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Abstract. We establish a characterization of unitary equivalence of two bilateral opera-
tor valued weighted shifts with quasi-invertible weights by an operator of diagonal form.
We provide an example of unitary equivalence between shifts with weights defined on C2

which cannot be given by any unitary operator of diagonal form. The paper also contains
some remarks regarding unitary operators that can give unitary equivalence of bilateral
operator valued weighted shifts.
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1. INTRODUCTION AND PRELIMINARIES

Classical weighted shift operators and their properties have already been studied for
a long time by many authors (see, e.g., [2, 5, 14,16]). By classical weighted shifts we
understand both unilateral and bilateral weighted shifts defined on `2 and `2(Z), respec-
tively. There are many papers devoted to various problems related to weighted shifts in
more general context in which these operators are operator valued weighted shifts (see
[3, 6, 8, 9, 11–13,15]). In some of them authors prove or use certain results concerning
unitary equivalence of the latter class of operators (see [6, 9, 11–13, 15]). Jabłoński,
Jung and Stochel introduced in [10] the class of weighted shifts on directed trees,
which generalizes classical unilateral and bilateral weighted shifts.

Unitary equivalence of unilateral operator valued weighted shifts with invertible
weights was characterized by Lambert in [11, Corollary 3.3]. Orovčanec provided
a similar characterization in the case of unilateral operator valued weighted shifts with
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quasi-invertible weights (see [13, Theorem 1]). Later on, a similar result was proved in
[1, Theorem 2.3] with weaker assumptions, namely, for unilateral shifts with weights
having dense ranges. Jabłoński proved in [9, Proposition 2.2] that a unilateral operator
valued weighted shift with invertible weights is unitarily equivalent to a unilateral
operator valued weighted shift with weights {Tn}∞n=0 such that the product Tn . . . T0
is a positive operator for all n ∈ N.

On the other hand, there are some partial results regarding unitary equivalence of
bilateral operator valued weighted shifts. Pilidi proved that if some certain sequences
of two shifts are unitarily equivalent, then these shifts are unitarily equivalent (see
[15, Theorem 4]). The opposite implication is also true under an additional assumption
that certain algebras are equal to B(H) (see [15, Theorem 3] for details). In addition
to this, he stated (without proof) a characterization of unitary equivalence of such
operators when dimH = 2 (see [15, Theorem 5]). Li, Ji and Sun proved that each
bilateral operator valued weighted shift with invertible weights defined on Cm form ≥ 2
is unitarily equivalent to a shift with upper triangular weights (see [12, Theorem 2.1]).
Shields provided in [16] a characterization of unitary equivalence in the case of classical
bilateral shifts. Guyker proved in [6] a result regarding unitary equivalence of bilateral
operator valued weighted shift with a shift having positive weights. The proof required
an additional assumption, i.e., the normality and commutativity of certain weights. In
the same paper, among several results regarding reducibility of bilateral shifts, Guyker
showed that under some additional assumptions a bilateral operator valued weighted
shift is unitarily equivalent to a countable direct sum of classical bilateral shifts (see
[6, Theorem 3]).

In what follows, we denote by N, N+, Z, R, R+ and C the sets of non-negative
integers, positive integers, integers, real numbers, non-negative real numbers and
complex numbers, respectively. Throughout the paper by H we denote a nonzero
complex Hilbert space. The symbol B(H) stands for the C∗-algebra of all bounded
operators defined on H. All operators considered in this paper are assumed to be
linear. By R(A) and N (A) we understand the range and the kernel of an operator
A ∈ B(H), respectively. As usual, I ∈ B(H) stands for the identity operator. A unitary
equivalence of operators A, B ∈ B(H) is denoted by A ∼= B. We also write A ∼=U B
to emphasize that the unitary equivalence is given by U , that is, UA = BU . For a
closed subspaceM of H, byM⊥ we denote its orthogonal complement. IfM and N
are two closed subspaces of H, which are orthogonal, then we writeM⊥ N . We say
that an operator A ∈ B(H) is quasi-invertible, if A is injective and R(A) = H. The
reader can verify that, if A ∈ B(H) is quasi-invertible, then so is A∗. An operator
A ∈ B(H) is called a partial isometry if ‖Ax‖ = ‖x‖ for all x ∈ N (A)⊥.

