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Abstract. The main purposes of this paper are to study the direct and inverse spectral
problems of the one-dimensional Dirac operators with nonlocal potentials. Based on informa-
tions about the spectrum of the operator, we find the potential and recover the form of the
Dirac system. The methods used allow us to reduce the situation to the one-dimensional case.
In accordance with the given assumptions and conditions we consider problems in a specific
way. We describe the spectrum, the resolvent, the characteristic function etc. Illustrative
examples are also given.

Keywords: inverse spectral problem, nonlocal potential, nonlocal boundary conditions,
Dirac system.

Mathematics Subject Classification: 47A75, 34A55, 34B10.

1. INTRODUCTION

Spectral theory of differential operators, both ordinary equations and elliptic partial
derivatives ones, is currently well developed in [5, 10, 11, 13, 14, 19], and by others.
There is an extensive literature on exactly solvable models of quantum mechanical
operators, where the potentials are the Dirac δ-functions [4]. These models describe
point interactions and allow one to present various spectral characteristics such as
resolvent, spectrum, scattering operator etc. in explicit form. The papers [1,2] provide
a new class of exactly solvable models of quantum-mechanical operators with nonlocal
potentials. These models contain the numerical parameters and functional parameters
specified by the intensity of point interactions and by the nonlocal potentials, respec-
tively. The above fact extends the applicability of such models in concrete problems.
Several results have been obtained for quantum mechanical operators with nonlocal
potentials. Besides [1,2], we cite [3] and also [12,13,15–17]. In particular, the algorithm
for solving the inverse spectral problem of reconstructing a nonlocal potential by the set
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of all eigenvalues does not use the Gelfand–Levitan–Marchenko integral equation. The
Fourier coefficients of the nonlocal potential are found directly from the characteristic
function which, in turn, is constructed as an infinite product with using eigenvalues.

The idea of constructing models with nonlocal potentials can be illustrated
by the example of the one-dimensional Schrödinger operator. Let the potential v
in the Schrödinger operator

L = − d2

dx2 + v(x)

describe the interaction in a neighborhood of the point x = x0 of small radius. In other
words, the function v can be defined in a neighborhood of the point x0. Moreover,
v possess a certain singularity at this point. Therefore, it can be approximated as
v(x) = αδ(x − x0) + βδ′(x − x0) as x → x0, where δ is the Dirac function (this
corresponds to the model with point interaction). In this case, the eigenfunctions
ψ(x, λ) by themselves or their derivatives ψ′(x, λ) are discontinuous functions at the
point x = x0.

The argumentation above gives us that, in the model with nonlocal potentials, the
expression v(x)ψ(x) for x ≥ x0 is replaced by v(x)(ψ′(x0 + 0) + (x − x0)ψ(x0 + 0))
while for x ≤ x0 is replaced by v(x) (ψ(x0 − 0) + (x− x0)ψ′(x0 − 0)). This leads to
the following expression for the Schrödinger operator with nonlocal potentials vj
(j = 1, 2, 3, 4):

L = −d
2ψ

dx2 + v1(x)ψr(x0) + v2(x)ψs(x0) + v3(x)ψ′r(x0) + v4(x)ψ′s(x0),

for a discontinuous function f at the point x = x0. For this particular point, fr, fs
can be taken as

fr(x0) = 1
2 (f(x0 + 0) + f(x0 − 0)) and fs(x0) = 1

2 (f(x0 + 0)− f(x0 − 0)) ,

respectively. The above differential expression generates a self-adjoint Schrödinger
operator with nonlocal potentials [2] on suitable functions.

In this paper we consider the inverse spectral problem for the Dirac operator

(AΨ) (x) = B
dΨ(x)
dx

+ V (x)Ψ+,

where

B =
(
i 0
0 −i

)
, V (x) =

(
0 v1(x)

v2(x) 0

)
, Ψ(x) =

(
ψ1(x)
ψ2(x)

)
, Ψ+ =

(
ψ+

ψ+

)
,

with the domain

D(A)

=
{

Ψ =
(
ψ1
ψ2

)
∈W 1

2 (0, b)⊕W 1
2 (0, b) : ψ1(0) = ψ2(0),

ψ1(b)− ψ2(b) + i (〈ψ1, v1〉+ 〈ψ2, v2〉) = 0,

}
,
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and
v1, v2 ∈ L2(0, b), ψ+ := 1

2 (ψ1(b) + ψ2(b)) .

We propose a method due to each of the direct and inverse spectral problem for
the Dirac system can be reduced to the study of an ordinary differential operator.
In terms of those operators there are described spectral properties of these operators
and algorithm for the inverse problem is given.

The structure of this paper is as follows. Section 2 contains the study of the
momentum operator id/dx perturbed by a single nonlocal potential. We give a complete
description of the spectrum of such an operator on a finite interval with the help of
the characteristic function. In Section 3, the inverse eigenvalue problem for the first
order differential operator is considered. We provide the algorithm for solving this
problem and illustrate it with an example. Until now we rely on ideas borrowed from
[16] and present the detailed arguments for the sake of completeness. Our main results
are to be found in Section 4, where we describe the method which reduces the spectral
problem for the Dirac system to the one-dimensional case discussed in Section 2. Here
we propose the algorithm, which enables us to solve the inverse problem for the Dirac
system, together with a corresponding example.

2. DIFFERENTIAL OPERATORS OF THE FIRST ORDER
WITH NONLOCAL POTENTIALS. SPECTRAL ANALYSIS

In this section, we are concerned with the study of direct spectral problems for the
first order differential operators with nonlocal potentials on the finite interval. Related
results were obtained in [16]. We shall prove self-adjointness of such operators, describe
their spectra in terms of the characteristic function. Formulas for the resolvents will
be also given. All these facts will be necessary for the study of the Dirac operator
undertaken in Section 4 below.

2.1. SELF-ADJOINTNESS

Consider the following eigenvalue problem

Lψ := i
dψ

dx
+ v(x)ψ+ = λψ, 0 ≤ x ≤ l, (0 < l <∞), (2.1)

with the boundary condition

ψ− + i

l∫

0

ψ(x)v(x)dx = 0, (2.2)

where
ψ+ := 1

2 (ψ(l) + ψ(0)) , ψ− := ψ(l)− ψ(0),
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and (the nonlocal potential) v is a given function from the class L2(0, l) and
(the spectral parameter) λ is a fixed complex number.

In what follows, A denotes the operator generated in the space L2(0, l) by
the problem (2.1)–(2.2), that is, Aψ = λψ. The operator A is defined by

(Aψ)(x) = i
dψ

dx
+ v(x)ψ+, 0 ≤ x ≤ l, (2.3)

on the domain

D(A) =
{
ψ ∈W 1

2 (0, l) : ψ− + i

l∫

0

ψ(x)v(x)dx = 0
}
, (2.4)

where W 1
2 (0, l) is the Sobolev space.

Next, let Amax denote the maximal operator associated with the differential
expression L, that is, Amax is the linear operator defined on the Sobolev space W 1

2 (0, l)
by

Amaxψ = Lψ, ψ ∈W 1
2 (0, l).

