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Abstract. In this paper, sufficient conditions for H-oscillation of solutions of a time fractional
vector diffusion-wave equation with forced and fractional damping terms subject to the
Neumann boundary condition are established by employing certain fractional differential
inequality, where H is a unit vector in Rn. The examples are given to illustrate the main
results.
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1. INTRODUCTION

Interest on the study of fractional differential equation is on the rise because of its utility
in the fields of science and engineering such as neural networks, population dynamics,
electrical and mechanical engineering. In recent years, there has been a significant
development in fractional order ordinary and partial differential equations, for example
Kilbas et al.[6]. In particular, the oscillation theory of fractional differential equations
attracted by many authors [1, 2, 5, 7, 8, 10,15–17].

The H-oscillation for vector differential equation was introduced by Domshlak [3]
in 1970. Few authors [9,11–13] have discussed H-oscillation of vector partial differential
equations. Prakash and Harikrishnan [14] have established criteria for H-oscillation of
solutions of impulsive vector hyperbolic differential equations with delays. However,
the concept of H-oscillation of vector partial differential equation studied for integer
order only. In this paper, we establish sufficient conditions for H-oscillation of a class
of time fractional vector diffusion-wave equation with forced and fractional damping
terms subject to the Neumann boundary condition by using differential inequality
method.
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We establish the oscillation criteria for the time fractional vector diffusion-wave
equation with forced and fractional damping terms of the form

Dα
+,tU(x, t)+p(t)Dβ

+,tU(x, t)+q(x, t)U(x, t) = a(t)∆U(x, t)+F (x, t), (x, t) ∈ G, (E)

with the Neumann boundary condition

∂U(x, t)
∂N

= 0, (x, t) ∈ ∂Ω× R+, (B)

where α ∈ (1, 2) and β = α − 1 are constants, G := Ω × R+, Dα
+,tU is the

Riemann–Liouville fractional derivative of order α of U with respect to t, Ω
is a bounded domain in R with piecewise smooth boundary ∂Ω, R+ = [0,∞),
∆ is the Laplacian operator and N is the unit exterior normal vector to ∂Ω.

By a solution of (E), we mean a function U(x, t) : Ω×R+ → Rn such that U(x, t),
Dα

+,tU(x, t), Dβ
+,tU(x, t), ∂xU(x, t), and ∂2

xxU(x, t) are continuous on Ω× R+ → Rn.
Also the solution needs to satisfy (E) along with the boundary condition (B).

Throughout this paper, we assume that the following conditions hold:

(A1) a(t), p(t) ∈ C(R+;R+), F ∈ (G,Rn);
(A2) q(x, t) ∈ (G,R+), q(t) = min

x∈Ω
q(x, t).

This article is organized as follows. Section 2 gives the basic definitions and lemmas.
In Section 3, we prove the main results. In Section 4, we present examples to illustrate
the main results.

2. PRELIMINARIES

In this section, we present definitions of fractional derivatives, known lemmas and
notations which are used in this paper.

Definition 2.1 ([6]). The Riemann–Liouville fractional partial derivative of order α
where 0 < α < 1 with respect to t of a continuous function u(x, t) in t is given by

(Dα
+,tu)(x, t) := ∂

∂t

1
Γ(1− α)

t∫

0

(t− s)−αu(x, s)ds,

where Γ is the gamma function.

Definition 2.2 ([6]). The left-sided Riemann–Liouville fractional integral of order
α > 0 of an integrable function y : R+ → R on the half-axis R+ is given by

(Iα+y)(t) := 1
Γ(α)

t∫

0

(t− s)α−1y(s)ds, for t > 0.
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Definition 2.3 ([6]). The left-sided Riemann–Liouville fractional derivative of order
α > 0 of a function y : R+ → R of class Cα is given by

(Dα
+y)(t) := ddαe

dtdαe

(
I
dαe−α
+ y

)
(t)