We define a Hilbert space `2(Z,H) as the space ⊕n∈ZH equipped with the inner
product defined by 〈x, y〉 =

∑∞
n=−∞〈xn, yn〉H for x, y ∈ `2(Z,H). This space consists

of all vectors x = (. . . , x−1, x0 , x1, . . . ) satisfying
∑∞

n=−∞ ‖xn‖2
H < ∞, where ·

denotes the 0th element of x. An operator U ∈ B(`2(Z,H)) can be expressed as
an infinite matrix [Ui,j ]i,j∈Z, where Ui,j ∈ B(H) for all i, j ∈ Z.

We say that S ∈ B(`2(Z,H)) is a diagonal operator if there exists a two-sided
sequence of operators {Sn}n∈Z ⊆ B(H) such that the sequence {‖Sn‖}n∈Z



On unitary equivalence of bilateral operator valued weighted shifts 545

is bounded and

S(. . . , x−1, x0 , x1, . . . ) = (. . . , S−1x−1, S0x0 , S1x1, . . . ), x ∈ `2(Z,H).

Let {Sn}n∈Z ⊆ B(H) be a two-sided sequence of nonzero operators such that the
sequence {‖Sn‖}n∈Z is bounded. We define S ∈ B(`2(Z,H)) by

S(. . . , x−1, x0 , x1, . . .) = (. . . , S−1x−2, S0x−1 , S1x0, . . .), x ∈ `2(Z,H).

The operator S is called a bilateral operator valued weighted shift with operator weights
{Sn}n∈Z defined on H and it is denoted by S ∼ {Sn}n∈Z. It is worth noting that, as
opposed to [11] and [15], we do not assume that weights of S are invertible.

Denote by F the unitary bilateral operator valued weighted shift with all weights
being identity operators on H. We say that an operator S ∈ B(`2(Z,H)) is of diagonal
form if there exist k ∈ Z and a diagonal operator T ∈ B(`2(Z,H)) such that S = F kT .

In this paper we focus on the problem of unitary equivalence of bilateral operator
valued weighted shifts with quasi-invertible weights. The paper is organized as follows.
In Section 2 we investigate unitary equivalence given by operators of diagonal form.
Corollary 2.4 establishes a characterization of unitary equivalence of bilateral operator
valued weighted shifts with quasi-invertible weights given by an operator of diagonal
form. In Theorem 2.5 we prove that each bilateral operator valued weighted shift with
quasi-invertible weights is unitarily equivalent to a bilateral weighted shift having
positive weights. We conclude this section with proving that a bilateral operator valued
weighted shift having normal and commuting weights defined on Cm for m ≥ 2 is
unitarily equivalent to a bilateral weighted shift with weights being diagonal operators
(see Proposition 2.9).

Section 3 is devoted to investigation of unitary operators on `2(Z,H) that can give
unitary equivalence of bilateral weighted shifts. We begin it with Example 3.1 that
shows two bilateral operator valued weighted shifts with weights defined on C2 which
are unitarily equivalent, but the unitary equivalence is not given by any operator
of diagonal form. Proposition 3.2 states that, if a unitary operator U ∈ B(`2(Z,H))
contains exactly two nonzero diagonals and all other elements of U are zero operators,
then the operators on these diagonals are partial isometries.

Finally, Section 4 concludes the paper with remarks and open problems related to
unitary equivalence of bilateral operator valued weighted shifts.

2. UNITARY EQUIVALENCE GIVEN
BY AN OPERATOR OF DIAGONAL FORM

In this section we present results related to unitary equivalence of bilateral operator
valued weighted shifts given by an operator of diagonal form. It contains also some
general facts which usage is not limited to this section.