Note that the range of the operator Amax is equal to the whole space L2(0, l). Indeed,
for every function h ∈ L2(0, l) there exists a function η ∈W 1

2 (0, l), namely,

η(x) = i

l∫

x

h(s)ds− i

2

l∫

0

h(s)ds, (2.5)

such that Amaxη = h.
The formula for integration by parts yields

〈Amaxψ,ϕ〉 − 〈ψ,Amaxϕ〉 = i
(

(ψ− + i〈ψ, v〉)ϕ+ + ψ+(ϕ− + i〈ϕ, v〉)
)
, (2.6)

for ψ,ϕ ∈ D(Amax). In (2.6) the symbol 〈·, ·〉 designates the scalar product of
the Hilbert space L2(0, l). Noting by Γ0 and Γ1 the functionals defined on W 1

2 (0, l) by

Γ0ψ = ψ− + i〈ψ, v〉, Γ1ψ = iψ+,

the formula (2.6) is rewritten as

〈Amaxψ,ϕ〉 − 〈ψ,Amaxϕ〉 = Γ1ψ · Γ0ϕ− Γ0ψ · Γ1ϕ. (2.7)

The minimal operator A0 := Amin is the restriction of A to the domain

D(A0) =
{
ψ ∈W 1

2 (0, l) : Γ0ψ = Γ1ψ = 0
}
.

It is given by
A0ψ = i

dψ

dx
, ψ ∈ D(A0).
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Lemma 2.1. A0 is a densely defined symmetric operator on L2(0, l).

Proof. We shall prove that for every function h ∈ L2(0, l) and for ε > 0 there exists
a function ψε ∈ D(A0) such that ‖h− ψε‖ < ε.

Since the set C∞0 (0, l) of all infinitely differentiable (complex-valued) functions
with compact support is everywhere dense in L2(0, l), for a given function h in L2(0, l)
and ε > 0 there exists ϕ in C∞0 (0, l) such that

‖h− ϕ‖ < ε

2 .

The support of ϕ is contained in (0, l), then there exists δ > 0 such that
suppϕ ⊂ [δ, l − δ]. Now we want to extend the function ϕ, for which ϕ(x) = 0,
x ∈ [0, δ] ∪ [l − δ, l] =: Iδ, to the whole interval [0, l] so as to an extension ψε belongs
to D(A0) and

l∫

0

|ψε(x)− ϕ(x)|2dx =
∫

Iδ

|ψε(x)|2dx ≤
( ε

2

)2
. (2.8)

Choosing ψε in D(A0) satisfying

‖ψε − ϕ‖ <
ε

2 ,

we get
‖h− ψε‖ ≤ ‖h− ϕ‖+ ‖ϕ− ψε‖ < ε.

Consider a function eδ,d ∈ W 1
2 (0, l) such that eδ,d(0) = 1, eδ,d(l) = −1 and

supp eδ,d ⊂ Iδ also ‖eδ,d‖ = d. A function eδ,d exists for all δ > 0 and d > 0. As an
extension ψε ∈ D(A0) we can take the function in the following form

ψε(x) = Ceδ,d(x) + ϕ(x).

The boundary condition Γ1ψε = 0 holds with any value of constant C. The boundary
condition Γ0ψε = 0 holds with

C = i〈ϕ, v〉
2− i〈eδ,d, v〉

and d ≤ ε

2
1

1 + ‖ϕ‖‖v‖+ ‖v‖ . (2.9)

Since |C| ≤ ‖ϕ‖‖v‖, then the extension ψε ∈ D(A0) satisfies inequality (2.8). In this
way D(A0) is dense in L2(0, l).

Now, take ψ,ϕ ∈ D(A0), i.e., ψ,ϕ ∈ W 1
2 (0, l) such that Γ0ψ = Γ1ψ = 0 and

Γ0ϕ = Γ1ϕ = 0. Then the right hand side of (2.7) vanishes and, thus, the operator A0
is symmetric.

Indeed, A0 is the minimal operator associated with L, because A0 and Amax satisfy
the following relation.
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Lemma 2.2. A∗0 = Amax.
Proof. Assume that ψ ∈ D(A0) and ϕ ∈ D(Amax). From (2.7) we obtain the equality
〈A0ψ,ϕ〉 = 〈ψ,Amaxϕ〉. Therefore, Amax ⊆ A∗0.

To prove the converse inclusion A∗0 ⊆ Amax, let f ∈ D(A∗0) and set h := A∗0f .
Then for the function η given by (2.5) we have

〈A0ψ, f − η〉 = 0 for all ψ ∈ D(A0).

Hence f − η⊥R(A0) which is equivalent to

(f − η)(x) = C


−1− i

2

l∫

0

v(s)ds+ i

l∫

x

v(s)ds


 ,

where C is an arbitrary constant. In this way we obtain that

f − η ∈W 1
2 (0, l)

and Amax(f − η) = 0. Then Amaxf = h and f ∈ D(Amax). Therefore A∗0 ⊆ Amax.
We conclude that A∗0 = Amax.

Lemma 2.3. The mapping

(Γ0,Γ1) : W 1
2 (0, l) 3 ψ 7→ (Γ0ψ,Γ1ψ) ∈ C2 (2.10)

is surjective.
Proof. For any pair (a, b) ∈ C2, there exists a function ψ̂ in W 1

2 (0, l), which can be
taken to be linear, such that

ψ̂− := ψ̂(l)− ψ̂(0) = a, ψ̂+ := 1
2

(
ψ̂(l) + ψ̂(0)

)
= −ib.

In the trivial case when v = 0, we have Γ0ψ̂ = ψ̂− and, since Γ1ψ̂ = iψ̂+ = b, it follows
that (Γ0ψ̂,Γ1ψ̂) = (a, b). In the case when v 6= 0, for any ε > 0 it can be chosen
a function ϕ in C∞0 (0, l), such that

‖ψ̂ − ϕ‖ < ε‖v‖−1.

Letting
ψ = ψ̂ − ϕ,

we have ψ− = ψ̂− and ψ+ = ψ̂+. Thus

Γ0ψ = ψ− + i〈ψ, v〉 = a+ i〈ψ, v〉,

so that
|Γ0ψ − a| = |〈ψ, v〉| ≤ ‖ψ‖‖v‖ < ε,

and, since Γ1ψ = b, we conclude the surjectivity property for the mapping given
by (2.10).
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Proposition 2.4. The operator A is self-adjoint.
Proof. Since, by Lemma 2.1, A0 is a densely defined symmetric operator and, by
Lemma 2.2, we have A∗0 = Amax it follows from (2.6) that (C,Γ0,Γ1) is a boundary
triplet for A∗0 (see, for instance, [18, Def. 14.2]). Secondly, the mapping (2.10) is surjec-
tive due to Lemma 2.3. According to the general theory of boundary triplets [7–9, 18],
the restriction of A∗0 to

D(Aα) :=
{
ψ ∈W 1

2 (0, l) : eiα(Γ1 + iΓ0)ψ = (Γ1 − iΓ0)ψ
}
, 0 ≤ α < 2π,

is a self-adjoint operator. In particular, for α = 0, we have

D(A0) =
{
ψ ∈W 1

2 (0, l) : (Γ1 + iΓ0)ψ = (Γ1 − iΓ0)ψ
}

=
{
ψ ∈W 1

2 (0, l) : Γ0ψ = 0
}

= D(A).