= 1
Γ(dαe − α)

ddαe

dtdαe

t∫

0

(t− s)dαe−α−1y(s)ds, for t > 0,

where dαe is the ceiling function of α.
Definition 2.4. The function v(x, t), (x, t) ∈ G is called eventually positive (negative),
if there exists a number µ ≥ 0 such that v(x, t) ≥ 0(v(x, t) ≤ 0) for (x, t) ∈ Ω× [µ,∞).
The function v(t) is called eventually positive (negative), if there exists a number
µ ≥ 0 such that v(t) ≥ 0 (v(t) ≤ 0) for t ≥ µ.
Definition 2.5. Let H be a fixed unit vector in Rn. Then the vector solution U(x, t)
of (E), (B) is H-oscillatory in the domain G, if the inner product 〈U(x, t), H〉 has
a zero in Ω × [µ,∞) for any µ > 0. Otherwise, the solution U(x, t) is said to be
H-nonoscillatory.
Definition 2.6. Let H be an arbitrary unit vector in Rn. Then the vector solution
U(x, t) of (E), (B) is strongly H-oscillatory in the domain G, if the inner product
〈U(x, t), H〉 has a zero in Ω× [µ,∞) for any µ > 0.
Lemma 2.7 ([16]). Let

G(t) :=
t∫

0

(t− ν)−αy(ν)dν,

for a continuous function y(t), α ∈ (0, 1) and t > 0. Then
G′(t) = Γ(1− α)(Dα

+y)(t).
For convenience, we use the following notations:

uH(x, t) = 〈U(x, t), H〉, fH(x, t) = 〈F (x, t), H〉,

V (t) =
∫

Ω

uH(x, t)dx, FH(t) =
∫

Ω

fH(x, t)dx, R(t) =
t∫

0

p(s)ds.

3. OSCILLATION CRITERIA FOR (E), (B)

Case (i). fH(x, t) is non zero, where H is a fixed unit vector.
For this case, we assume the following condition hold:
(A3) For T ≥ 0, there exists T ≤ a < b ≤ ã < b̃ such that

FH(t) =
{
≤ 0, t ∈ [a, b],
≥ 0, t ∈ [ã, b̃]

and lim
t→∞

t∫

t0

1
eR(s)

s∫

t0

eR(ν)FH(s)dνds = 0.
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Lemma 3.1. Let U(x, t) be a solution of (E). Then uH(x, t) satisfies the following
scalar time fractional partial differential inequalities:

Dα
+,tuH(x, t) + p(t)Dβ

+,tuH(x, t) + q(t)uH(x, t) ≤ a(t)∆uH(x, t) + fH(x, t) (3.1)

if uH(x, t) is eventually positive, and

Dα
+,tuH(x, t) + p(t)Dβ

+,tuH(x, t) + q(t)uH(x, t) ≥ a(t)∆uH(x, t) + fH(x, t) (3.2)

if uH(x, t) is eventually negative.

Proof. Let uH(x, t) be eventually positive. Then from the inner product of (E) and H,
we obtain

Dα
+,tuH(x, t) + p(t)Dβ

+,tuH(x, t) + q(x, t)uH(x, t) = a(t)∆uH(x, t) + fH(x, t).

Using the condition (A2), we have

Dα
+,tuH(x, t) + p(t)Dβ

+,tuH(x, t) + q(t)uH(x, t) ≤ a(t)∆uH(x, t) + fH(x, t).

Similarly, by letting uH(x, t) to be eventually negative, we easily obtain (3.2).

From the inner product of boundary condition (B) with H, we have the following
boundary condition:

∂

∂N
uH(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞). (B1)

Theorem 3.2. If the inequalities (3.1) and (3.2) have no eventually positive and
eventually negative solutions, respectively, and that satisfies the boundary condition
(B1), then every solution U(x, t) of the problem (E), (B) is H-oscillatory in G.

Proof. Assume that the solution U(x, t) of (E), (B) is a H-nonoscillatory, then by
definition, the inner product uH(x, t) is eventually positive or eventually negative.

Suppose that uH(x, t) is eventually positive. Then by Lemma 3.1, uH(x, t) satisfies
(3.1) and (B1), which is a contradiction.