We begin with stating the following key lemma required for further references,
which is a two-sided counterpart of [13, Lemma] (see also [15, Lemma 4]). Its proof is
left to the reader.
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Lemma 2.1. Let S ∼ {Sn}n∈Z, T ∼ {Tn}n∈Z and Sn, Tn be quasi-invertible for each
n ∈ Z. Assume that A ∈ B(`2(Z,H)). Then the following are equivalent:
(i) AS = TA,
(ii) Ai+1,j+1Sj = TiAi,j for all i, j ∈ Z.

There is a significant difference between [13, Lemma] and Lemma 2.1. In the case of
unilateral weighted shifts zero is the first element of every vector in the range. Hence,
each operator intertwining two unilateral weighted shifts has a triangular matrix. On
the other hand, in the case of bilateral operator valued weighted shifts the equality
AS = TA does not imply triangularity of A (see Example 3.1 below).

Lemma 2.1 yields the following corollary.
Corollary 2.2. Let S ∼ {Sn}n∈Z, T ∼ {Tn}n∈Z and Sn, Tn be quasi-invertible for
each n ∈ Z. Assume that A ∈ B(`2(Z,H)) be such that AS = TA. If Ai,j 6= 0 for some
i, j ∈ Z, then Ai+n,j+n 6= 0 for all n ∈ Z.

Next theorem gives a necessary and sufficient condition for two bilateral operator
valued weighted shifts with quasi-invertible weights to be unitarily equivalent by an
operator of diagonal form. The idea of the proof is partially based on a construction
from the proof of a similar result for unilateral operator valued weighted shifts from
[13, Theorem 1] (see also [1, Theorem 2.3]).
Theorem 2.3. Let S ∼ {Sn}n∈Z, T ∼ {Tn}n∈Z and m ∈ Z be such that Sm+n,
Tn, S∗m−n−1 and T ∗−n−1 have dense ranges for each n ∈ N. Then the following are
equivalent:
(i) there exists a unitary operator U ∈ B(`2(Z,H)) of diagonal form such that

S ∼=U T and U0,m 6= 0,
(ii) there exists a unitary operator U0,m ∈ B(H) such that the following hold:

(a) ‖Sm+n−1 . . . Smx‖ = ‖Tn−1 . . . T0U0,mx‖ for all x ∈ H and n ∈ N+,
(b) ‖S∗m−n . . . S

∗
m−1x‖ = ‖T ∗−n . . . T

∗
−1U0,mx‖ for all x ∈ H and n ∈ N+.

Proof. (i) ⇒ (ii). Assume that S ∼=U T , where U ∈ B(`2(Z,H)) is of diagonal form.
Let n ∈ N+. Then, by Lemma 2.1,

Un,m+nSm+n−1 . . . Sm = Tn−1 . . . T0U0,m

which implies (a). Let us now check that (b) also holds. Let n ∈ N+. Again, by
Lemma 2.1,

U0,mSm−1 . . . Sm−n = T−1 . . . T−nU−n,m−n

which is equivalent to the following

Sm−1 . . . Sm−nU
∗
−n,m−n = U∗0,mT−1 . . . T−n.

After taking adjoints we get that for all x ∈ H and n ∈ N+ it is true that

‖S∗m−n . . . S
∗
m−1x‖ = ‖T ∗−n . . . T

∗
−1U0,mx‖,

which proves (b).
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(ii) ⇒ (i). We need to construct U ∈ B(`2(Z,H)) of diagonal form with unitary
operators Un,m+n ∈ B(H) on its only nonzero diagonal, which satisfy the following

Un+1,m+n+1Sm+n = TnUn,m+n, n ∈ Z. (2.1)

In order to simplify formulas we introduce notation Vn := Un,m+n for n ∈ Z.
We begin with constructing operators Vn for n ∈ N+. Since Sm and T0V0 have

dense ranges and (a) holds with n = 1, it is well known that there exists a unitary
operator V1 such that V1Sm = T0V0. Now, assume that n > 1 and unitary operators
V1, . . . , Vn are already defined to be such that Vi+1Sm+i = TiVi for i ∈ {1, . . . , n− 1}.
Again, since operators Sm+n . . . Sm and Tn . . . T0V0 have dense ranges, there exists
a unitary operator Vn+1 such that

Vn+1Sm+n . . . Sm = Tn . . . T0V0.

