adjoint
L∗min in Hm of a densely defined, closed, symmetric operator Lmin in Hm with defect
numbers (d, d). Let us recall that the domain of Lmin is parametrized via the family
of linearly independent functionals {ϕσ ∈ H−m−2 r H−m−1} according to 〈ϕσ, f〉 = 0
for f ∈ Hm+2; the duality pairing 〈·, ·〉 between H−m−2 and Hm+2 is defined via the
H0-scalar product in a usual way (cf. [2, Eq. (1.17)]). In the sequel we also use the
vector notation 〈ϕ, ·〉 = (〈ϕσ, ·〉) : Hm+2 → Cd, and similarly for other duality pairings.
In terms of the functionals {ϕσ} the eigenvectors of Lmax are then given (in the
generalized sense) by gσ(z) := (L− z)−1ϕσ.
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As the space H−m in which Lmax acts is too large, following the lines of [15]
one further considers Lmax in a finite-dimensional extension of Hm, referred to as an
intermediate (or model) space. We now discuss the construction of the space in more
detail.

Consider an md-dimensional linear space

KA := span{hα |α = (σ, j) ∈ S × J}, J := {1, 2, . . . ,m}

(S is an index set of dimension d) spanned by the elements

hσj := (L− z1)−jϕσ ∈ H−m−2+2j r H−m−1+2j .

Note that hσ1 = gσ(z1) ∈ Nz1(Lmax). An element k ∈ KA ⊆ H−m is thus of the form

k =
∑

α

dα(k)hα, dα(k) ∈ C.

Since the system {hα} is linearly independent, the Gram matrix

G̃A = ([G̃A]αα′) ∈ [Cmd], [G̃A]αα′ := 〈hα, hα′〉−m
is positive definite, and one establishes a bijective correspondence

KA 3 k ↔ d(k) = (dα(k)) ∈ Cmd.

Observe that KA ∩ Hm−1 = {0}.
Define a linear space

HA := (Hm u KA, [·, ·]A)

with an indefinite metric

[f + k, f ′ + k′]A := 〈f, f ′〉m + 〈d(k),GAd(k′)〉Cmd

for f, f ′ ∈ Hm; k, k′ ∈ KA. An Hermitian matrix GA = ([GA]αα′) ∈ [Cmd] is referred to
as the Gram matrix of the A-model. The model space HA is a Hilbert space if GA ≥ 0
and a Pontryagin space otherwise. Let also

H′A := (Hm ⊕ Cmd, [·, ·]′A)

with an indefinite metric

[(f, ξ), (f ′, ξ′)]′A := 〈f, f ′〉m + 〈ξ,GAξ
′〉Cmd

for (f, ξ), (f ′, ξ′) ∈ Hm ⊕ Cmd. The isometric isomorphism (unitary operator) from
HA onto H′A, realized via the above established bijective correspondence KA ↔ Cmd,
is denoted by UA.

The construction of nontrivial extensions to HA of Lmin relies upon the following
lemma; cf. [15, Eq. (2.3)].
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Lemma 3.1. The restriction to HA of Lmax is the operator Amax given by

domAmax =
{
f# + hm+1(c) + k | f# ∈ Hm+2 , k ∈ KA , hm+1(c) :=

∑

σ

cσhσ,m+1,

c = (cσ) ∈ Cd, hσ,m+1 := bm+1(L)−1ϕσ ∈ Hm r Hm+1

}
,

Amax(f# + hm+1(c) + k) = Lf# + z1hm+1(c) + k̃, k̃ ∈ KA,

d(k̃) := Mdd(k) + η(c), η(c) := (δjmcσ) ∈ Cmd,

where the matrix Md := M⊕ . . .⊕M (d times) is the matrix direct sum of d matrices
M = (Mjj′) ∈ [Cm] defined by

Mjj′ := δjj′z1 + δj+1,j′ , j ∈ J r {m}, j′ ∈ J

and Mmj′ := δj′mz1, j′ ∈ J . For m = 1, one puts M := z1.
Proof. By definition, the action of Lmax on f+k ∈ HmuKA is given (in the generalized
sense) by

Lmax(f + k) = Lf +
∑

σ

z1dσ1(k)hσ1 +
∑

σ

m∑

j=2
dσj(k)L(L− z1)−jϕσ

= Lf + z1k +
∑

σ

m−1∑

j=1
dσ,j+1(k)hσj .

Now Lf ∈ Hm−2, thus the range restriction Lmax(f + k) ∈ Hm u KA implies that
f is of the form f# + g for some f# ∈ Hm+2 and g ∈ Hm such that Lg ∈ HA. By
noting that Lhm+1(c) = z1hm+1(c)+hm(c) (hm(c) ∈ KA is defined similar to hm+1(c))
for an arbitrary c ∈ Cd, one concludes that g = hm+1(c), and the required result
follows.

Now we state the main realization theorem in the A-model.
Theorem 3.2. Assume that an invertible Hermitian matrix GA satisfies the commu-
tation relation

GAMd = M∗dGA. (3.1)
Then the triple (Cd,ΓA

0 ,ΓA
1 ), where ΓA : f 7→ (ΓA

0 f,ΓA
1 f) from domAmax to Cd × Cd

is defined by

ΓA
0 (f# + hm+1(c) + k) :=c,

ΓA
1 (f# + hm+1(c) + k) := 〈ϕ, f#〉 − [GAd(k)]m

with
[GAd(k)]m := ([GAd(k)]σm) ∈ Cd

and f# ∈ Hm+2, k ∈ KA, c ∈ Cd, is an OBT for the adjoint A∗min = Amax of a densely
defined, closed, symmetric operator Amin = Amax | ker ΓA in HA.
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Moreover, for a (closed ) linear relation Θ in Cd, a proper extension AΘ of
Amin is the restriction of Amax to the set of f ∈ domAmax such that ΓAf ∈ Θ.
The Krein–Naimark resolvent formula reads

(AΘ − z)−1 = (A0 − z)−1 + γA(z)(Θ−MA(z))−1γA(z)∗

for z ∈ resA0 ∩ resAΘ. The resolvent of a distinguished self-adjoint extension
A0 := A{0}×Cd is given by

(A0 − z)−1 = U∗A[(L− z)−1 ⊕ (Md − z)−1]UA

for z ∈ resA0 = resLr {z1}. The γ-field γA and the Weyl function MA corresponding
to (Cd,ΓA

0 ,ΓA
1 ) are given by

γA(z)Cd = Nz(Amax) =
{∑

σ

cσFσ(z) | cσ ∈ C
}
, Fσ(z) := gσ(z)

(z − z1)m

and
MA(z) = q(z) + r(z) on Cd

for z ∈ resA0. The Krein Q-function q of Lmin is defined by

q(z) = ([q(z)]σσ′) ∈ [Cd], [q(z)]σσ′ := (z − z1) 〈ϕσ, (L− z)−1hσ′,m+1〉

for z ∈ resL, and the generalized Nevanlinna function r is defined by

r(z) = ([r(z)]σσ′) ∈ [Cd], [r(z)]σσ′ := −
∑

j

[GA]σm,σ′j
(z − z1)m−j+1

for z ∈ Cr {z1}.
Proof. By Lemma 3.1, the boundary form of Amax is given by

[f, g]Amax = 〈d(k), (GM − G∗M)d(k′)〉Cmd + 〈ΓA
0 f,ΓA

1 g〉Cd − 〈ΓA
1 f,ΓA

0 g〉Cd

with GM := GAMd, where f = f# +hm+1(c)+k ∈ domAmax, g = g# +hm+1(c′)+k′ ∈
domAmax, f#, g# ∈ Hm+2, c, c′ ∈ Cd, k, k′ ∈ KA. Assuming that

kerGA = {0} and M∗dGACmd ⊆ ranGA

the adjoint Amin := A∗max in HA is given by

domAmin = ker ΓA,

Amin(f# + k) = Lf# +
∑

α

[G−1
A M∗dGAd(k)]αhα

and hence the boundary form of Amin reads

[f, g]Amin = 〈d(k), (G∗M − GM)d(k′)〉Cmd
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with f = f# + k ∈ domAmin and g = g# + k′ ∈ domAmin as above. One verifies that
the adjoint A∗min = Amax, and hence Amax is closed in HA.