Similarly, we get a contradiction if uH(x, t) is eventually negative. The proof is
complete.

Theorem 3.3. If the fractional differential inequalities

Dα
+V (t) + p(t)Dβ

+V (t) + q(t)V (t) ≤ FH(t) (3.3)

and

Dα
+V (t) + p(t)Dβ

+V (t) + q(t)V (t) ≥ FH(t) (3.4)

have no eventually positive and no eventually negative solutions, respectively,
then every solution U(x, t) of (E), (B) is H-oscillatory in G.
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Proof. Let uH(x, t) be an eventually positive solution of the inequality (3.1) satisfying
the boundary condition (B1) for (x, t) ∈ Ω × [t0,∞), t0 ≥ 0. Then by Theorem 3.2
and assumptions, it is enough to prove that (3.1) has no eventually positive solution
satisfying (B1).

Integrating the inequality in (3.1) with respect to x over the domain Ω, we have

Dα
+



∫

Ω

uH(x, t)dx


+ p(t)Dβ

+



∫

Ω

uH(x, t)dx


+ q(t)

∫

Ω

uH(x, t)dx

≤ a(t)
∫

Ω

∆uH(x, t)dx+
∫

Ω

fH(x, t)dx.

Using Green’s formula and (B1), we have
∫

Ω

∆uH(x, t)dx =
∫

∂Ω

∂uH(x, t)
∂N

dS = 0

which implies that

Dα
+V (t) + p(t)Dβ

+V (t) + q(t)V (t) ≤ FH(t).

Therefore, V (t) is a positive solution of (3.3), which is a contradiction.
Similarly, suppose that uH(x, t) < 0 is a solution of (3.2) satisfying (B1). Using

the above procedure, we obtain a contradiction.

Theorem 3.4. Suppose that the conditions (A1)–(A3) hold and additionally

∞∫

t0

1
eR(s) ds =∞,

lim inf
t→∞

t∫

t1

FH(s)ds = −∞ for t1 ≥ t0. (3.5)

and

lim sup
t→∞

t∫

t1

FH(s)ds =∞ for t1 ≥ t0. (3.6)

Then each solution of (E), (B) oscillates in G.

Proof. To prove this theorem, it suffices to prove that either (3.3) has no eventually
positive solutions or (3.4) has no eventually negative solutions.
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Suppose that V is an eventually positive solution of (3.3). Then there exists
t0 < a < b such that V (t) > 0 on [t0,∞), FH(t) ≤ 0 on [a, b] and we have

D
[
eR(t)Dβ

+V (t)
]

= eR(t)Dα
+V (t) + eR(t)p(t)Dβ

+V (t)

= eR(t){Dα
+V (t) + p(t)Dβ

+V (t)}
= −eR(t)q(t)V (t) + eR(t)FH(t) < 0.

Then eR(t)Dβ
+V (t) is strictly decreasing on [a, b] and thus Dβ

+V (t) is eventually of
one sign. We claim Dβ

+V (t) > 0 on [t1, b], where a < t1 < b. Otherwise, assume there
exists t1 < T < b such that Dβ

+V (t) < 0 on [T, b]. Then for t ∈ [T, b], by Lemma 2.7,
we have

G′(t)
Γ(1− β) = Dβ

+V (t) ≤ eR(T )Dβ
+V (T )

eR(t) .

Integrating the above inequality from T to t, we have

G(t) ≤ G(T ) + Γ(1− β)eR(T )Dβ
+V (T )

t∫

T

1
eR(s) ds.

Letting t → ∞, we get limt→∞G(t) ≤ −∞ which is a contradiction since G(t) > 0
if V (t) > 0. Hence Dβ

+V (t) > 0 on [t1, b]. Therefore,

D
[
eR(t)Dβ

+V (t)
]
≤ eR(t)FH(t),

eR(t)Dβ
+V (t) ≤ eR(t1)Dβ

+V (t1) +
t∫

t1

eR(t)FH(t).

Thus, we get a contradiction to (3.5) since eR(t)Dβ
+V (t) is eventually positive.