By the above we see that

(Vn+1Sm+n − TnVn)Sm+n−1 . . . Sm = Vn+1Sm+n . . . Sm − Tn . . . T0V0 = 0. (2.2)

Since Sm+n−1 . . . Sm has a dense range, (2.2) implies that Vn+1Sm+n = TnVn.
We now focus on finding operators V−n for n ∈ N+. We begin with the definition

of V−1. Since S∗m−1 and T ∗−1V0 have dense ranges and (b) holds for n = 1, there exists
a unitary operator V−1 such that V−1S

∗
m−1 = T ∗−1V0. This implies that V0Sm−1 =

T−1V−1. Let n > 1. Assume that V−1, . . . , V−n+1 are already defined unitary operators
on H such that V−i+1Sm−i = T−iV−i for i ∈ {1, . . . , n− 1}. We construct V−n such
that V−n+1Sm−n = T−nV−n. It is enough to find V−n so that the following holds

V−nS
∗
m−n . . . S

∗
m−1 = T ∗−n . . . T

∗
−1V0,

because then we get the following equality

V0Sm−1 . . . Sm−n = T−1 . . . T−nV−n.

The existence of unitary V−n is guaranteed by the fact that operators S∗m−n . . . S
∗
m−1

and T ∗−n . . . T
∗
−1V0 have dense ranges. Now, we need to show that V−n+1Sm−n =

T−nV−n. We do this by proving that V−nS
∗
m−n = T ∗−nV−n+1. Let us observe that

(V−nS
∗
m−n − T ∗−nV−n+1)S∗m−n+1 . . . S

∗
m−1 = V−nS

∗
m−n . . . S

∗
m−1 − T ∗−n . . . T

∗
−1V0 = 0.

Since S∗m−n+1 . . . S
∗
m−1 has a dense range, it follows that V−nS

∗
m−n = T ∗−nV−n+1.

We constructed the sequence {Un,m+n}n∈Z of unitary operators such that (2.1)
holds. By Lemma 2.1, it is true that S ∼=U T , where U is of diagonal form. This
completes the proof.

It is worth noting that, if we additionally assume that S and T have quasi-invertible
weights in Theorem 2.3, then we can choose any other operator Uk,m+k instead of
U0,m for k ∈ Z and modify the statement. In this way we get the following result.
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Corollary 2.4. Let S ∼ {Sn}n∈Z, T ∼ {Tn}n∈Z have quasi-invertible weights and let
m ∈ Z. Then the following are equivalent:

(i) there exists U ∈ B(`2(Z,H)) of diagonal form such that S ∼=U T and U0,m 6= 0,
(ii) there exist k ∈ Z and a unitary operator Uk,m+k ∈ B(H) such that the following

hold:
(a) ‖Sm+n+k−1 . . . Sm+kx‖ = ‖Tn+k−1 . . . TkUk,m+kx‖ for all x ∈ H and n ∈

N+,
(b) ‖S∗m−n+k . . . S

∗
m−1+kx‖ = ‖T ∗−n+k . . . T

∗
−1+kUk,m+kx‖ for all x ∈ H and n ∈

N+.
(iii) for all k ∈ Z there exists a unitary operator Uk,m+k ∈ B(H) such that (a) and

(b) hold.