As a consequence, A is a self-adjoint operator on the space L2(0, l).

2.2. THE RESOLVENT

In this subsection, a formula for the resolvent of the operator A will be given. To this
end, it will be convenient to introduce two operators A− and A+ related to the problem
(2.1)–(2.2). In fact, the operators A− and A+ are nothing than the differentiation
operator id/dx defined on L2(0, l) on the domains

D(A−) = {ψ ∈W 1
2 (0, l) : ψ− = 0}, D(A+) = {ψ ∈W 1

2 (0, l) : ψ+ = 0},
respectively. Clearly, both these operators are self-adjoint and have only discrete
spectra. The eigenvalues of A− are

λ−n = 2nπ
l
, n ∈ Z

and of A+ are
λ+
n = (2n− 1)π

l
, n ∈ Z

with the corresponding eigenfunctions ψ−n (x) = e−iλ
−
n x and ψ+

n (x) = e−iλ
+
nx, respec-

tively. Since the set of eigenfunctions {ψ+
n : n ∈ Z} forms a complete orthogonal system

in L2(0, l) and it is assumed that v ∈ L2(0, l), we can be represent v by the Fourier
series expansion

v(x) =
∑

n

vne
−iλ+

nx, (2.11)

where

vn = 1
l

l∫

0

v(x)eiλ
+
nxdx, n ∈ Z. (2.12)

The summation in (2.11), and also in the further part of the paper, is taken over all
the integers n.

In turns out that the operators A, A− and A+ are related to each other, according
to the following statement.



652 Kamila Dębowska and Leonid P. Nizhnik

Proposition 2.5. A is a rank two perturbation of A− and a rank one perturbation
of A+.

Proof. First of all, we observe that the resolvents (A− − zI)−1, (A+ − zI)−1 of the
operators A−, A+ are bounded integral operators with kernels

G−(x, s; z) = i
e−iz(x−s)

e−izl − 1 ·
{

1 for s < x,
e−izl for s > x,

G+(x, s; z) = i
e−iz(x−s)

e−izl + 1 ·
{
−1 for s < x,
e−izl for s > x,

respectively, i.e.,

(A− − zI)−1ϕ(x) =
l∫

0

G−(x, s; z)ϕ(s)ds,

(A+ − zI)−1ϕ(x) =
l∫

0

G+(x, s; z)ϕ(s)ds,

where ϕ ∈ L2(0, l).
By straightforward computation, it can be stated that the resolvent (A− zI)−1 of

the operator A is also an integral operator, the kernel G(x, s; z) of which is expressed
by the formula

G(x, s; z)− G+(x, s; z) =
cos zl2 ϕ(x; z)ϕ̄(s; z̄)

2χ(z) ,

where

ϕ(x; z) = 2e−izx
e−izl + 1 −

l∫

0

G+(x, s; z)v(s)ds,

and

χ(z) = i

2
eizl − e−izl

eizl/2 + e−izl/2

− i

2

(
eizl/2 + e−izl/2

)



l∫

0

G+(0, s; z)v(s)ds−
l∫

0

G+(s, 0; z)v(s)ds




− 1
4

(
eizl/2 + e−izl/2

) l∫

0

l∫

0

G+(x, s; z)v(s)v(x)dsdx.

As is easily seen, the kernel G(x, s; z) differs from G+(x, s; z) by a degenerate kernel of
rank 1, and since

G−(x, s; z)− G+(x, s; z) = 2ie−izl
e−2izl − 1e

−izxeizs,
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it follows that the operator A is a rank one perturbation of A+ and a rank two
perturbation of A−.

Remark 2.6. The function χ, as will be shown in Subsection 2.4, is equal to the
characteristic function of the operator A.

2.3. THE SPECTRUM OF THE OPERATOR A

Our next aim is to describe the spectrum of the operator A. It was already noted that
the operator A is self-adjoint and, due to Proposition 2.5, its spectrum is discrete,
hence it consists of isolated eigenvalues that are located on the real axis. If a point
is an eigenvalue of A+, then in its sufficiently small neighborhood there are at most
two distinct simple eigenvalues or one double eigenvalue ([6, Thm. 9.3.3]). However, it
may happen that one of the eigenvalues of A+ is an eigenvalue of A as well. Actually,
we have the following result.
Theorem 2.7.
1) The eigenvalues of the operator A are of multiplicity at most equal to 2.
2) An eigenvalue λ+

n = (2n − 1)πl of the operator A+ is also an eigenvalue of the
operator A if and only if

vn := 1
l

l∫

0

v(x)eiλ
+
nxdx = 2i

l
. (2.13)

In this case λ+
n is of multiplicity 2 provided that

∑

k 6=n

1
λ+
k − λ+

n

(
vk − vk −

i

2 l|vk|
2
)

= 0. (2.14)

3) All eigenvalues of the operator A different from λ+
n (n ∈ Z) are simple.

Proof. 1) As was already mentioned, A may be viewed as a perturbation of A+ with
one-dimensional operator. Since the eigenvalues of the operator A+ are simple, the
assertion immediately follows from the general principles concerning finite-dimensional
perturbations of self-adjoint operators ([6, Thm. 9.3.3]).

For the operator A, the information that its eigenvalues are of multiplicity at most
equal to 2 is also due to the fact that the homogeneous problem (2.1) can have only
two linearly independent solutions (for ψ+ = 0 and ψ+ 6= 0).

2) Let λ+
n be an eigenvalue of A. It is clear that the eigenfunctions ψ ∈ D(A) are

solutions of the differential equation

i
dψ

dx
+ v(x)ψ+ = λnψ. (2.15)

The general solutions of (2.15) are given by

ψ(x) = ce−iλ
+
nx + iψ+

x∫

0

e−iλ
+
n (x−t)v(t)dt,

where c is a constant.
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Since ψ(0) = c and

ψ(l) = ce−iλ
+
n l + iψ+

l∫

0

e−iλ
+
n (l−t)v(t)dt

= −c− iψ+

l∫

0

eiλ
+
n tv(t)dt = −c− iψ+lvn,

it follows that
2ψ+ = −iψ+lvn,

which yields ψ+ = 0 or vn = 2i
l . If ψ+ = 0, then to the eigenvalue λ+

n there corresponds
the eigenfunction ψ(x) = e−iλ

+
nx. This function satisfies the boundary condition (2.2),

so

ψ− + i

l∫

0

e−iλ
+
nxv(x)dx = 0,

or, what is the same,
ψ− + ilvn = 0. (2.16)

Since ψ− = ψ(l)− ψ(0) = −2, from (2.16) we derive (2.13).
Conversely, let (2.13) be fulfilled. Then the function ψ(x) = e−iλ

+
nx satisfies (2.2)

and, since for this function ψ+ = 0, it follows that ψ is an eigenfunction corresponding
to the eigenvalue λ+

n .
Now, let λ+

n be a double eigenvalue for the operator A. Then ψ(x) = e−iλ
+
nx

is an eigenfunction for which ψ+ = 0. We choose another eigenfunction ϕ, linearly
independent to ψ, for which ϕ+ 6= 0. Without loss of generality, we consider ϕ+ = 1.
We shall look for ϕ in the form of a sum of solutions ϕk of the differential equation

i
dϕk
dx
− λ+

nϕk = −vke−iλ
+
k
x, k ∈ Z, (2.17)

vk being the Fourier coefficients in the expansion (2.11) of v. The solutions vk can be
chosen as

ϕk(x) = vk

λ+
n − λ+

k

e−iλ
+
k
x for k 6= n,

and
ϕn(x) = −2

l
xe−iλ

+
nx for k = n.