Assume that V is an eventually negative solution of (3.4). Then there exists
t0 < ã < b̃ such that V (t) < 0 on [t0,∞), FH(t) ≥ 0 on [ã, b̃] and we have

D
[
eR(t)Dβ

+V (t)
]

= eR(t)Dα
+V (t) + eR(t)p(t)Dβ

+V (t)

= eR(t){Dα
+V (t) + p(t)Dβ

+V (t)}
= −eR(t)q(t)V (t) + eR(t)FH(t) > 0.

Then eR(t)Dβ
+V (t) is strictly increasing on [ã, b̃] and thus Dβ

+V (t) is eventually of one
sign. We claim Dβ

+V (t) < 0 on [t1, b̃], where ã < t1 < b̃. Otherwise, assume there exists
t1 < T < b̃ such that Dβ

+V (t) > 0 on [T, b̃]. Then for t ∈ [T, b̃], by Lemma 2.7, we have

G′(t)
Γ(1− β) = Dβ

+V (t) ≥ eR(T )Dβ
+V (T )

eR(t) .
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Integrating the above inequality from T to t, we have

G(t) ≥ G(T ) + Γ(1− β)eR(T )Dβ
+V (T )

t∫

T

1
eR(s) ds.

Letting t → ∞, we get limt→∞G(t) ≥ ∞ which is a contradiction since G(t) < 0 if
V (t) < 0. Hence, Dβ

+V (t) > 0 on [t1, b̃]. Therefore,

D
[
eR(t)Dβ

+V (t)
]
≥ eR(t)FH(t),

eR(t)Dβ
+V (t) ≥ eR(t1)Dβ

+V (t1) +
t∫

t1

eR(t)FH(t).

Thus, we get a contradiction to (3.6) since eR(t)Dβ
+V (t) is eventually negative.

Theorem 3.5. Suppose that the conditions (A1)–(A3) hold and additionally
∞∫

t0

1
eR(s) ds <∞,

∞∫

t0

1
eR(s)

s∫

t0

eR(ν)q(ν)dνds =∞,

lim inf
t→∞

t∫

t1

FH(s)ds = −∞ for t1 ≥ t0. (3.7)

and

lim sup
t→∞

t∫

t1

FH(s)ds =∞ for t1 ≥ t0. (3.8)

Then each solution of (E), (B) oscillates in G.
Proof. To prove this theorem, it suffices to prove that either (3.3) has no eventually
positive solutions or (3.4) has no eventually negative solutions.

Suppose that V is an eventually positive solution of (3.3). Then there exists
t0 < a < b such that V (t) > 0 on [t0,∞), FH(t) ≤ 0 on [a, b] and we have

D
[
eR(t)Dβ

+V (t)
]

= eR(t)Dα
+V (t) + eR(t)p(t)Dβ

+V (t)

= eR(t){Dα
+V (t) + p(t)Dβ

+V (t)}
= −eR(t)q(t)V (t) + eR(t)FH(t) < 0.

Then eR(t)Dβ
+V (t) is strictly decreasing on [a, b] and thus Dβ

+V (t) is eventually of
one sign. We claim Dβ

+V (t) > 0 on [t1, b], where a < t1 < b. Otherwise, assume there
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exists t1 < T < b such that Dβ
+V (t) < 0 on [T, b]. Then there exists a constant K > 0

such that V (t) ≤ K, T ≤ t ≤ b. Consequently, we have

D
[
eR(t)Dβ

+V (t)
]

= −eR(t)q(t)V (t) + eR(t)FH(t),

eR(t)Dβ
+V (t) = eR(T )Dβ

+V (T )−
t∫

T

eR(s)q(s)V (s)ds+
t∫

T

eR(s)FH(s)ds

≤ −K
t∫

T

eR(s)q(s)ds+
t∫

T

eR(s)FH(s)ds,

Dβ
+V (t) ≤ −K

eR(t)

t∫

T

eR(s)q(s)ds+ 1
eR(t)

t∫

T

eR(s)FH(s)ds.