Shields showed that each bilateral weighted shift with weights {an}n∈Z ⊆ C
is unitarily equivalent to the shift with weights {|an|}n∈Z. This fact follows from
[16, Theorem 1]. Pietrzycki used it to prove that each bounded injective classical
bilateral weighted shift S satisfying S∗nSn = (S∗S)n for any n ≥ 2 is quasinormal
(see [14, Theorem 3.3]). Jabłoński, Jung and Stochel generalized Shields’ result to the
class of weighted shifts on directed trees (see [10, Theorem 3.2.1]).

Let us now focus on the bilateral case with operator weights. Guyker proved in
[6, Theorem 1] that, if S ∼ {Sn}n∈Z has normal weights that can be divided into
two certain sequences of commuting operators, then S is unitarily equivalent to the
bilateral operator valued weighted shift with weights of the form (S∗nSn) 1

2 . This result
is similar to the one of Shields for shifts with classical weights. Pilidi provided a proof
of the fact that a bilateral operator valued weighted shift with invertible weights is
unitarily equivalent to a shift with positive weights (see [15, Lemma 2, Lemma 3]).
Now, we prove a counterpart of this assuming only quasi-invertibility of weights and
using argument based on the proofs of similar results from [13, Theorem 3.4] and
[11, Theorem 2] for unilateral operator valued weighted shifts.

Theorem 2.5. Let S ∼ {Sn}n∈Z and Sn be quasi-invertible for all n ∈ Z. Then
S ∼= T , where T ∼ {Tn}n∈Z and Tn is positive for each n ∈ Z.

Proof. It follows from the polar decomposition that for each n ∈ Z there exist unitary
Un and positive Pn such that Sn = UnPn. Let P̃ and Ũ be diagonal operators on
`2(Z,H) such that P̃n = Pn+1 and Ũn = Un+1 for all n ∈ Z. A simple calculation
can prove that S = FŨP̃ . It is easy to verify that condition (ii) from Theorem 2.3
is satisfied with U0,0 = I as F and FŨ have unitary weights. Thus, there exists
a diagonal unitary operator V ∈ B(`2(Z,H)) such that V F = FŨV . It is true that

S = FŨP̃ = V V ∗FŨP̃ = V FV ∗P̃ = V (FV ∗P̃ V )V ∗.

Observe that V ∗P̃ V is a diagonal operator. This implies that FV ∗P̃ V is a bilateral
operator valued weighted shift. Since unitary equivalence preserves positivity and
the elements of V ∗P̃ V are unitarily equivalent to the elements of P̃ , the proof is
completed.
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Now, we state a useful fact which gives necessary conditions for unitary equivalence
of bilateral operator valued weighted shifts given by an operator of diagonal form.

Lemma 2.6. Let S ∼ {Sn}n∈Z, T ∼ {Tn}n∈Z have quasi-invertible weights. Suppose
that S ∼=U T , where U is of diagonal form and U0,k 6= 0 for some k ∈ Z. Then
‖Sn+k‖ = ‖Tn‖ for each n ∈ Z.

Proof. Define Vn = Un,n+k for all n ∈ Z. By Lemma 2.1, Vn+1Sn+k = TnVn for each
n ∈ Z, where operators Vn are unitary. Therefore, we see that Tn = Vn+1Sn+kV

∗
n and

Sn+k = V ∗n+1TnVn for each n ∈ Z. This completes the proof.

In the following proposition we provide a necessary condition of unitary equivalence
given by a diagonal operator when H = C2.

Proposition 2.7. Suppose H = C2. Let S ∼ {Sn}n∈Z, T ∼ {Tn}n∈Z have invertible
and normal weights. Assume that S ∼=U T , where U is a diagonal operator. Then
the moduli of eigenvalues of corresponding weights are equal.

Proof. Since all weights are normal matrices, then they are diagonalizable. Therefore,
it is easy to see that we can diagonalize (using a unitary operator) one of the weights in
each of the shifts. Let n ∈ Z. By the above we can assume that Sn and Tn are diagonal
matrices. By Corollary 2.4, there exists unitary V ∈ B(C2) such that ‖Snx‖ = ‖TnV x‖
for all x ∈ C2. Let us now assume that

Sn =
[
s1 0
0 s2

]
, Tn =

[
t1 0
0 t2

]
, V =

[
v1 v2
v3 v4

]
.