The last function satisfies the equation (2.17) for k = n, due to the condition (2.13).
Thus, we can take

ϕ(x) = xe−iλ
+
nx + l

2
∑

k 6=n

vk

λ+
k − λ+

n
e−iλ

+
k
x.
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It is easily seen that the function ϕ is of the Sobolev class W 1
2 (0, l) and satisfies

equation (2.15). Substituting ϕ into the boundary condition (2.2), we get

−l − l
∑

k 6=n

vk

λ+
k − λ+

n
+ i
∑

k 6=n

lvk

i(λ+
k − λ+

n )
+ ivn

l2

2 + il

2
∑

k 6=n

|vk|2
λ+
k − λ+

n
l = 0,

which, taking into account the relationships (2.13) and (2.14), becomes an identity.
3) Let λ be an eigenvalue of the operator A such that λ 6= λn (n ∈ Z). Suppose, if

possible, that λ is a double eigenvalue for A. Then there exist linearly independent
eigenfunction ψj (j = 1, 2) corresponding to λ. Their linear combination

ψ = c1ψ1 + c2ψ2,

where c1, c2 are constants, is also an eigenfunction of A corresponding to λ. In particular,
we can choose c1 = (ψ2)+ and c2 = − (ψ1)+. Then

ψ+ = c1 (ψ1)+ + c2 (ψ2)+ = (ψ2)+ (ψ1)+ − (ψ1)+ (ψ2)+ = 0.

In this way, we find a non-zero function ψ, that is, an eigenfunction of A corresponding
to λ and satisfying ψ+ = 0. Then, as follows from (2.1), ψ(x) = e−iλx. Moreover,
due to ψ+ = 0, λ must be among λ+

n ’s, a contradiction.

2.4. THE CHARACTERISTIC FUNCTION

In this subsection we introduce a function depending on the spectral parameter
λ ∈ C, which, according to its properties, can be called the characteristic function
of the operator A. So, let A be the differential operator generated by the spectral
problem (2.1)–(2.2) under the assumption that the potential v is an element of the
space L2(0, l). Let λ be a complex number and denote ψ(x, λ) the solution of (2.1)
satisfying (2.2). In order to determine ψ(x, λ) we shall proceed as in the previous
subsection taking into account the Fourier expansion (2.11) of v with respect to the
system of the eigenfunctions e−iλ+

nx (n ∈ Z), correspondings to the eigenvalues λ+
n of the

operator A+. We seek for a particular solution of the equation (2.1) in the form

ψ̃(x, λ) =
∑

n

cne
−iλnx,

where cn are constants. Substituting this function into (2.1), we obtain, by comparison
of coefficients, the following relations

(λ+
n − λ)cn = −ψ+vn, n ∈ Z. (2.18)

Having the coefficients cn determined from the obtained relations (2.18), the general
solution ψ(x, λ) of (2.1) can be written as follows

ψ(x, λ) = ce−iλx +
∑

n

cne
−iλ+

nx, (2.19)

c being an arbitrary constant.
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Accordingly, the value of ψ+ is equal to

ψ+ = 1
2 (ψ(l, λ) + ψ(0, λ)) = 1

2
(
ce−iλl + c

)
= 1

2c
(
1 + e−iλl

)
,

i.e.,
ψ+ = 1

2c
(
1 + e−iλl

)
. (2.20)

We derive from (2.18) that

cn = ψ+vn

λ− λ+
n

for λ 6= λ+
n , (2.21)

and, since
ψ+ = 1

2 ilc(λ− λ
+
n ) + o(λ− λ+

n ),

we can take
cn = 1

2 ilcvn for λ = λ+
n . (2.22)

Further, the function ψ(x, λ) must satisfy the boundary condition (2.2). Substituting
into (2.2) the solution ψ(x, λ) given by (2.19) with the coefficients cn determined by
(2.21) and (2.22), we get

c
(
e−iλl − 1

)
− 2

∑

n

ψ+vn

λ− λ+
n

+ c
(
1 + e−iλl

)∑

n

vn

λ− λ+
n

+ il
∑

n

ψ+|vn|2
λ− λ+

n
= 0 (2.23)

for λ 6= λ+
n , and

−2c− ilvnc+ ilvnc−
1
2cl

2|vn|2 = 0 (2.24)

for λ = λ+
n . Taking into account (2.20) and that c is an arbitrary constant and

multiplying (2.23), (2.24) (for the sake of symmetry) by − 1
2 ie

iλl
2 , we arrive at the

equation
χ(λ) = 0, (2.25)

where χ is a function on λ defined by

χ(λ) = − sin λl2 + cos λl2
∑

n

wn

λ− λ+
n

for λ 6= λ+
n , (2.26)

and
χ(λ) = (−1)n

(
1 + l

2wn
)

for λ = λ+
n , (2.27)

where wn is equal to

wn = ivn − ivn + l

2 |vn|
2. (2.28)
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Remark 2.8. Along with the formula (2.27) of the characteristic function χ it follows
the equality

χ(λ+
n ) = (−1)n

∣∣∣∣1 + i
l

2vn
∣∣∣∣
2
. (2.29)

The function χ thus introduced can be called the characteristic function of the
operator A or, also, of the spectral problem (2.1)–(2.2). We refer to the equation (2.25)
as the characteristic equation of A or, respectively, of the problem (2.1)–(2.2). It is
seen that χ is an entire function of λ.

The following theorem describes the relationship between the eigenvalues of the
operator A and the characteristic function χ. It is analogous to Theorem 2.7, but
the spectrum of A is described in terms of characteristic functions.
Theorem 2.9.
1) λ is an eigenvalue of the operator A if and only if λ is a zero of the characteristic

function χ.
2) All zeros λ 6= λ+

n of the characteristic function are simple.
3) The characteristic function does not have zeros of multiplicities greater than 2.
4) λ is an eigenvalue of the operator A of multiplicity 2 if and only if it is a zero of

multiplicity 2 of χ.
Proof. 1) From the construction of χ, presented above, it follows that if λ is an
eigenvalue of the spectral problem (2.1)–(2.2), that is, the eigenvalue of A, then λ is
also a zero of the characteristic function χ.

Conversely, if λ is a zero of the characteristic function χ, we construct the function
ψ(x, λ) like in (2.19), where c is an arbitrary constant and cn (n ∈ Z) are given
by the formulas (2.21)–(2.22). With appropriate values of constants this function
satisfies the boundary condition (2.2), because χ(λ) = 0. It means that ψ(x, λ) is
the solution of the spectral problem (2.1)–(2.2), i.e., λ is the eigenvalue of the opera-
tor A.

2) From 1) all zeros of the characteristic function are eigenvalues of the operator A.
Hence, using 3) from Theorem 2.7 we obtain the desired assertion.

3) The fact that the characteristic function χ does not have zeros of multiplicities
greater than 2, based on 1), is equivalent to 1) from Theorem 2.7. It follows also
immediately from vanishing of the second derivative of the characteristic function.