By Lemma 2.7, we have

G′(t)
Γ(1− β) = Dβ

+V (t) ≤ −K
eR(t)

t∫

T

eR(s)q(s)ds+ 1
eR(t)

t∫

T

eR(s)FH(s)ds.

Integrating the above inequality from T to t, we have

G(t) ≤ G(T ) + Γ(1− β)
[
−K

t∫

T

1
eR(s)

s∫

T

eR(ν)q(ν)dνds

+
t∫

T

1
eR(s)

s∫

T

eR(ν)FH(ν)dνds
]
.

Letting t→∞, we get limt→∞G(t) ≤ −∞ which is a contradiction since G(t) > 0 if
V (t) > 0. Hence Dβ

+V (t) > 0 on [t1, b]. Therefore,

D
[
eR(t)Dβ

+V (t)
]
≤ eR(t)FH(t),

eR(t)Dβ
+V (t) ≤ eR(t1)Dβ

+V (t1) +
t∫

t1

eR(t)FH(t).

Thus, we get a contradiction to (3.7) since eR(t)Dβ
+V (t) is eventually positive.

Assume that V is an eventually negative solution of (3.3). Then there exists
t0 < ã < b̃ such that V (t) < 0 on [t0,∞), FH(t) ≥ 0 on [ã, b̃] and we have

D
[
eR(t)Dβ

+V (t)
]

= eR(t)Dα
+V (t) + eR(t)p(t)Dβ

+V (t)

= eR(t){Dα
+V (t) + p(t)Dβ

+V (t)}
= −eR(t)q(t)V (t) + eR(t)FH(t) > 0.
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Then eR(t)Dβ
+V (t) is strictly increasing on [ã, b̃] and thus Dβ

+V (t) is eventually of one
sign. We claim Dβ

+V (t) < 0 on [t1, b̃], where ã < t1 < b̃. Otherwise, assume there exists
t1 < T < b̃ such that Dβ

+V (t) > 0 on [T, b̃]. Then there exists a constant K < 0 such
that V (t) ≥ K, T ≤ t ≤ b̃. Consequently, we have

D
[
eR(t)Dβ

+V (t)
]

= −eR(t)q(t)V (t) + eR(t)FH(t),

eR(t)Dβ
+V (t) = eR(T )Dβ

+V (T )−
t∫

T

eR(s)q(s)V (s)ds+
t∫

T

eR(s)FH(s)ds

≥ −K
t∫

T

eR(s)q(s)ds+
t∫

T

eR(s)FH(s)ds,

Dβ
+V (t) ≥ −K

eR(t)

t∫

T

eR(s)q(s)ds+ 1
eR(t)

t∫

T

eR(s)FH(s)ds.

By Lemma 2.7, we have

G′(t)
Γ(1− β) = Dβ

+V (t) ≥ −K
eR(t)

t∫

T

eR(s)q(s)ds+ 1
eR(t)

t∫

T

eR(s)FH(s)ds

Integrating the above inequality from T to t, we have

G(t) ≥ G(T ) + Γ(1− β)
[
−K

t∫

T

1
eR(s)

s∫

T

eR(ν)q(ν)dνds

+
t∫

T

1
eR(s)

s∫

T

eR(ν)FH(ν)dνds
]
.

Letting t → ∞, we get limt→∞G(t) ≥ ∞ which is a contradiction since G(t) < 0
if V (t) < 0. Hence Dβ

+V (t) < 0 on [t1, b̃]. Therefore,

D
[
eR(t)Dβ

+V (t)
]
≥ eR(t)FH(t),

eR(t)Dβ
+V (t) ≥ eR(t1)Dβ

+V (t1) +
t∫

t1

eR(t)FH(t).

Thus, we get a contradiction to (3.8) since eR(t)Dβ
+V (t) is eventually negative.
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Case (ii). fH(x, t) is zero, where H is a fixed unit vector.
Lemma 3.6. Let U(x, t) be a solution of (E). Then uH(x, t) satisfies

Dα
+,tuH(x, t) + p(t)Dβ

+,tuH(x, t) + q(t)uH(x, t) ≤ a(t)∆uH(x, t)
if uH(x, t) is eventually positive, and

Dα
+,tuH(x, t) + p(t)Dβ

+,tuH(x, t) + q(t)uH(x, t) ≥ a(t)∆uH(x, t)

if uH(x, t) is eventually negative.
Proof. The proof of this lemma is similar to that of Lemma 3.1.