Taking x = (1, 0) and y = (0, 1), by the previous property, we get the following
system of equations:

|s1|2 = |v1t1|2 + |v3t2|2,
|s2|2 = |v2t1|2 + |v4t2|2.

We see that both equations are convex combinations. Also, by Lemma 2.6, it is
true that max{|s1|, |s2|} = max{|t1|, |t2|}. Since V is unitary, it must be true that

{
|s1| = |t1|
|s2| = |t2|

or
{
|s1| = |t2|
|s2| = |t1|

which is exactly our claim.

We can now use the above result to determine whether two bilateral operator
valued weighted shifts with invertible weights defined on C2 are unitarily equivalent
by a diagonal operator. First, we use Theorem 2.5 to transform both shifts to their
forms with positive weights. Then we compare the eigenvalues of the corresponding
weights and check whether their moduli are equal. If there is at least one pair of
two corresponding weights with at least one different eigenvalue, then it means that
eventual unitary equivalence of the shifts cannot be given by a diagonal operator. It is
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important to note that moving to the form with positive weights is achieved by using
a diagonal operator and, therefore, the argument presented above is correct.

Unfortunately, there is no clear dependency between spectra of weights of original
shift and the one with positive weights. Another problem is that the condition provided
in Proposition 2.7 is not sufficient. To see this let us consider the following

Example 2.8. Let H = C2. We set Sn = Tn = I to be identity operators on H for
n ∈ Z \ {0, 1}. For n ∈ {0, 1} we define

Sn =
[
s1,n 0

0 s2,n

]
, Tn =

[
t1,n 0
0 t2,n

]
.

Let us fix |s1,0| = |t2,0| and |s2,0| = |t1,0| and |s1,0| > |s2,0| > 0. For S1 and T1 we
choose |s1,1| = |t1,1| and |s2,1| = |t2,1| and |s1,1| > |s2,1| > 1. Now, by Corollary 2.4,
for S and T to be unitarily equivalent by a diagonal operator we need a unitary
operator U ∈ B(H) such that:

‖S0x‖ = ‖T0Ux‖, ‖S1S0x‖ = ‖T1T0Ux‖, x ∈ H.

But the above cannot be true as the first equation implies that

U =
[
0 u
v 0

]
,

for some |u| = 1 and |v| = 1. In this case, the second equation is not satisfied.

Li, Ji and Sun proved in [12, Theorem 2.1] that a bilateral operator valued weighted
shift with weights defined on Cm for m ≥ 1 is unitarily equivalent to a shift with upper
triangular weights. Let us see that, under some additional assumptions, it is possible
to prove that some bilateral operator valued weighted shifts are unitarily equivalent to
shifts with diagonal weights.

Proposition 2.9. Let S ∼ {Sn}n∈Z be defined on `2(Z,Cm) for m ≥ 2 with normal
and commuting weights. Then there is a D ∼ {Dn}n∈Z such that S ∼= D and Dn is
a diagonal matrix for each n ∈ Z.

Proof. It is a well-known fact that any set of normal matrices {Ta}a∈A which commutes
with each other can be simultaneously diagonalized, i.e., there exists a unitary matrix
V such that V TaV

∗ is diagonal for each a ∈ A (see [7, Theorem 1.3.19]). Now, we
see that a diagonal operator consisting of operators V on its diagonal gives unitary
equivalence between S and D ∼ {Dn}n∈Z, where Dn is a diagonal matrix for every
n ∈ Z.
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3. UNITARY OPERATORS GIVING UNITARY EQUIVALENCE
OF BILATERAL OPERATOR VALUED WEIGHTED SHIFTS

In this section we focus on investigation of unitary operators that can give unitary
equivalence of bilateral operator valued weighted shifts. Some of the results concern
only finite-dimensional Hilbert spaces. Note that, in regard to investigating unitary
operators, Corollary 2.2 enables us to focus on number of nonzero diagonals in
unitary operators.