4) Let λ be an eigenvalue of the operatorA of multiplicity 2. From 2) we have λ = λ+
n .

As results from Theorem 2.7, the number λ+
n is an eigenvalue of A of multiplicity 2 if

and only if (2.13) and (2.14) hold. From (2.29) we know that χ (λ+
n ) = 0 if and only

if vn = 2i
l , which is equivalent to (2.13). Since the first derivative of χ at the point λ+

n

has the following form

dχ

dλ

∣∣∣∣
λ=λ+

n

= (−1)n l2
∑

k 6=n

wk

λ+
n − λ+

k

, (2.30)

we see that dχ
dλ

∣∣∣
λ=λ+

n

= 0 which is equivalent to (2.14). Moreover, from 3) we get λ is
of multiplicity equal to 2.
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On the other hand, if λ is a zero of multiplicity 2 of χ, then from 2) we have
λ = λ+

n , which ends the proof of 4).

Remark 2.10. λ = 0 is an eigenvalue of the operator A if and only if χ(0) = 0, i.e.,
∑

n

wn

λ+
n

= 0,

and the corresponding eigenfunction admits the extension

ψ(x, 0) = − i2 + i

2
∑

n

vne
−iλ+

nx

λ+
n

.

Proposition 2.11. There exists at least one eigenvalue of the operator A in every
interval In = [λ+

n , λ
+
n+1], n ∈ Z.

Proof. If χ(λ+
n ) = 0, then according to Theorem 2.9 λ+

n is an eigenvalue of A, and
similarly for λ+

n+1. If χ(λ+
n ) 6= 0 and χ(λ+

n+1) 6= 0, then according to (2.29) the function
χ takes values of different signs in λ = λ+

n and λ = λ+
n+1. Since the function χ is

continuous, then it is equal to zero in some point µ ∈ In. This value µ is an eigenvalue
of the operator A.

2.5. THE DISTRIBUTION OF THE EIGENVALUES

Our next result concerns numeration and asymptotics of eigenvalues of the operator
A as zeros of the characteristic function χ given by (2.26).

Proposition 2.12. The sequence of eigenvalues of the operator A (counting multi-
plicities) can be numbered as

. . . ≤ λ−n ≤ . . . ≤ λ−1 ≤ λ0 ≤ λ1 ≤ . . . ≤ λn ≤ . . . (2.31)

listed in an increasing order satisfies the asymptotic distribution,

λn = 2π
l
n+ βn, n ∈ Z, (2.32)

where βn are real values such that |βn| ≤ π
l and

∑

n

β2
n <∞. (2.33)

Proof. Assume that λ+
n (n ∈ Z) are not eigenvalues of the operator A. Then from

Theorem 2.7 all Fourier coefficients vn of v are different from 2i
l . All eigenvalues of the

operator A are zeros of the characteristic function χ based on Theorem 2.9. Observe
from the Rouché theorem that the entire function χ and sin λl

2 have the same number
of zeros, counting multiplicities, equal tom+n+1, in the interval I−n,m = [λ+

−n, λ
+
m+1],

where m,n are large enough. We deduce from Proposition 2.11 that there exists at least
one eigenvalue in each interval Ǐn = (λ+

n , λ
+
n+1). Hence there is only one eigenvalue
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in each interval In, which we number as λn. Under given assumptions, we get sharp
equalities in (2.31) and |βn| < π

l in (2.32).
Now, let λ+

n (n ∈ Z) be eigenvalues of A. Then vn = 2i
l . This case is only for the

finite number of eigenvalues, because vn are Fourier coefficients of v ∈ L2(0, l). Let us
change the potential v to v̂ in order to change the coefficients vn to v̂n 6= 2i

l and all
eigenvalues which were in intervals Ǐn stay in them. An eigenvalue, which was at the
end of interval, goes into this interval where there was no eigenvalues of A. With such
a change of the potential numbering of eigenvalues does not change. If λ+

n is a double
eigenvalue, then one goes to the left and the other to the right intervals. We number
eigenvalues of A based on the information about the position of perturbed eigenvalues.
If a perturbed eigenvalue is in the interval Ǐn, then we number the initial eigenvalue
as λn. We get numbering in an increasing order of eigenvalues with respect to their
multiplicity (2.31) and |βn| ≤ π

l .
We shall get an estimate (2.33) for βn using the fact that λn given by (2.32) are

zeros of the characteristic function χ(λ) with |βn| ≤ π
l . Let wn (n ∈ Z), given by

(2.28), be the Fourier coefficients of the function w ∈ L2(0, l), that is,

w(x) =
∑

n

wne
−iλ+

nx,

where ∑

n

|wn|2 <∞. (2.34)

Then the characteristic function χ, according to (2.26), has the following representation

χ(λ) = − sin λl2 −
i

2

l∫

0

eiλ(x− l
2 )w(x)dx. (2.35)

Denote by p the function

p(λ) = − i2

l∫

0

eiλ(x− l
2 )w(x)dx. (2.36)

Because χ(λn) = 0, using (2.35) and (2.36), we get the following equation

sin λnl2 = p(λn). (2.37)

Since p in (2.36) is the Fourier transform of the function w ∈ L2(0, l), then p is
an analytic function of λ. Thus, the derivative of p exists and we can write

p(λn) = p(λ+
n ) +

λn∫

λ+
n

p′(λ)dλ for λn ∈ [λ+
n , λ

+
n+1]. (2.38)
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Now, from straightforward computation, we get

p(λ+
n ) = (−1)n l2wn (2.39)

and

p′(λ) = − i2

l∫

0

eiλ(x− l
2 )i

(
x− l

2

)
w(x)dx. (2.40)

The function p′ given by (2.40) is the Fourier transform of the function
(x− l

2 )w(x) ∈ L2(0, l). Hence p′ ∈ L2(R), so

∞∫

−∞

|p′(λ)|2dλ <∞. (2.41)

Let

pn :=




λ+
n+1∫

λ+
n

|p′(λ)|2dλ




1
2

,

then, from (2.41), we have ∑

n

p2
n <∞. (2.42)

We get the following estimation
∣∣∣∣∣∣∣

λn∫

λ+
n

p′(λ)dλ

∣∣∣∣∣∣∣
≤

λ+
n+1∫

λ+
n

|p′(λ)| dλ ≤
(

2π
l

) 1
2

pn. (2.43)

From (2.38), (2.39) and (2.43) we have

|p(λn)| ≤ l

2 |wn|+
(

2π
l

) 1
2

pn.

Therefore, based on (2.34) and (2.42), we obtain
∑

n

|p(λn)|2 <∞. (2.44)

Hence
p(λn)→ 0 as n→∞. (2.45)

For λn given by (2.32), from the equation (2.37) we have

(−1)n sin βnl2 = p(λn).
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We know that |βn| ≤ π
l . Then

∣∣∣βnl2

∣∣∣ ≤ π
2 , and according to (2.45)

sin βnl2 = βnl

2 (1 + o(1)) as n→∞.

Further,
|βn| ≤

2
l
|p(λn)|(1 + o(1)) as n→∞.

Then from (2.44) we have ∑

n

|βn|2 <∞.