Theorem 3.7. If the fractional differential inequality

Dα
+V (t) + p(t)Dβ

+V (t) + q(t)V (t) ≤ 0 (3.9)

has no eventually positive solutions and the fractional differential inequality

Dα
+V (t) + p(t)Dβ

+V (t) + q(t)V (t) ≥ 0 (3.10)

has no eventually negative solutions, then every solution U(x, t) of the problem (E),
(B) is H-oscillatory in G.
Proof. The proof of this theorem is similar to that of Theorem 3.3.

Theorem 3.8. Suppose that the conditions (A1)–(A2) hold and additionally
∞∫

t0

1
eR(s) ds =∞,

and

lim sup
t→∞

t∫

T1

P (ν)dν ≥ 1, for t > T1 > 0, (3.11)

where P (t) = θtq(t). Then each solution of (E), (B) oscillates in G.
Proof. To prove this theorem, it suffices to prove that either (3.9) has no eventually
positive solutions or (3.10) has no eventually negative solutions. Suppose that V is
an eventually positive solution of (3.9). Then there exists t0 such that V (t) > 0 on
[t0,∞) and we have

D
[
eR(t)Dβ

+V (t)
]

= eR(t)Dα
+V (t) + eR(t)p(t)Dβ

+V (t)

= −eR(t)q(t)V (t) < 0.

Then eR(t)Dβ
+V (t) is strictly decreasing on [t0,∞), and thus Dβ

+V (t) is eventually of
one sign. We claim Dβ

+V (t) > 0 on [t1,∞), where t1 > t0. Otherwise, assume there
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exists T > t1 such that Dβ
+V (t) < 0 on [T,∞). Then for t ∈ [T,∞), by Lemma 2.7,

we have

G′(t)
Γ(1− β) = (Dβ

+V (t)) ≤ eR(T )Dβ
+V (T )

eR(t) .

Integrating the above inequality from T to t, we have

G(t) ≤ G(T ) + Γ(1− β)eR(T )Dβ
+V (T )

t∫

T

1
eR(s) ds.

Letting t→∞, we get limt→∞G(t) ≤ −∞ which is a contradiction. HenceDβ
+V (t) > 0

for t ≥ T holds.
Therefore, there exists a ξ such that V (t) − V (T ) = Dβ

+V (ξ)(t − T ), ξ ∈ (T, t).
Thus, we have

V (t) ≥ (t− T )Dβ
+V (ξ) ≥ (t− T )Dβ

+V (t), for t > T. (3.12)

For θ ∈ (0, 1), we put µ = 1
1−θ > 1. Then θ = 1− 1

µ and

t− T ≥ t− t

µ
= t

(
1− 1

µ

)
= θt, for t ≥ µT = T1. (3.13)

Hence, from (3.12) and (3.13), we have

V (t) ≥ θtDβ
+V (t), for t ≥ T1. (3.14)

It follows from (3.9) and (3.14) that

Dα
+V (t) + p(t)Dβ

+V (t) + θtq(t)Dβ
+V (t) ≤ 0.

Let w(t) = eR(t)Dβ
+V (t). Then

D[w(t)] + θtq(t)w(t) ≤ 0.

Integrating the above inequality from T1 to t we obtain

w(t)− w(T1) +
t∫

T1

θsq(s)w(s)ds ≤ 0,

t∫

T1

θsq(s)ds ≤ 1− w(t)
w(T1) < 1,

t∫

T1

θsq(s)ds < 1.

Taking lim sup as t→∞ we get a contradiction to (3.11).
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Theorem 3.9. Suppose that the conditions (A1)–(A2) hold and additionally
∞∫

t0

1
eR(s) ds <∞,

∞∫

t0

1
eR(s)

s∫

t0

eR(ν)q(ν)dνds =∞

and

lim sup
t→∞

t∫

s

P (ν)dν ≥ 1, for t > s > 0, (3.15)

where P (t) = θtq(t). Then each solution of (E), (B) oscillates in G.