If (3.1) holds, the boundary form of A∗min satisfies an abstract Green identity. Thus,
since ΓA is single-valued and surjective, the triple (Cd,ΓA

0 ,ΓA
1 ) is an OBT for A∗min.

The eigenvalue equation for Amax yields

f# = (z − z1)(L− z)−1hm+1(c), d(k) = −(Md − z)−1η(c) (3.2)

for f# + hm+1(c) + k ∈ domAmax as above. Now

[(Md − z)−1η(c)]σj =
∑

σ′

[(Md − z)−1]σj,σ′mcσ′

with c = (cσ) ∈ Cd and with

[(Md − z)−1]σj,σ′m = δσσ′ [(M− z)−1]jm, [(M− z)−1]jm = −1
(z − z1)m−j+1 .

Thus, by noting that

(L− z)−1(L− z1)−m +
∑

j

(L− z1)−j(z − z1)−m+j−1 = (L− z)−1(z − z1)−m

one concludes that the eigenvector f# + hm+1(c) + k ∈ Nz(Amax) is given as stated
in the theorem.

Finally, the Weyl function

MA(z)c = 〈ϕ, f#〉 − [GAd(k)]m

for f# and k as in (3.2). The first term on the right-hand side defines q(z)c and
the second term defines r(z)c.

Let us mention that the Q-function q is actually the Weyl function associated with
a certain boundary triple for the adjoint L∗min in Hm; see Corollary 7.4 below. While q
is a Nevanlinna function, r is a generalized Nevanlinna function, and the Nevanlinna
class [3, 7] depends on the particular choice of the Gram matrix GA.

The matrix GM := GAMd is Hermitian iff

[GA]σj,σ′j′ = 0, [GA]σj,σ′m = [GA]σ′m,σj = [GA]σ,j+1;σ′,m−1 (3.3)

for j ∈ J r {m}, j′ ∈ {1, . . . ,m − j} and m ≥ 2. For m = 1, however, the matrix
GM = z1GA is automatically Hermitian.

Due to (3.3), several remarks are in order. First one verifies that r is symmetric
with respect to the real axis, that is, r(z)∗ = r(z), because [GA]σm,σ′j = [GA]σj,σ′m
(j ∈ J) by (3.3). Note that q(z)∗ = q(z) is clear from the definition. Next, one observes
that the Gram matrix G̃A does not satisfy (3.1) for m ≥ 2, because [G̃A]σ1,σ1 > 0. This
shows that, in order use Theorem 3.2 for m ≥ 2, one cannot define the Gram matrix
of the A-model in a way that is done in the peak model.
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Remark 3.3. Let us recall that in the peak model the parameters {aj} are all
necessarily distinct. However, putting aj = −z1 + δj−1 for δj 6= 0 and j ∈ J r {1}
and m ≥ 2, and formally taking the limits δj → δj−1, as well as δ1 → 0, one can
show by induction that the Q-function associated with the Gram matrix G of the
peak model approaches r, up to O(δ1), with [GA]σm,σ′j = [G̃A]σm,σ′j . Notice that
[G̃A]σm,σ′j , with m ≥ 2, satisfies the second relation in (3.3). On the other hand,
taking the above described limits, the matrix element Gσ1,σ′2 = [G̃A]σ1,σ′1 + O(δ1),
so the requirement that G must be diagonal in j – which is essential in applying
the extension theory of symmetric operators in the peak model – fails for m ≥ 2.
For m = 1, both models produce the same Nevanlinna function r(z) = GA/(z1 − z),
provided that GA = G̃A(∈ [Cd]).

Example 3.4. We briefly demonstrate by a concrete example the case when the
eigenvectors {gσ(z)} of Lmax are not orthogonal for distinct z, that is, the exam-
ple when the peak model cannot be applied. We consider the two-particle Rashba
spin-orbit-coupled operator L in H0 = L2(R6) ⊗ C4 with point-interaction between
the two cold atoms [23]. The operator is nonseparable in the center-of-mass coor-
dinate system (x,X) ∈ R3 × R3 (x is the distance between the two atoms, X is
the center-of-mass coordinate) for a nonzero spin-orbit-coupling strength ε. The
interaction is modeled by the Dirac distribution ϕσ ∈ H−4 r H−3 concentrated at
x = 0: 〈ϕσ, f〉 = Nσfσ(0, X), f =

∑
σ fσ ⊗ |σ〉 ∈ H4, Nσ > 0 is the normalization

constant, {|σ〉} is an orthonormal basis of C4. Thus we have m = 2 and d = 4.
For simplicity, we assume that ε is negligibly small. In this regime L approximates, up
to O(ε), the operator (−2∆x − 1

2∆X)⊗ IC4 (cf. [1, Eq. (8)]), where ∆x (resp. ∆X)
is the Laplacian in x ∈ R3 (resp. X ∈ R3). Then the distribution gσ(z) ∈ H−2 r H−1
admits a relatively simple form

gσ(z) = − Nσ
(2π)3

zK2(|· −W0|
√−z)

|· −W0|2
⊗ |σ〉 , W0 = (0, X), z ∈ Cr [0,∞]

where K2 is the Macdonald function of second order. Because m = 2, it suffices to
have in the (peak) model two distinct model parameters z1, z2 < 0 (or else a1, a2 > 0).
Because now b2(L) = (L− z1)(L− z2), the Gram matrix element Gσ1,σ2 reads

Gσ1,σ2 := 〈gσ(z1), gσ(z2)〉−2 = 〈gσ(z1), b2(L)−1gσ(z2)〉0

=
〈
ϕσ, [(L− z1)(L− z2)]−2ϕσ

〉
=
〈
ϕσ,

∂2

∂u ∂v
[(L− u)(L− v)]−1ϕσ | u=z1

v=z2

〉

=
〈
ϕσ,

∂2

∂u ∂v

gσ(u)− gσ(v)
u− v | u=z1

v=z2

〉

=− N2
σ

(2π)3 lim
r→0

1
r2

∂2

∂u ∂v

uK2(r
√−u)− vK2(r

√−v)
u− v | u=−a1

v=−a2

= N2
σ

(2π)324
2a1a2 log(a1/a2)− a2

1 + a2
2

(a2 − a1)3

up to O(ε2) (a more accurate computation of Gσ1,σ2 shows that the term O(ε) vanishes).
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4. PROJECTIONS

In the remaining part of the present paper we develop the A-model in the subspaces

H′ −A := (H−m ⊕ Cmd, [·, ·]′A), H′+A := (H+
m ⊕ Cmd, [·, ·]′A)

of H′A, by assuming that the Hilbert space Hm = H−m ⊕H+
m is the Hilbert (orthogonal)

sum of its subspaces H±m. The analogue of Theorem 3.2, in the case when H±n+1 ⊆ H±n
(∀n ∈ Z) densely, is stated in Theorem 7.3. First we discuss the properties of the
projections that we use later on, then we consider the restrictions to H±n of Ln, and
then finally we describe the min-max operators defined in H′ ±A . The principal difference
between the case of the minimal operator Amin considered in HA and its analogue
A−min (resp. A+

min) considered in H′ −A (resp. H′+A ) is that A−min (resp. A+
min) becomes

nondensely defined in general, that is, the corresponding maximal operator A−max
(resp. A+

max) is a linear relation.
Let P−n be an orthogonal projection in Hn onto a subspace H−n ⊆ Hn and let

P+
n := IHn

− P−n , an orthogonal projection in Hn onto H+
n := (H−n )⊥Hn . Here and

elsewhere the subscript in ⊥Hn
indicates with respect to which Hilbert space one takes

the orthogonal complement.