Remark 2.13. From the proof of Proposition 2.12, the asymptotic for eigenvalues
λn = 2πn

l + βn of the operator A, as n→∞, can be noticed in the following form

βn = (−1)n 2
l
p

(
2πn
l

)
(1 + o(1)) =

(
1
π

∑

k

wk

n− k + 1
2

)
(1 + o(1)) . (2.46)

The coefficients wk are expressed by the Fourier coefficients of the nonlocal potential
by the formula (2.28).

For the proof instead of (2.38) we can take

p

(
2πn
l

+ βn

)
= p

(
2πn
l

)
+ βnp

′
(

2πn
l

)
+

2πn
l +βn∫

2πn
l

(
2πn
l

+ βn − λ
)
p′′ (λ) dλ.

(2.47)
Using estimates

p′
(

2πn
l

)
= o(1)

and
λ+
n+1∫

λ+
n

|p′′(λ)| dλ = o(1)

we obtain (2.46).
We further use the numbering of eigenvalues of the operator A from Proposi-

tion 2.12.
We can express the entire function χ as an infinite product depending on its

zeros λn (see [19]), as follows:

χ(z) = C(z − λ0)
∞∏

n=1

(λn − z)(z − λ−n)
λn · |λ−n|

. (2.48)

Now using [13, Lemma 3.4.2] we get the following result.
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Proposition 2.14. The characteristic function χ given by (2.48) can be expressed by
the product

χ(λ) = − l2(λ− λ0)
∞∏

n=1

(λn − λ)(λ− λ−n)
( 2nπ

l

)2 . (2.49)

Proof. Using (2.48) we get the characteristic function in the following form

χ(λ) = −Ĉ l

2(λ− λ0)
∞∏

n=1

(λn − λ)(λ− λ−n)
( 2nπ

l

)2 , (2.50)

where

Ĉ = −C 2
l

∞∏

n=1

( 2nπ
l

)2

λn · |λ−n|
.

The above infinite product is convergent, because λn (n ∈ Z) are given by (2.32)
and (2.33). From the explicit formula (2.26) of the characteristic function it is seen
that for λ = iy we have

lim
y→∞

χ(iy)
− sin iyl

2
= 1. (2.51)

Now, using the formulas

sin λl2 = λl

2

∞∏

n=1

4n2π2

l2 − λ2

4n2π2

l2

.

and (2.50) we obtain

χ(λ)
− sin λl

2
= Ĉ

λ− λ0
λ

∞∏

n=1

(λn − λ)(λ− λ−n)
4n2π2

l2 − λ2
. (2.52)

Putting λ = iy and passing with y to the infinity in (2.52) we get

1 = lim
y→∞

χ(iy)
− sin iyl

2
= Ĉ lim

y→∞

∞∏

n=1

(λn − iy)(iy − λ−n)
4n2π2

l2 − i2y2
= Ĉ.

Since Ĉ = 1 and (2.50), we conclude (2.49).

3. INVERSE EIGENVALUE PROBLEM

This section is devoted to the inverse problem for the first order differential operators
with nonlocal potentials and nonlocal boundary conditions. At the beginning, algorithm
for solving the inverse problem will be given. Next, appropriate example will be shown.
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3.1. ALGORITHM

Inverse spectral problems involve recovering an operator from its spectrum. In general,
this operator is not unique. There is a set of isospectral operators, and therefore exists
a set of isospectral potentials. The proposed algorithm makes it possible to effectively
determine all isospectral potentials.

Let us assume that we know all eigenvalues λn (n ∈ Z) of the operator A. We find
the nonlocal potential v ∈ L2(0, l).

Step 1. We construct the characteristic function χ via (2.49)

χ(λ) = − l2(λ− λ0)
∞∏

n=1

(λn − λ)(λ− λ−n)
( 2nπ

l

)2 .

Step 2. We calculate the values χ(λ+
n ) for all n ∈ Z, where λ+

n = (2n− 1)πl .
Step 3. We solve the quadratic equation of (2.29) for vn:

χ
(
λ+
n

)
= (−1)n

∣∣∣∣1 + i
l

2vn
∣∣∣∣
2
.

This equation can have several different solutions leading to different isospectral
potentials.

Step 4. We write the potential v(x) =
∑
n vne

−iλ+
nx.

Now, we consider an example for solving the inverse problem.

Example 3.1. Let λ1 = 1
2 and λn = n for n 6= 1 be the eigenvalues of the operator

(2.3) and let l = 2π. Under this assumptions we find the potential v in the problem
(2.1)–(2.2). The characteristic function χ, in this case, is the following

χ(λ) = − l2(λ− λ0)
∞∏

n=1

(λn − λ)(λ− λ−n)
( 2nπ

l

)2

= −π(λ− 0)
∞∏

n=2

(n− λ)(λ− (−n))
n2 · ( 1

2 − λ)(λ− (−1))
12

= −πλ
∞∏

n=1

n2 − λ2

n2 · 1
(1− λ)(λ+ 1) ·

( 1
2 − λ)(λ+ 1)

1

= −πλ
∞∏

n=1

n2 − λ2

n2 ·
1
2 − λ
1− λ

= −πλ
∞∏

n=1

n2 − λ2

n2 · λ−
1
2

λ− 1 .

It can be checked that
sin (πλ) = πλ

∞∏

n=1

n2 − λ2

n2 ,
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so
χ(λ) = −λ−

1
2

λ− 1 sin (πλ).

For λ+
n = n− 1

2 , we calculate the values χ(λ+
n ) as follows

χ
(
λ+
n

)
= χ

(
n− 1

2

)
= −n−

1
2 − 1

2
n− 1

2 − 1
sin
((

n− 1
2

)
π

)
= (−1)n n− 1

n− 3
2
.

We solve the quadratic equation

(−1)n |1 + iπvn|2 = (−1)n n− 1
n− 3

2
,

which is equivalent to
|1 + iπvn|2 = n− 1

n− 3
2
,

from which we compute the Fourier coefficients of the potential v:

vn = − i

2π

(
|n− 3/2|+

√
(n− 1) (n− 3/2)

)−1
.

It is worth mentioning that the asymptotic behavior of Fourier coefficients vn being
vn ∼ − i

2nπ , which results immediately from the formula obtained above for vn. Finally,
we obtain the potential v(x) =

∑
n vne

−iλ+
nx.

4. DIRAC SYSTEMS

This section is devoted to the spectral theory of the one-dimensional Dirac operator.
We study the direct and inverse problem for the Dirac system with nonlocal potential.
The above considerations will be carried out in the case that the interval is finite. We
describe the method of reducing the spectral problem for the Dirac system to the
one-dimensional case from Section 2.

4.1. GENERAL CASE

In the literature Dirac operators with local potential are considered. For more details
about the Dirac systems we refer to the book [12]. Now we present the Dirac systems
in the usual case.

Consider the following eigenvalue problem for the Dirac system

B
dψ(x)
dx

+ V (x)ψ(x) = λψ(x), 0 ≤ x ≤ b, (4.1)

where
B =

(
0 1
−1 0

)
, V (x) =

(
p(x) q(x)
q(x) −p(x)

)
, ψ(x) =

(
ψ1(x)
ψ2(x)

)
,
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and (the potentials) p, q are given functions from the class L2(0, b) (0 < b <∞) and
(the spectral parameter) λ is a fixed complex number. We consider the equation (4.1)
with functions ψ1, ψ2 which are defined on the Sobolev space W 1

2 (0, b). The above
equation is equivalent to the system of two first order ordinary differential equations

{
dψ2(x)
dx + p(x)ψ1(x) + q(x)ψ2(x) = λψ1(x),

−dψ1(x)
dx + q(x)ψ1(x)− p(x)ψ2(x) = λψ1(x).