Proof. To prove this theorem, it suffices to prove that (3.9) has no eventually positive
solution. Suppose that V is an eventually positive solution of (3.9). Then there exists
t0 such that V (t) > 0 on [t0,∞) and we have

D
[
eR(t)Dβ

+V (t)
]

= eR(t)Dα
+V (t) + eR(t)p(t)Dβ

+V (t)

= −eR(t)q(t)V (t) < 0.

Then eR(t)Dβ
+V (t) is strictly decreasing on [t0,∞), and thus Dβ

+V (t) is eventually of
one sign. We claim Dβ

+V (t) > 0 on [t1,∞), where t1 > t0. Otherwise, assume there
exists T > t1 such that Dβ

+V (t) < 0 on [T,∞). Then there exists a constant K > 0
such that V (t) ≤ K, t ≥ T . Consequently, we have

D
[
eR(t)Dβ

+V (t)
]

= −eR(t)q(t)V (t),

eR(t)Dβ
+V (t) = eR(T )Dβ

+V (T )−
t∫

T

eR(s)q(s)V (s)ds,

Dβ
+V (t) ≤ −K

eR(t)

t∫

T

eR(s)q(s)ds.

By Lemma 2.7, we have

G′(t)
Γ(1− β) = Dβ

+V (t) ≤ −K
eR(t)

t∫

T

eR(s)q(s)ds

Integrating the above inequality from T to t, we have

G(t) ≤ G(T )−KΓ(1− β)
t∫

T

1
eR(s)

s∫

T

eR(ν)q(ν)dνds.
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Letting t→∞, we get limt→∞G(t) ≤ −∞ which is a contradiction. HenceDβ
+V (t) > 0

for t ≥ T holds. Further, we proceed the proof as that of Theorem 3.8, we get
a contradiction to (3.15).

Remark 3.10. In the above results, if we take H to be an arbitrary unit vector
in Rn instead of a fixed unit vector in Rn, then we obtain the results for strongly
H-oscillatory in G.

4. EXAMPLES

In this section, we give two examples to illustrate the results.
Example 4.1. Consider the time fractional vector diffusion-wave equation with forced
and fractional damping terms

Dα
+,tU(x, t) + t2Dβ

+,tU(x, t) + U(x, t) = ∆U(x, t) + F (x, t), (x, t) ∈ Ω× R+, (4.1)

where

F (x, t) =
(

(cos t− t2 sin t) cosx
(sin t+ t2 cos t) sin x

)

with the boundary condition

Ux(0, t) = Ux(π, t) =
(

0
0

)
.

Here Ω = (0, π), p(t) = t2, a(t) = 1, q(x, t) = 1.
Letting H =

(0
1
)
, we have fH(x, t) = (sin t + t2 cos t) sin x and FH(t) = 2 sin t +

2t2 cos t. It is easy to see that all the conditions of Theorem 3.4 are satisfied. Hence,
every solution of (4.1) is H-oscillatory in domain (0, π)× [0,∞).
Example 4.2. Consider the time fractional vector diffusion-wave equation with forced
and fractional damping terms

Dα
+,tU(x, t) + tDβ

+,tU(x, t) + etU(x, t) = ∆U(x, t) + F (x, t), (x, t) ∈ Ω× R+, (4.2)

where

F (x, t) =
(

(1 + t) cos t cosx
(t+ et) sin t sin x

)

with the boundary condition

Ux(0, t) = Ux(π, t) =
(

0
0

)
.

Here Ω = (0, π), p(t) = 1, a(t) = 1, q(x, t) = et.
Letting H =

(1
0
)
, we have fH(x, t) = (1 + t) cos t cosx and FH(t) = 0. It is easy to

see that all the conditions of Theorem 3.8 are satisfied. Hence every solution of (4.2)
is H-oscillatory in domain (0, π)× [0,∞).
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