Lemma 4.1. P−n is an orthogonal projection in Hn onto a subspace H−n iff

P−0 (n) := bn(L)1/2P−n bn(L)−1/2

is an orthogonal projection in H0 onto a subspace

H−0 (n) := P−0 (n)H0 = bn(L)1/2H−n .

If this is the case, then

P+
0 (n) := IH0 − P−0 (n) = bn(L)1/2P+

n bn(L)−1/2

is an orthogonal projection in H0 onto a subspace

H+
0 (n) := H−0 (n)⊥H0 = P+

0 (n)H0 = bn(L)1/2H+
n .

Proof. Because
P−0 (n)2 = bn(L)1/2(P−n )2bn(L)−1/2

P−0 (n) is a projection iff so is P−n .
We show that the adjoint P−0 (n)∗ of P−0 (n) in H0 is given by

P−0 (n)∗ = bn(L)1/2P−∗n bn(L)−1/2 (4.1)

on H0, where P−∗n is the adjoint of P−n in Hn; then it follows that P−0 (n) is self-adjoint
in H0 iff so is P−n in Hn: The graph of the adjoint P−0 (n)∗ in H0 consists of (y, x) ∈ H2

0
such that (∀u ∈ H0)

〈u, x〉0 = 〈P−0 (n)u, y〉0 .
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Every u is of the form u = bn(L)1/2f with some f ∈ Hn. Then

〈u, x〉0 = 〈f, bn(L)−1/2x〉n

and
〈P−0 (n)u, y〉0 = 〈P−n f, bn(L)−1/2y〉n = 〈f, P−∗n bn(L)−1/2y〉n

from which the claim follows. The remaining statements are verified straightfor-
wardly.

The present lemma allows us to freely transfer between the Hn-space representation
and the H0-space representation. In particular H−0 (0) = H−0 , but in general H−0 (n) 6= H−0
for n 6= 0. The equality holds for all n iff

P−n = bn(L)−1/2P−0 bn(L)1/2 (4.2)

on Hn; in this case one would have H−n+l = bl(L)−1/2H−n for l ∈ N0 (cf. Example 4.5).
Moreover, P±0 (n)P∓0 (n+l) 6= 0 in general. However, the product of projections vanishes
for l ∈ 2Z, provided that P−n+1 ⊆ P−n ; see Lemma 4.4 below.

Let n ∈ Z, l ∈ N0 as above and let

H−n,l := P−n Hn+l .

Throughout we assume that
H−n,l ⊆ Hn+l .

Then
H−n,l = H−n ∩ Hn+l .

The latter equality follows from the following observations. The set H−n ∩Hn+l consists
of f ∈ H−n such that f ∈ Hn+l. Then P−n f = f ∈ H−n,l, and therefore H−n ∩ Hn+l

is the set of f ∈ H−n,l such that f ∈ Hn+l. By the above assumption this yields
H−n ∩ Hn+l = H−n,l.

Using the definition of the projection P−0 (n) it follows that

H−n,l = bn(L)−1/2H−l (n), H−l (n) := P−0 (n)Hl = H−0 (n) ∩ Hl

and hence H−l (n) is a subset of Hl. Similarly, one defines H+
n,l := P+

n Hn+l and
H+
l (n) := P+

0 (n)Hl, with the assumption H+
n,l ⊆ Hn+l. We note that

P s0 (n)P s
′

0 (n′) = P s
′

0 (n′)P s0 (n), s, s′ ∈ {−,+}, n, n′ ∈ Z

and that
Hsl (n) ∩ Hs

′
0 (n′) = Hsl (n) ∩ Hs

′
l (n′)

for l ∈ N0.
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In general H−n,l 6= H−n+l, but the following holds.

Lemma 4.2. Let n ∈ Z, l ∈ N0. H−n,l (resp. H
−
l (n)) is dense in H−n (resp. H−0 (n)).

Moreover H−n,l = H−n+l iff H−n+l is dense in H−n , or equivalently, iff P−n+l ⊆ P−n
(in fact, if H−n+l ⊆ H−n densely, then H+

n+l ⊆ H+
n densely and P±n+l ⊆ P±n ; conversely,

if P−n+l ⊆ P−n , then P+
n+l ⊆ P+

n and H±n+l ⊆ H±n densely); if this is the case then

P−0 (n+ l) ⊆ bl(L)1/2P−0 (n)bl(L)−1/2

and hence H−0 (n+ l) = bl(L)1/2H−l (n) (and similarly for P+
0 (n+ l) and H+

0 (n+ l)).
Proof. The orthogonal complement (H−n,l)⊥Hn in Hn of H−n,l consists of all g ∈ Hn such
that (∀f ∈ Hn+l)

0 = 〈P−n f, g〉n = 〈f, P−n g〉n .
Because Hn+l is dense in Hn, this implies P−n g = 0; hence (H−n,l)⊥Hn = H+

n . This
shows that H−n,l ⊆ H−n densely in ‖·‖n-norm. Similarly, the orthogonal complement
H−l (n)⊥H0 in H0 of H−l (n) consists of all v ∈ H0 such that (∀u− ∈ H−l (n)) 0 = 〈u−, v〉0.
Now u− is of the form u− = bn(L)1/2P−n f with some f ∈ Hn+l, so

〈u, v〉0 = 〈bn(L)1/2P−n f, v〉0 = 〈P−n f, bn(L)−1/2v〉n = 〈f, P−n bn(L)−1/2v〉n .

This implies P−n bn(L)−1/2v = 0, and hence

H−l (n)⊥H0 = bn(L)1/2H+
n = H+

0 (n).

One concludes that H−l (n) ⊆ H−0 (n) densely in ‖·‖0-norm.
Next one shows that H−n+l ⊆ H−n densely iff P−n+l ⊆ P−n . The orthogonal com-

plement (H−n+l)⊥Hn in Hn of H−n+l is the set of all g ∈ Hn such that (∀f ∈ Hn+l)
0 = 〈P−n+lf, g〉n. If P

−
n+l ⊆ P−n , then one arrives at the previously considered case,

namely, (H−n+l)⊥Hn = (H−n,l)⊥Hn ; hence H−n+l ⊆ H−n densely. Moreover, P−n+l ⊆ P−n
implies that also H+

n+l ⊆ H+
n densely: (H+

n+l)⊥Hn is the set of all g ∈ Hn such that
(∀f ∈ Hn+l)

0 = 〈P+
n+lf, g〉n = 〈f, g〉n − 〈P−n+lf, g〉n ,

but
〈P−n+lf, g〉n = 〈P−n f, g〉n = 〈f, P−n g〉n ,

so
0 = 〈P+

n+lf, g〉n = 〈f, P+
n g〉n .

This shows (H+
n+l)⊥Hn = H−n . Conversely, (H−n+l)⊥Hn = H+

n implies that (∀f ∈ Hn+l)
(∀g ∈ Hn)

0 = 〈P−n+lf, P
+
n g〉n = 〈P+

n P
−
n+lf, g〉n

hence P+
n P
−
n+l = 0. On the other hand, (H−n+l)⊥Hn = H+

n also implies that
(H+

n+l)⊥Hn = H−n : (H+
n+l)⊥Hn is the set of all g ∈ Hn such that (∀f ∈ Hn+l)

0 = 〈P+
n+lf, g〉n = 〈f, g〉n − 〈P−n+lf, g〉n .
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Now
〈P−n+lf, g〉n = 〈P−n+lf, P

−
n g〉n + 〈P−n+lf, P

+
n g〉n

and
〈P−n+lf, P

+
n g〉n = 〈P+

n P
−
n+lf, g〉n = 0,

so

0 = 〈P+
n+lf, g〉n = 〈f, g〉n − 〈P−n+lf, P

−
n g〉n = 〈P−n+lf, g〉 − 〈P−n+lf, P

−
n g〉n .