Let
U = 1√

2

(
1 −i
i −1

)
.

Then
UBU−1 =

(
i 0
0 −i

)
.

We obtain an equivalent system

B̂
dψ̂(x)
dx

+ V̂ (x)ψ̂(x) = λψ̂(x), 0 ≤ x ≤ b, (4.2)

where
B̂ =

(
i 0
0 −i

)
, V̂ (x) =

(
0 v̂(x)

v̂(x) 0

)
, ψ̂(x) =

(
ψ̂1(x)
ψ̂2(x)

)

and

v̂(x) = −(q(x) + ip(x)), ψ̂1(x) = ψ1(x)− iψ2(x), ψ̂2(x) = −ψ2(x) + iψ1(x).

We rewrite (4.2) as the following system of the first order ordinary differential equations
{
idψ̂1(x)

dx + v̂(x)ψ̂2(x) = λψ̂1(x),
−idψ̂2(x)

dx + v̂(x)ψ̂1(x) = λψ̂2(x).

In order for the corresponding operator to be self-adjoint we impose the following
boundary conditions:

ψ̂1(0) = ψ̂2(0),

ψ̂1(b) = ψ̂2(b).

4.2. REDUCING PROCEDURE. SELF-ADJOINTNESS

Now we present a method how to reduce the spectral problem for the Dirac system to
the one-dimensional case.

Consider the spectral problem
{
idψ1(x)

dx + v1(x)ψ+ = λψ1(x),
−idψ2(x)

dx + v2(x)ψ+ = λψ2(x),
0 ≤ x ≤ b, (0 < b <∞), (4.3)
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where
ψ1, ψ2 ∈W 1

2 (0, b), v1, v2 ∈ L2(0, b),

and
ψ+ := 1

2 (ψ1(b) + ψ2(b))

with the boundary condition
ψ1(0) = ψ2(0), (4.4)

and the nonlocal boundary condition

ψ1(b)− ψ2(b) + i (〈ψ1, v1〉+ 〈ψ2, v2〉) = 0. (4.5)

The corresponding operator A is defined by

(AΨ) (x) = B
dΨ(x)
dx

+ V (x)Ψ+, 0 ≤ x ≤ b, (4.6)

where

B =
(
i 0
0 −i

)
, V (x) =

(
0 v1(x)

v2(x) 0

)
, Ψ(x) =

(
ψ1(x)
ψ2(x)

)
, Ψ+ =

(
ψ+

ψ+

)
,

on the domain D(A) contains the functions ψ1, ψ2 ∈ W 1
2 (0, b) satisfying conditions

(4.4)–(4.5).
The system (4.3) is decoupled and the equations interact with each other only

through the boundary conditions (4.4)–(4.5) at points x = 0 and x = b. Therefore,
we consider the problem (4.3)–(4.5) on the interval [0, 2b] illustrated in Figure 1.

ψ2(b− x) ψ1(x− b)

0 b 2b
s s s

Fig. 1. Reduction procedure on the interval [0, 2b].

We define the functions

ψ(x) =
{
ψ1(x− b), b ≤ x ≤ 2b,
ψ2(b− x), 0 ≤ x ≤ b, (4.7)

and

v(x) =
{
v1(x− b), b ≤ x ≤ 2b,
v2(b− x), 0 ≤ x ≤ b. (4.8)

Then
ψ+ = 1

2 (ψ(2b) + ψ(0)) ,
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which is equal to ψ+ = 1
2 (ψ(l) + ψ(0)) for l = 2b. In fact, we write the Dirac system

with nonlocal potentials (4.3)–(4.5) as the eigenvalue problem for the first order
differential operator, substituting l = 2b, as follows

i
dψ(x)
dx

+ v(x)ψ+ = λψ(x), 0 ≤ x ≤ l (4.9)

with the nonlocal boundary condition

ψ(l)− ψ(0) + i〈ψ, v〉 = 0. (4.10)

We considered such a problem in Section 2. The operator A given by (4.6) has
the same form as the operator A in (2.3)–(2.4).

Observe that the spectral problem (4.3)–(4.5) is equivalent to the problem
(2.1)–(2.2). This implies that the operator A is self-adjoint.

4.3. SPECTRAL PROPERTIES

The aim of this subsection is describe the spectrum and the characteristic function
of the operator A. We use the fact that the problem (4.3)–(4.5) is equivalent to the
problem (2.1)–(2.2). For ψ+ = 0, the system of equations (4.3) has the form

{
idψ1(x)

dx = λψ1(x),
−idψ2(x)

dx = λψ2(x),
0 ≤ x ≤ b, (0 < b <∞),

and the corresponding operator A+ is defined by

(A+Ψ) (x) = B
dΨ(x)
dx

,

where
B =

(
i 0
0 −i

)
,

on the domain

D(A) =
{

Ψ =
(
ψ1
ψ2

)
∈W 1

2 (0, b)⊕W 1
2 (0, b) : ψ1(0) = ψ2(0),

ψ1(b) + ψ2(b) = 0

}
.

The numbers λ+
n = (n− 1

2 )πb are eigenvalues of the operator A+ and corresponding
eigenfunctions are given by ψ1(x) = e−iλ

+
nx and ψ2(x) = eiλ

+
nx. Each of these families

forms a complete orthogonal system in L2(0, b). Hence, the nonlocal potentials v1 and
v2 can be represented by the Fourier series

vj(x) =
∑

n

v(j)
n ψj(x), 0 ≤ x ≤ b, j = 1, 2,

and, respectively,

v(j)
n = 1

b

b∫

0

vj(x)ψj(x)dx, j = 1, 2.
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In what follows, using the reducing procedure (4.7)–(4.8), we transfer the results
obtained for the operator A to the case of the operator A. Doing this, we substitute
l = 2b.

We start by formulating a counterpart of Theorem 2.7 for the Dirac system.
Theorem 4.1.
1) The eigenvalues of the operator A are of multiplicity at most equal to 2.
2) An eigenvalue λ+

n = (n − 1
2 )πb of the operator A+ is also an eigenvalue of the

operator A if and only if

v(1)
n + v(2)

n = 2
b

(−1)(n+1). (4.11)

In this case λ+
n is of multiplicity 2 provided that

∑

k 6=n

1
λ+
k − λ+

n

(
(−1)k+1

(
v

(1)
k + v

(2)
k

)
+ (−1)k+1

(
v̄

(1)
k + v̄

(2)
k

)
− b

2

∣∣∣v(1)
k + v

(2)
k

∣∣∣
2
)

= 0,
(4.12)

3) All eigenvalues of the operator A different from λ+
n are simple.