As a result (H+
n+l)⊥Hn is the set of all g ∈ Hn such that (∀f− ∈ H−n+l) 0 = 〈f−, P+

n g〉n.
Because by hypothesis H−n+l is dense in H−n , this shows (H+

n+l)⊥Hn = H−n , as claimed.
Sequentially, (∀f ∈ Hn+l ∀g ∈ Hn)

0 = 〈P+
n+lf, P

−
n g〉n = 〈P−n P+

n+lf, g〉n
and hence P−n P+

n+l = 0. This together with P+
n P
−
n+l = 0 implies that P±n+l ⊆ P±n .

If P−n+l ⊆ P−n then H−n,l = H−n+l by definition. Assuming the converse, again by
definition one gets that P−n Hn+l = P−n+lHn+l, i.e. P−n |Hn+l

= P−n+l. This shows that
H−n,l = H−n+l iff H−n+l is dense in H−n , or equivalently, iff P−n+l ⊆ P−n .

Using P−n+l ⊆ P−n , for u ∈ H0

P−0 (n+ l)u = bn+l(L)1/2P−n+lbn+l(L)−1/2u

= bn+l(L)1/2P−n bn+l(L)−1/2u

= bl(L)1/2P−0 (n)bl(L)−1/2u

and this completes the proof of the lemma.

Example 4.3. Let Hn = Wn
2 (Rν), ν ∈ N, be the Sobolev space. Then we have

L2 = L2(Rν) = H0. Let L be such that

Hn = bn(L)−1/2(L2 ⊗ C4) = Hn ⊗ C4, n ∈ Z

and
P−n (Hn ⊗ C4) = Hn ⊗ C1 = H−n , P+

n (Hn ⊗ C4) = Hn ⊗ C3 = H+
n .

Then P−n+1 ⊆ P−n , and similarly for P+
n . The subspaces

H−0 (n) = bn(L)1/2(Hn ⊗ C1), H+
0 (n) = bn(L)1/2(Hn ⊗ C3).

For l ∈ N0, the subset

H−n,l = (Hn ⊗ C1) ∩ (Hn+l ⊗ C4) = Hn+l ⊗ C1 = H−n+l

is dense in H−n ; and similarly for H+
n,l = H+

n+l ⊆ H+
n . Likewise, the subset

H−l (n) = [bn(L)1/2(Hn ⊗ C1)] ∩ (Hl ⊗ C4)
= bn(L)1/2[(Hn ⊗ C1) ∩ (Hn+l ⊗ C4)]
= bn(L)1/2(Hn+l ⊗ C1) = bl(L)−1/2H−0 (n+ l)

is dense in H−0 (n), and similarly for H+
l (n) ⊆ H+

0 (n).
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Due to the dense inclusion Hn+1 ⊆ Hn one also has the following result.
Lemma 4.4. Assume that P−n+1 ⊆ P−n for all n ∈ Z. Then

H−0 = H−0 (2n), H−0 (1) = H−0 (2n+ 1).

Proof. We show that H+
0 (n) = H+

0 (n − 2l) for n ∈ Z, l ∈ N0; by relabeling n − 2l
by n, the result extends to all l ∈ Z. Taking the orthogonal complements one deduces
an analogous result for H−0 (n).

We use two facts: that H+
0 (n) = kerP−0 (n) and that Hl ⊆ H0 densely for l ∈ N0.

The kernel of P−0 (n) consists of u ∈ H0 such that P−0 (n)u = 0; this is equivalent to
saying that (∀v ∈ H0) 〈v, P−0 (n)u〉0 = 0. By Lemma 4.2,

P−0 (n)u = bl(L)1/2P−0 (n− l)bl(L)−1/2u⇒ P−0 (n− l)bl(L)−1/2u = 0.

Thus for all v ∈ H0

0 = 〈v, P−0 (n)u〉0 = 〈v, P−0 (n− l)bl(L)−1/2u〉0
= 〈bl(L)−1/2P−0 (n− l)v, u〉0
= 〈P−0 (n− 2l)bl(L)−1/2v, u〉0 (by Lemma 4.2).

Since every v is of the form v = bl(L)1/2w with some w ∈ Hl, it follows that (∀w ∈ Hl)

0 = 〈P−0 (n− 2l)w, u〉0 = 〈w,P−0 (n− 2l)u〉0 .

Since Hl ⊆ H0 densely, the latter implies that P−0 (n− 2l)u = 0; hence

H+
0 (n) = kerP−0 (n) = kerP−0 (n− 2l) = H+

0 (n− 2l)

as claimed.

Thus, if the hypothesis of Lemma 4.4 holds, then the projections P−0 (n), n ∈ Z, are
in fact characterized by only two projections: P−0 = P−0 (2n) and P−0 (1) = P−0 (2n+ 1);
in this case P−n is as in (4.2) for n ∈ 2Z, and

P−n = bn(L)−1/2P−0 (1)bn(L)1/2

for n ∈ 2Z + 1. But the converse is not necessarily true in general.
Example 4.5. Let P−n be as in (4.2). Then P−0 (n) = P−0 for all n ∈ Z. Let l ∈ N0;
then

H−n,l := P−n Hn+l = bn(L)−1/2P−0 bn(L)1/2Hn+l = bn(L)−1/2H−0,l

while
H−n+l := P−n+lHn+l = bn(L)−1/2H−l .

Thus H−n,l = H−n+l iff
H−0,l(= P−0 Hl) = H−l (= P−l Hl)

or what is the same, iff P−0 ⊇ P−l .
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5. PROJECTED OPERATORS

Let n ∈ Z. By scaling every self-adjoint operator Ln in Hn admits the form

Ln = bn(L)−1/2Lbn(L)1/2, L = L0 (5.1)

on domLn = Hn+2. To every Ln one associates densely defined (Lemma 4.2) projected
operators

L−n := P−n Ln |H−n,2
, L+

n := P+
n Ln |H+

n,2

in H−n and H+
n , respectively. In analogy to (5.1), every operator L−n admits the form

L−n = bn(L)−1/2L−0 (n)bn(L)1/2, L−0 (n) := P−0 (n)L |H−2 (n)

and similarly for L+
n . The operators L±0 (n) are considered in H±0 (n), and hence they

are densely defined.
Using H−0 (n) := P−0 (n)H0 and H0 = (L− z1)H2, H−0 (n) is the sum of sets

H−0 (n) = ran(L−0 (n)− z1) + P−0 (n)LH+
2 (n). (5.2)

Thus in general the operator L−0 (n) − z1 is not surjective (unlike L − z1). But the
following holds.

Theorem 5.1. Under hypothesis of Lemma 4.4 the operator L−0 (n) − z1, n ∈ Z,
is surjective.

Proof. By Lemma 4.2,

ran(L−0 (n)− z1) = P−0 (n)b1(L)H−2 (n) = P−0 (n)H−0 (n+ 2).

Now apply Lemma 4.4.

The statement of the theorem is therefore equivalent to the statement

P−0 (n)LH+
2 (n) = {0}. (5.3)

Indeed, by Lemmas 4.2 and 4.4,

P−0 (n)LH+
2 (n) = P−0 (n)b1(L)H+

2 (n) = P−0 (n)H+
0 (n+ 2) = P−0 (n)H+

0 (n) = {0},

so the sum in (5.2) implies that the operator L−0 (n)− z1 is surjective, and vice verse.
In this case the operators L−0 (n) satisfy L−0 = L−0 (2n) and L−0 (1) = L−0 (2n + 1).
Analogous results hold for L+

0 (n) and L±n .
If L−∗n is the adjoint in H−n of L−n and if L−0 (n)∗ is the adjoint in H−0 (n) of L−0 (n),

then the following result holds.

Lemma 5.2. L−∗n = bn(L)−1/2L−0 (n)∗bn(L)1/2.

Proof. The basic arguments are as in the proof of (4.1).
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Theorem 5.3. Under hypothesis of Lemma 4.4 the operator L−0 (n), n ∈ Z, is
self-adjoint in H−0 (n).

Proof. Consider the adjoint L−0 (n)∗ as a linear relation in H−0 (n). Then L−0 (n)∗ consists
of (y−, x−) ∈ H−0 (n)2 such that (∀w− ∈ H−2 (n))

〈w−, x−〉0 = 〈L−0 (n)w−, y−〉0 .

Every w− ∈ H−2 (n) is of the form w− = P−0 (n)b1(L)−1v with some v ∈ H0. Then

〈L−0 (n)w−, y−〉0 = 〈LP−0 (n)b1(L)−1v, y−〉0
= 〈b1(L)P−0 (n)b1(L)−1v, y−〉0 + 〈P−0 (n)b1(L)−1v, z1y

−〉0
= 〈b1(L)P−0 (n)b1(L)−1v, y−〉0 + 〈v, b1(L)−1z1y

−〉0 .

By applying Lemma 4.2

〈b1(L)P−0 (n)b1(L)−1v, y−〉0 = 〈P−0 (n+ 2)v, y−〉0 = 〈v, P−0 (n+ 2)y−〉0 .

On the other hand,

〈w−, x−〉0 = 〈b1(L)−1v, x−〉0 = 〈v, b1(L)−1x−〉0 .

Therefore (y−, x−) ∈ H−0 (n)2 such that

b1(L)−1x− = P−0 (n+ 2)y− + b1(L)−1z1y
−.

Because y− = u−+u+ is the sum of disjoint elements u± ∈ P±0 (n+2)H−0 (n), it follows
from the above that

b1(L)−1x− = u− + b1(L)−1z1(u− + u+).

Because b1(L)−1H−0 (n) = H−2 (n− 2) by Lemma 4.2, from here one concludes that

u− ∈ H−2 (n− 2) ∩ P−0 (n+ 2)H−0 (n) = H−2 (n− 2) ∩ H−2 (n) ∩ H−2 (n+ 2).

Sequentially

x− = b1(L)u− + z1(u− + u+) = P−0 (n)b1(L)u− + z1(u− + u+) = L−0 (n)u− + z1u
+.

Finally, by applying Lemma 4.4 one gets that u− ∈ H−2 (n) and u+ = 0.

Corollary 5.4. z1 ∈ resL−0 (n).

Proof. This follows from Theorems 5.1 and 5.3.

Under hypothesis of Lemma 4.4 and applying Lemma 5.2, the operator L−n is
therefore self-adjoint in H−n . Moreover, z1 ∈ resL−n = resL−0 (n) or, what is equivalent,
P−n LnH

+
n+2 = {0}. Similar conclusions apply to operators L+

0 (n) and L+
n .
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Lemma 5.5. Under hypothesis of Lemma 4.4 the resolvent

(L−0 (n)− z)−1 = P−0 (n)(L− z)−1P−0 (n) on H−0 (n)

for z ∈ resL ⊆ resL−0 (n) (and similarly for L+
0 (n)).

Proof. First we derive the resolvent formula for z ∈ resL∩resL−0 (n) and then we show
that resL ⊆ resL−0 (n). Consider an arbitrary v ∈ H0. Then, for z ∈ resL, (∃u ∈ H2)
v = (L− z)u. Projecting the latter onto H−0 (n) and applying (5.3) yields

P−0 (n)v = (L−0 (n)− z)P−0 (n)u

and the resolvent formula follows for z ∈ resL ∩ resL−0 (n).
The eigenspace

Nz(L−0 (n)) = {u− ∈ H−2 (n) |P−0 (n)(L− z)u− = 0}
is nontrivial for some z ∈ R (cf. Theorem 5.3). From here and (5.3) one gets that

(L− z)u− = P+
0 (n)(L− z)u− = 0 ;

hence
Nz(L−0 (n)) = H−2 (n) ∩Nz(L).

If z /∈ σp(L) then also z /∈ σp(L−0 (n)), but the converse z /∈ σp(L−0 (n)) implies only
that Nz(L) = H+

2 (n) ∩Nz(L) in this case. Therefore σp(L−0 (n)) ⊆ σp(L).
Now let z ∈ resL, that is, z /∈ σp(L) and ran(L− z) = H0. Because by (5.3)

ran(L− z) = ran(L−0 (n)− z) u ran(L+
0 (n)− z)

it follows that

ran(L−0 (n)− z) = H−0 (n), ran(L+
0 (n)− z) = H+

0 (n)

so z ∈ resL−0 (n).

Under the same hypothesis the resolvent of L−n is given by

(L−n − z)−1 = P−n (Ln − z)−1P−n on H−n

for z ∈ resLn = resL (and similarly for L+
n ).

We summarize the main results obtained so far in the following theorem.
Theorem 5.6. Let Hn+1 ⊆ Hn be the scale of Hilbert spaces associated with
a self-adjoint operator L in H0. For each n ∈ Z, let P−n be an orthogonal projection in
Hn onto a subspace H−n ⊆ Hn; H+

n is the orthogonal complement in Hn of H−n . Assume
that P−n+1 ⊆ P−n . Then the projections (P−n )n∈Z are characterized, by scaling, by any
two adjacent projections, say P−0 and P−1 , according to

P−2n = bn(L)−1P−0 bn(L), P−2n+1 = bn(L)−1P−1 bn(L).

For each n, the subspace H−n (resp. H+
n ) is therefore a reducing subspace for the

restriction Ln to Hn+2 of L. The part of Ln in H−n (resp. H+
n ) is a self-adjoint

operator.
Proof. This follows from Lemmas 4.4, 5.2, and Theorem 5.3.
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6. MIN-MAX OPERATORS IN A SUBSPACE

In the present and subsequent paragraphs M∗dGA = GAMd, as in (3.1), for an invertible
Hermitian GA, and P−n+1 ⊆ P−n , n ∈ Z, as in Theorem 5.6. Let

A′min := UAAminU
−1
A

= {
(
(f#, ξ), (Lf#,Mdξ)

)
| f# ∈ Hm+2 , ξ ∈ Cmd , 〈ϕ, f#〉 = [GAξ]m}.

Then A′min is a closed, densely defined, symmetric operator in H′A, whose adjoint A′ ∗min
is given by

A′max := A′ ∗min = UAAmaxU
−1
A

= {
(
(f# + hm+1(c), ξ), (Lf# + z1hm+1(c),Mdξ + η(c))

)
| f# ∈ Hm+2,

c ∈ Cd , ξ ∈ Cmd}.

If (Cd,ΓA
0 ,ΓA

1 ) is an OBT for Amax then the triple (Cd,Γ′A0 ,Γ′A1 ), with Γ′Ai := ΓA
i U
−1
A ,

i ∈ {0, 1}, is an OBT for A′max.
Let

Π± := P±m ⊕ ICmd in Hm ⊕ Cmd.

Then Π− (resp. Π+) is an orthogonal (with respect to the Hm⊕Cmd-metric) projection
onto a subspace H−m ⊕ Cmd (resp. H+

m ⊕ Cmd). Note that

Π−Π+ 6= 0, Π+Π− 6= 0, Π− + Π+ 6= IHm⊕Cmd .

However, given Π−, the above inequalities become the equalities with Π+ replaced by
the orthogonal projection Π′+ := IHm⊕Cmd −Π− onto

(H−m ⊕ Cmd)⊥Hm⊕Cmd = H+
m ⊕ {0}.

Likewise, given Π+, the above inequalities become the equalities with Π− replaced by
the orthogonal projection Π′ − := IHm⊕Cmd −Π+ onto

(H+
m ⊕ Cmd)⊥Hm⊕Cmd = H−m ⊕ {0}.

By Theorem 5.6, A′min maps

domA′min ∩ (H−m ⊕ Cmd) = Π− domA′min

into H−m ⊕ Cmd; therefore H−m ⊕ Cmd is an invariant ([28, Definition 1.7]) subspace
for A′min. Let A−min denote the part of A′min in H−m ⊕ Cmd, that is

A−min := A′min |Π− domA′min
= Π−A′min |Π− domA′min

= {
(
(f#−, ξ), (L−mf#−,Mdξ)

)
| f#− ∈ H−m+2 , ξ ∈ Cmd, 〈ϕ, f#−〉 = [GAξ]m}.