Proof. 1) and 3) follow immediately from Theorem 2.7 and (4.7)–(4.8).
2) Using (2.13) and (4.8) we get

vn = 1
2b

2b∫

0

v(x)eiλ
+
nxdx

= 1
2b

b∫

0

v2(b− x)eiλ
+
nxdx+ 1

2b

2b∫

b

v1(x− b)eiλ+
nxdx

= 1
2b

b∫

0

v2(t)eiλ
+
n (l−t)dt+ 1

2b

b∫

0

v1(t)eiλ
+
n (t+l)dt

= 1
2(v(1)

n + v(2)
n )eiλ

+
n l = i

2(−1)n+1(v(1)
n + v(2)

n ) = i

b
,

which yields (4.11).
Substituting vk = i

2 (−1)k+1(v(1)
k + v

(2)
k ) into (2.14), we obtain

∑

k 6=n

1
λ+
k − λ+

n

(
i

2(−1)k+1
(
v

(1)
k + v

(2)
k

)
− i

2(−1)k+1
(
v

(1)
k + v

(2)
k

)

− ib
∣∣∣∣
i

2(−1)n+1
∣∣∣∣
2 ∣∣∣v(1)

k + v
(2)
k

∣∣∣
2
)

= 0,
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which implies
∑

k 6=n

1
λ+
k − λ+

n

(
i

2(−1)k+1
(
v

(1)
k + v

(2)
k

)
+ i

2(−1)k+1
(
v

(1)
k + v

(2)
k

)
− ib

4

∣∣∣v(1)
k + v

(2)
k

∣∣∣
2
)

= 0.

Dividing this equation by i
2 we get (4.12).

The characteristic function of the operator A corresponding to the problem
(4.3)–(4.5) has the form

χ(λ) = − sin(λb) + cos(λb)
∑

n

wn

λ− λ+
n

for λ 6= λ+
n (4.13)

and
χ (λ) = (−1)n

∣∣∣∣
b

2(−1)n+1
(
v(1)
n + v(2)

n

)
− 1
∣∣∣∣
2

for λ = λ+
n , (4.14)

where

wn = 1
2(−1)n

(
v(1)
n + v(2)

n

)
+ 1

2(−1)n
(
v(1)
n + v(2)

n

)
+ b

4

∣∣∣v(1)
n + v(2)

n

∣∣∣
2
. (4.15)

Theorem 4.2.
1) λ is an eigenvalue of the operator A if and only if λ is a zero of the characteristic

function χ.
2) λ is an eigenvalue of the operatorA of multiplicity 2 if and only if it is a zero of

multiplicity 2 of χ.
3) All zeros λ 6= λ+

n of the characteristic function are simple.
4) The characteristic function does not have zeros of multiplicities greater than 2.

The proof of Theorem 4.2 is analogous to that of Theorem 2.9.
Next, repeating the same steps as in the proof of Proposition 2.14, we obtain

the following result.
Proposition 4.3. The characteristic function χ given by (4.13) can be expressed by
the product

χ(λ) = −b(λ− λ0)
∞∏

n=1

(λn − λ)(λ− λ−n)
(
nπ
b

)2 . (4.16)

Furthermore, we can also easily obtain the ensuing counterpart of Proposition 2.14.
Proposition 4.4. The sequence of eigenvalues of the operator A (counting multiplic-
ities) can be numbered as

. . . ≤ λ−n ≤ . . . ≤ λ−1 ≤ λ0 ≤ λ1 ≤ . . . ≤ λn ≤ . . .

listed in an increasing order satisfies the asymptotic distribution,

λn = π

b
n+ βn, n ∈ Z,
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where βn are real values such that |βn| ≤ π
2b and

∑

n

β2
n <∞.

Now we find a solution of the direct problem for an exemplary Dirac system.

Example 4.5. Consider the problem (4.3)–(4.5) with nonlocal potentials
v1(x) = − sin x

2 and v2(x) = sin x
2 . Let b = π and assume that ψ+ = 1. We calculate

the Fourier coefficients of the potentials v1 and v2 as follows:

v
(1)
0 = v

(2)
0 = i

2 , v
(1)
1 = v

(2)
1 = − i2 , and v(1)

n = v(2)
n = 0, n ∈ Z\{0, 1}.

From (4.13)–(4.15) we infer that

χ(λ) = − sinλπ + 2πλ
4λ2 − 1 cosλπ.

The numbers satisfying the equation

tanλπ = 2πλ
4λ2 − 1

are the eigenvalues of the operator generated by the considered problem.

4.4. INVERSE PROBLEM

We are in a position to give the algorithm for solving the inverse eigenvalue problem
(4.3)–(4.5). Let us assume that all eigenvalues of the operator generated by this
problem are known. Then, we find the nonlocal potentials v1, v2 ∈ L2(0, l) proceeding
as follows.

Step 1. We construct the characteristic function χ via (4.16)

χ(λ) = −b(λ− λ0)
∞∏

n=1

(λn − λ)(λ− λ−n)
(
nπ
b

)2 .

Step 2. We calculate the values χ(λ+
n ) for all n ∈ Z, where λ+

n = (n− 1
2 )πb .

Step 3. We solve the quadratic equation for vn:

χ
(
λ+
n

)
= (−1)n |1 + ibvn|2 .

Step 4. Using potential v, we find the potentials v1, v2 by the reduction procedure
(4.8).

v(x) =
∑

n

vne
−i(n− 1

2 )πb x, 0 ≤ x ≤ 2b,

v1(x) = v(x+ b), v2(x) = v(b− x), 0 ≤ x ≤ b.
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Example 4.6. Let λ1 = 1
2 and λn = n for n 6= 1 be the eigenvalues of the operator

generated by the problem (4.3)–(4.5) and let b = π. The characteristic function χ,
this case, is the following

χ(λ) = −b(λ− λ0)
∞∏

n=1

(λn − λ)(λ− λ−n)
(
nπ
b

)2

= −π(λ− 0)
∞∏

n=2

(n− λ)(λ− (−n))
n2 · ( 1

2 − λ)(λ− (−1))
12

= −πλ
∞∏

n=1

n2 − λ2

n2 · 1
(1− λ)(λ+ 1) ·

( 1
2 − λ)(λ+ 1)

1

= −πλ
∞∏

n=1

n2 − λ2

n2 ·
1
2 − λ
1− λ

= −πλ
∞∏

n=1

n2 − λ2

n2 · λ−
1
2

λ− 1 .

Since
sin (πλ) = πλ

∞∏

n=1

n2 − λ2

n2 ,

one has
χ(λ) = − sin (πλ)

λ− 1
2

λ− 1 .

For λ+
n = n− 1

2 , we calculate the values χ(λ+
n ) as follows:

χ
(
λ+
n

)
= χ

(
n− 1

2

)
= − sin

((
n− 1

2

)
π

)
· n−

1
2 − 1

2
n− 1

2 − 1
= (−1)n n− 1

n− 3
2
.

Solving the quadratic equation

(−1)n |1 + iπvn|2 = (−1)n n− 1
n− 3

2
,

we get
vn = − i

2π

(
|n− 3/2|+

√
(n− 1) (n− 3/2)

)−1
.

Therefore,

v(j)
n = (−1)n

2π

(
|n− 3/2|+

√
(n− 1)(n− 3/2)

)−1
, j = 1, 2.

It remains to apply the above Step 4 to obtain explicit formulae for the potentials
v1 and v2.

vj(x) =
∑

n

v(j)
n ψj(x), j = 1, 2, 0 ≤ x ≤ b.
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