Similarly one defines the part A+
min of A′min in H+

m ⊕ Cmd. Because H+
m ⊕ {0}

(resp. H−m⊕{0}) is also an invariant subspace for A′min, the operator A′min is represented
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by the orthogonal sum of its part A−min in H−m ⊕ Cmd (resp. A+
min in H+

m ⊕ Cmd) and
its part L+

min ⊕ 0 in H+
m ⊕ {0} (resp. L−min ⊕ 0 in H−m ⊕ {0}), where the operator

L+
min := L+

m | {f+∈H+
m+2 | 〈ϕ,f+〉=0} (resp. L−min := L−m | {f−∈H−m+2 | 〈ϕ,f−〉=0}) ;

symbolically ([⊕] indicates both Hm ⊕ Cmd-orthogonal and H′A-orthogonal sum)

A′min = A−min[⊕](L+
min ⊕ 0) = (L−min ⊕ 0)[⊕]A+

min. (6.1)

Let ϕ− (resp. ϕ+) denote the vector valued functional whose components ϕ−σ
(resp. ϕ+

σ ) are defined by

ϕ−σ := bm+2(L)1/2P−0 (m)bm+2(L)−1/2ϕσ ∈ bm+2(L)1/2(H−0 r H−1 )
(resp. ϕ+

σ := bm+2(L)1/2P+
0 (m)bm+2(L)−1/2ϕσ ∈ bm+2(L)1/2(H+

0 r H+
1 )).

The duality pairing 〈ϕ−σ , ·〉 (resp. 〈ϕ+
σ , ·〉) is defined via the H0-scalar product in

a usual way. 〈ϕ−, ·〉 = (〈ϕ−σ , ·〉) : H−m+2 → Cd denotes the action of the vector valued
functional ϕ−, and similarly for ϕ+.
Lemma 6.1. For f#− ∈ H−m+2

〈ϕ, f#−〉 = 〈ϕ−, f#−〉 = 〈h−m+1, (L−m − z1)f#−〉
m

and similarly for the action of ϕ on H+
m+2.

Proof. By the definition of the duality pairing and that of ϕ−σ ,

〈ϕ−σ , f#−〉 = 〈bm+2(L)−1/2ϕ−σ , bm+2(L)1/2f#−〉0
= 〈P−0 (m)bm+2(L)−1/2ϕσ, bm+2(L)1/2f#−〉0
= 〈bm+2(L)−1/2ϕσ, P

−
0 (m)bm+2(L)1/2f#−〉0 .

But

bm+2(L)1/2f#− ∈ bm+2(L)1/2H−m+2 = bm+2(L)1/2P−m+2Hm+2 = H−0 (m+ 2)

and hence by Lemma 4.4 bm+2(L)1/2f#− ∈ H−0 (m); therefore

〈bm+2(L)−1/2ϕσ, P
−
0 (m)bm+2(L)1/2f#−〉0 = 〈bm+2(L)−1/2ϕσ, bm+2(L)1/2f#−〉0

= 〈ϕσ, f#−〉 .

This proves the first equality. Using that bm+2(L)1/2f#− ∈ H−0 (m), the second equality
is due to

〈h−σ,m+1, (L−m − z1)f#−〉
m

= 〈h−σ,m+1, b1(L)f#−〉
m

= 〈bm(L)1/2P−mhσ,m+1, bm+2(L)1/2f#−〉0
= 〈P−0 (m)bm+2(L)−1/2ϕσ, bm+2(L)1/2f#−〉0
= 〈bm+2(L)−1/2ϕσ, bm+2(L)1/2f#−〉0 = 〈ϕσ, f#−〉 .

The proof of 〈ϕ, ·〉 on H+
m+2 is analogous.
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By the lemma the boundary conditions defining the operators L±min are therefore
reduced to 〈ϕ±, f±〉 = 0, f± ∈ Hm+2, where ϕ− + ϕ+ = ϕ. Explicitly

L−min := L−m | {f−∈H−m+2 | 〈ϕ−,f−〉=0}, L+
min := L+

m | {f+∈H+
m+2 | 〈ϕ+,f+〉=0}.

Just like the functionals ϕσ define the elements hσj := bj(L)−1ϕσ, j ∈ J , that
generate the linear space KA, the functionals ϕ±σ define the elements

h±σj := bj(L)−1ϕ±σ = P±−m−2+2jhσj (6.2)

that generate (span) the linear subspaces K±A of KA; that is, KA = K−A u K+
A. The

proof of the second equality in (6.2) uses the definition of P±0 (·) and then Lemma 4.4,
in the same spirit as in the proof of Lemma 6.1.

Unlike the case of A′min, the operator A′max does not commute with the projection
Π− (resp. Π+). The reason is that now the projection of hm+1(c) onto H−m affects the
value of the extra term η(c) ∈ Cmd. This seems to be better seen in the representation
of the operator A′max in the space Hm u KA, i.e. in analyzing the operator Amax.
Thus we have by Lemma 3.1 (here k ∈ KA)

Amax(f# + hm+1(c) + k) = Lm−2(f# + hm+1(c)) + k′,

k′ ∈ KA, d(k′) = Mdd(k)

and
Lm−2hm+1(c) = z1hm+1(c) + hm(c),

where
hm(c) = b1(L)hm+1(c) =

∑

α

[η(c)]αhα =
∑

σ

cσhσm ∈ KA.

Now projecting f# + hm+1(c) + k onto H−m u KA one gets that

AmaxU
−1
A Π−UA(f# + hm+1(c) + k) = L−m−2(f#− + h−m+1(c)) + k′

= L−mf
#− + z1h

−
m+1(c) + k′ + h−m(c)

with
h−m(c) := b1(L)h−m+1(c) =

∑

α

[η(c)]αh−α =
∑

σ

cσh
−
σm ∈ K−A

(it is precisely for this reason why η(c) changes to η−(c) 6= η(c); see below), while

U−1
A Π−UAAmax(f# + hm+1(c) + k) = L−mf

#− + z1h
−
m+1(c) + k′ + hm(c)

= AmaxU
−1
A Π−UA(f# + hm+1(c) + k) + h+

m(c)

with h+
m(c) ∈ K+

A defined similarly as h−m(c). Because h±m(c) ∈ K±A and K±A ⊆ KA,
it follows that

h±m(c) =
∑

α

[η(c)]αh±α =
∑

α

[η±(c)]αhα
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for η±(c) ∈ Cmd given by

η±(c) := G̃−1
A 〈h, h±m(c)〉−m = G̃−1

A G̃±Aη(c)

with the matrix
G̃±A = ([G̃±A ]αα′), [G̃±A ]αα′ := 〈hα, h±α′〉−m .

With this notation, and going back to the representation of Amax in Hm ⊕ Cmd,
one gets that

A′maxΠ−(f# + hm+1(c), ξ) = (L−mf#− + z1h
−
m+1(c),Mdξ + η−(c))

while
Π−A′max(f# + hm+1(c), ξ) = (L−mf#− + z1h

−
m+1(c),Mdξ + η(c)).

Similarly, projecting (f# + hm+1(c), ξ) onto H+
m ⊕ {0} gives

A′maxΠ′+(f# + hm+1(c), ξ) = (L+
mf

# + + z1h
+
m+1(c), η+(c))

while
Π′+A′max(f# + hm+1(c), ξ) = (L+

mf
# + + z1h

+
m+1(c), 0).

From these formulas one observes that one still is able to represent the extension of the
operator A′max (but not the operator A′max itself) as the orthogonal sum of its parts
in subspaces H−m ⊕ Cmd (resp. H+

m ⊕ Cmd) and H+
m ⊕ {0} (resp. H−m ⊕ {0}), similarly

as in (6.1), by moving an element (0, η+(c)) from A′maxΠ′+ to A′maxΠ−.
To make this precise, one therefore introduces the linear relation

A−max := {
(
(f#− + h−m+1(c), ξ), (L−mf#− + z1h

−
m+1(c),Mdξ + η(c))

)
|

f#− ∈ H−m+2 , c ∈ Cd , ξ ∈ Cmd}

in H−m ⊕ Cmd with the multivalued part

mulA−max = {0} × η+(Σ−), Σ− :=
{
c ∈ Cd |

∑

σ

cσϕ
−
σ = 0

}

(the multivalued part is exactly the orthogonal complement in H′ −A of domA−min) and
the operator

L−max ⊕ 0 = Π′ −A′max |Π′ − domA′max

in H−m ⊕ {0} with

L−max :={(f#− + h−m+1(c), L−mf#− + z1h
−
m+1(c)) | f#− ∈ H−m+2 , c ∈ Cd}.

Analogously one defines the linear relation A+
max in H+

m ⊕ Cmd, with the multivalued
part {0}×η−(Σ+), and the operator L+

max in H+
m. Note that the domain of the operator

L−max in H−m can be also written thus

domL−max = H−m+2 uNz(L−max), z ∈ resL−m
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with the eigenspace

Nz(L−max) = (L−m − z1)(L−m − z)−1h−m+1(Cd)

and similarly for L+
max. (The operators L±max should not be confused with the triplet

adjoint Lmax; as we show below, L−max is the adjoint in H−m of L−min, and similarly
for L+

max.)
It follows from the above constructions that the orthogonal (both in

Hm ⊕ Cmd-metric and in H′A-metric) componentwise sum of linear relations (cf. [18,
19,22] for the notation)

A−max[ ⊕̂ ](L+
max ⊕ 0) = (L−max ⊕ 0)[ ⊕̂ ]A+

max (6.3)

is an extension in Hm ⊕ Cmd of the operator A′max. By comparing (6.1) with (6.3)
one concludes that A−min ⊆ A−max and L−min ⊆ L−max, and similarly for A+

min and L+
min.

In fact, one can say more.
Theorem 6.2. The linear relation A−max = A−∗min is the adjoint in H′ −A of a nondensely
defined (in general ), closed, symmetric operator A−min.
Proof. The main arguments are as in the proof of the self-adjointness of L−m (Theo-
rem 5.3) by using in addition that the boundary condition for (f#−, ξ) ∈ domA−min
implies that (∀c ∈ Cd)

〈w, bm(L)1/2h−m+1(c)〉0 = 〈ξ,GAη(c)〉Cmd , f#− = bm+2(L)−1/2P−0 (m)w, (6.4)

w ∈ H0; note that

bm(L)1/2h−m+1(c) = bm+2(L)−1/2
∑

σ

cσϕ
−
σ

and the representation of f#− is shown in the proof of Lemma 6.1. The duality pairing
then reads

〈ϕ−, f#−〉 = 〈bm+2(L)−1/2ϕ−, bm+2(L)1/2f#−〉0
= 〈bm+2(L)−1/2ϕ−, P−0 (m)w〉0 ,

but bm+2(L)−1/2ϕ− ∈ H−0 (m), so the boundary condition reads

〈ϕ−, f#−〉 = 〈bm+2(L)−1/2ϕ−, w〉0 = [GAξ]m
from which (6.4) follows.

Now one computes A−∗min; as a linear relation, it is the set of ((y−, ξy), (x−, ξx)) ∈
(H−m ⊕ Cmd)2 such that (∀(f#−, ξ) ∈ domA−min)

〈f#−, x−〉m + 〈ξ,GAξx〉Cmd = 〈L−mf#−, y−〉m + 〈Mdξ,GAξy〉Cmd . (6.5)

Applying the representation

x− = bm(L)−1/2u−, u− ∈ H−0 (m),
y− = bm(L)−1/2v−, v− ∈ H−0 (m)
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and using that b1(L)−1H−0 (m) = H−2 (m) one gets that

〈f#−, x−〉m = 〈w, b1(L)−1u−〉0
and

〈L−mf#−, y−〉m = 〈b1(L)f#−, y−〉m + 〈f#−, z1y
−〉m

= 〈w, v−〉0 + 〈w, b1(L)−1z1v
−〉0 .

Therefore (6.5) reads

〈w, v− − b1(L)−1(u− − z1v
−)〉0 = 〈ξ,GA(ξx −Mdξy)〉Cmd .

Comparing the latter with (6.4) yields

v− − b1(L)−1(u− − z1v
−) =bm(L)1/2h−m+1(c),
ξx =Mdξy + η(c).

The first equation above implies that

v− − bm(L)1/2h−m+1(c) ∈ b1(L)−1H−0 (m) = H−2 (m),

that is,
y− = f− + h−m+1(c), f− ∈ H−m+2.

Then
x− = z1y

− + b1(L)f− = L−mf
− + z1h

−
m+1(c).

This proves A−∗min = A−max. It remains to verify that A−min is closed. The adjoint A−∗max
consists of ((y−, ξy), (x−, ξx)) ∈ (H−m ⊕ Cmd)2 such that (∀f#− ∈ H−m+2 ∀c ∈ Cd
∀ξ ∈ Cmd)

〈f#− + h−m+1(c), x−〉
m

+ 〈ξ,GAξx〉Cmd = 〈L−mf#− + z1h
−
m+1(c), y−〉

m

+ 〈Mdξ + η(c),GAξy〉Cmd .

Using the representation of f#−, x−, y− as above, and noting that

〈h−m+1(c), x−〉
m

= 〈c, 〈h−m+1, x
−〉

m
〉Cd , 〈η(c),GAξy〉Cmd = 〈c, [GAξy]m〉Cd

one gets that

0 = 〈w, v− − b1(L)−1(u− − z1v
−)〉0 + 〈c, 〈h−m+1, z1y

− − x−〉
m

+ [GAξy]m〉Cd

+ 〈ξ,GA(Mdξy − ξx)〉Cmd

and from which one concludes that

v− = b1(L)−1(u− − z1v
−) ∈ H−2 (m)⇒ x− = L−my

−, y− ∈ H−m+2

and
〈h−m+1, x

− − z1y
−〉

m
= 〈h−m+1, (L−m − z1)y−〉

m
= 〈ϕ, y−〉 = [GAξy]m

(cf. Lemma 6.1) and ξx = Mdξy. Thus A−min is closed, and this completes the proof.
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The above proof also shows that:

Corollary 6.3. The operator L−max = L−∗min is the adjoint in H−m of a densely defined,
closed, symmetric operator L−min.

From here one concludes that L−min (resp. L+
min) is an essentially self-adjoint operator

in H−0 (resp. H+
0 ). Since A−min extends L−min to H′ −A just like Amin extends Lmin to

HA it is therefore a subject of interest to formulate a similar realization theorem in
the A-model for the symmetric operator L−min. This is done in the next (the last)
paragraph.

7. REALIZATION THEOREM IN A SUBSPACE

By a straightforward computation and applying Lemma 6.1, the boundary form
of the linear relation A−max is given by

[(f#− + h−m+1(c), ξ), (L−mg#− + z1h
−
m+1(c′),Mdξ

′ + η(c′))]′A
− [(L−mf#− + z1h

−
m+1(c),Mdξ + η(c)), (g#− + h−m+1(c′), ξ′)]′A

= 〈c, 〈ϕ−, g#−〉 − [GAξ
′]m〉Cd − 〈〈ϕ−, f#−〉 − [GAξ]m, c′〉Cd

for f#−, g#− ∈ H−m+2; c, c′ ∈ Cd; ξ, ξ′ ∈ Cmd. By introducing the mappings
from A−max to Cd by

ΓA−
0 f̂− := c, ΓA−

1 f̂− := 〈ϕ−, f#−〉 − [GAξ]m, (7.1)

f̂− =
(
(f#− + h−m+1(c), ξ), (L−mf#− + z1h

−
m+1(c),Mdξ + η(c))

)
∈ A−max

the above boundary form simplifies thus

[f−, g′ −]′A − [f ′ −, g−]′A = 〈ΓA−
0 f̂−,ΓA−

1 ĝ−〉Cd − 〈ΓA−
1 f̂−,ΓA−

0 ĝ−〉Cd ,

f̂− = (f−, f ′ −) ∈ A−max, ĝ− = (g−, g′ −) ∈ A−max

and it therefore represents the Green identity. Consider ΓA− : f̂− 7→ (ΓA−
0 f̂−, ΓA−

1 f̂−)
from A−max to Cd ×Cd as an (isometric) linear relation from (H′ −A )2 to Cd ×Cd. Thus
by definition dom ΓA− = A−max and ker ΓA− = A−min. Moreover, the multivalued part
mul ΓA− consists of (c, 0) such that c ∈ Σ− ∩ Σ+ = {0}; hence ΓA− is an operator.
Below we show that ΓA− is a unitary relation from (H′ −A )2 to Cd×Cd (by the above, it
would actually suffice to show that dom(ΓA−)[+] = ran ΓA−). By [12, Corollary 2.4(iii)]
this would imply that ΓA− is surjective, and that therefore the triple (Cd,ΓA−

0 ,ΓA−
1 )

is an OBT for A−max.

Lemma 7.1. (Cd,ΓA−
0 ,ΓA−

1 ) is an OBT for A−max.

Proof. By definition, the Krein space adjoint (ΓA−)[+] is a linear relation consisting of
(
(χ, χ′),

(
(y−, ξy), (x−, ξx)

))
∈ C2d × (H−m ⊕ Cmd)2
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such that (∀f#− ∈ H−m+2 ∀c ∈ Cd ∀ξ ∈ Cmd)

〈f#− + h−m+1(c), x−〉
m

+ 〈ξ,GAξx〉Cmd

− 〈L−mf#− + z1h
−
m+1(c), y−〉

m
− 〈Mdξ + η(c),GAξy〉Cmd

= 〈c, χ′〉Cd − 〈〈h−m+1, (L−m − z1)f#−〉
m
− [GAξ]m, χ〉Cd .

The above equation splits into three equations

(∀f#−) 〈f#−, x− − z1h
−
m+1(χ)〉

m
= 〈L−mf#−, y− − h−m+1(χ)〉

m
,

(∀c) 0 = 〈c, 〈h−m+1, x
− − z1y

−〉
m
− [GAξy]m − χ′〉Cd ,

(∀ξ) 0 = 〈ξ,GA(ξx −Mdξy − η(χ))〉Cmd .

Because L−m is self-adjoint in H−m, the first equation gives

y− = f− + h−m+1(χ), f− ∈ H−m+2, x− = L−mf
− + z1h

−
m+1(χ).

Then the second equation yields

χ′ = 〈ϕ−, f−〉 − [GAξy]m (Lemma 6.1).

Finally, by the third equation

ξx = Mdξy + η(χ).

As a result (ΓA−)[+] = (ΓA−)−1.

Let

Γ−0 (f#− + h−m+1(c)) := c, Γ−1 (f#− + h−m+1(c)) := 〈ϕ−, f#−〉 (7.2)

for f#− + h−m+1(c) ∈ domL−max. The above proof also shows that:

Corollary 7.2. (Cd,Γ−0 ,Γ−1 ) is an OBT for L−max.

We are now ready to state the main realization theorem in the A-model for
the symmetric operator L−min, by assuming (3.1) and P−n+1 ⊆ P−n , n ∈ Z.

Theorem 7.3. The extensions to H′ −A of a densely defined, closed, symmetric operator
L−min = Lmin ∩ (H−m)2 in H−m, which has defect numbers (d, d) and which is essentially
self-adjoint in H−0 , are described by the proper extensions in H′ −A of a nondensely
defined (in general ), closed, symmetric operator A−min = A′min ∩ (H−m ⊕Cd)2. A proper
extension A−Θ is characterized by restricting the adjoint linear relation A−max = A−∗min
in H′ −A to the set of f̂− ∈ A−max such that the pair (ΓA−

0 f̂−,ΓA−
1 f̂−) is an ele-

ment of a linear relation Θ in Cd; an OBT (Cd,ΓA−
0 ,ΓA−

1 ) for A−max is as in (7.1).
The Krein–Naimark resolvent formula for a (closed) proper extension A−Θ reads

(A−Θ − z)−1 = (A−0 − z)−1 + γ−A (z)(Θ−M−A (z))−1γ−A (z)∗
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for z ∈ resA−0 ∩ resA−Θ. A distinguished self-adjoint extension A−0 of A−min is a self-
-adjoint operator A−0 := A−{0}×Cd whose resolvent is given by

(A−0 − z)−1 = (L−m − z)−1 ⊕ (Md − z)−1

for z ∈ resA−0 = resL−mr {z1}. The γ-field γ−A and the Weyl function M−A correspond-
ing to (Cd,ΓA−

0 ,ΓA−
1 ) are described by

γ−A (z) =
(
(L−m − z1)(L−m − z)−1h−m+1(·),−(Md − z)−1η(·)

)
on Cd,

M−A (z) = q−(z) + r(z) on Cd

for z ∈ resA−0 . The matrix valued function q− given by

q−(z) =([q−(z)]σσ′) ∈ [Cd], z ∈ resL−m,
[q−(z)]σσ′ :=(z − z1) 〈ϕ−σ , (L−m − z)−1h−σ′,m+1〉

is the Weyl function which corresponds to the OBT (Cd,Γ−0 ,Γ−1 ), (7.2), for the adjoint
operator L−max = L−∗min in H−m.

Proof. In view of what has been achieved so far, it remains to compute the γ-field and
the Weyl function. But these functions follow straightforwardly from their definitions
as long as one notices that the eigenspace of A−max for the eigenvalue z ∈ resL−mr {z1}
consists of (f#− + h−m+1(c), ξ) ∈ domA−max such that

f#− = (z − z1)(L−m − z)−1h−m+1(c), ξ = −(Md − z)−1η(c).

Because L−max = A−max∩ (H−m⊕{0})2, the results for L−max are derived analogously.

In particular, putting P−n = IHn (hence P+
n = 0), n ∈ Z, the part of the theorem

concerning the Weyl function q− yields the following:

Corollary 7.4. The Krein Q-function q is the Weyl function associated with the OBT
(Cd,Γ0,Γ1),

Γ0(f# + hm+1(c)) := c, Γ1(f# + hm+1(c)) := 〈ϕ, f#〉

(f# ∈ Hm+2, c ∈ Cd), for the adjoint L∗min of Lmin in Hm. The domain domL∗min =
Hm+2 uNz(L∗min), where the eigenspace Nz(L∗min) = (L− z)−1hm(Cd), z ∈ resL.

An analogous theorem can be formulated for L+
min as well, where the corresponding

Weyl function M+
A = q+ + r is the sum of the Weyl function q+ of L+

min and the
generalized Nevanlinna function r.

Let
ĥσ := bm+2(L)−1/2ϕσ ∈ H0 r H1.

Using this definition and the operator identity

(L− z1)(L− z)−1 = IH0 + (z − z1)(L− z)−1
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the Weyl function q is rewritten in terms of the initial operator L and the reference
H0-scalar product according to

[q(z)]σσ′ = (z − z1) 〈ĥσ, ĥσ′〉0 + (z − z1)2 〈ĥσ, (L− z)−1ĥσ′〉0 ,

z ∈ resL. Using in addition (5.3) and applying [28, Proposition 5.26] and Lemma 5.5,
the Weyl function q− admits the form

[q−(z)]σσ′ = (z − z1) 〈ĥσ, P−0 (m)ĥσ′〉0 + (z − z1)2 〈ĥσ, P−0 (m)(L− z)−1ĥσ′〉0 ,

z ∈ resL, and similarly for q+. Thus the Weyl function q = q− + q+ of the symmetric
operator Lmin is the sum of the Weyl functions q± of the corresponding symmet-
ric restrictions L±min. The latter property of additivity is clearly a consequence of
the initial hypothesis that the subspaces H±0 reduce the operator L (Theorem 5.6).
Acknowledgements
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