Let U be a unitary operator acting on `2(Z,H) with two nonzero diagonals. Then
there exist k1, k2 ∈ Z such that k1 6= k2 and operators Un,n+k1 , Un,n+k2 are nonzero
elements from these diagonals for all n ∈ Z. From now on, we identify nonzero diagonals
of U with k1 and k2 and denote U (1)

n := Un,n+k1 , U
(2)
n := Un,n+k2 for all n ∈ Z.

Without loss of generality we can assume that k2 > k1. We generalize this notation to
an arbitrary number of diagonals in U .

In [16, Theorem 1] one can find a proof of the fact that in the case of classical
bilateral weighted shifts unitary equivalence is always given by an operator of diagonal
form. Let us now see that there are bilateral operator valued weighted shifts which
are unitarily equivalent, but the unitary equivalence can not be given by any operator
of diagonal form.
Example 3.1. Assume H = C2, w = 1

2 − 1
2 i and define

sn =
{

1, if n = 0,
1
n , otherwise.

(3.1)

Let S ∼ {Sn}n∈Z, T ∼ {Tn}n∈Z have weights

Sn :=
[
sn sn

−sn sn

]
, Tn :=

[
sn−1w + sn+1w̄ sn−1w̄ + sn+1w
−sn−1w̄ − sn+1w sn−1w + sn+1w̄

]

for n ∈ Z. It is easy to see that weights of S and T are invertible and normal. Now,
we construct a unitary operator with two nonzero diagonals determined by k1 = −1
and k2 = 1 which gives unitary equivalence of S and T . Let us define the following
operators

A = 1
2

[
1 −i
i 1

]
, B = 1

2

[
1 i
−i 1

]
.

Both A and B are orthogonal projections onto one-dimensional subspaces. Moreover,
A+B = I. Define U (1)

n = B and U (2)
n = A for all n ∈ Z. This implies that

U =




. . . . . . . . . . . . . . .

. . . 0 A 0 . . .

. . . B 0 A
. . .

. . . 0 B 0 . . .

. . . . . . . . . . . . . . .




.

The reader can check that U is unitary and US = TU .
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Now, our aim is to show that it is not possible to find a unitary operator of diagonal
form which would give unitary equivalence of S and T . First, one can easily verify
that ‖Sn‖ =

√
2|sn| for each n ∈ Z. Let us now compute the norms of operators Tn.

We find the eigenvalues of T ∗nTn using the characteristic polynomial

W (λ) = λ2 − 2λ(s2
n−1 + s2

n+1) + 4s2
n−1s

2
n+1.

The roots of W are 2s2
n+1 and 2s2

n−1, hence ‖Tn‖ = max{
√

2|sn−1|,
√

2|sn+1|}. Now,
it follows from (3.1) that

{
‖Si‖ =

√
2 if and only if i ∈ {−1, 0, 1},

‖Ti‖ =
√

2 if and only if i ∈ {−2,−1, 0, 1, 2}. (3.2)

Suppose that, contrary to our claim, S and T are unitarily equivalent by an operator
of diagonal form. By Lemma 2.6, there exists k ∈ Z that ‖Sn+k‖ = ‖Tn‖ for all n ∈ Z.
This contradicts (3.2).

Example 3.1 exhibits another interesting property, but before stating it let us first
recall some known results. Shields showed in [16, Theorem 1] that, if two bilateral
weighted shifts with complex weights are unitarily equivalent, then there exists k ∈ Z
such that |sn| = |tn+k| for each n ∈ Z. Moreover, it follows from [13, Theorem 1]
that, if two unilateral shifts S, T with quasi-invertible weights denoted by {Sn}n∈N
and {Tn}n∈N, respectively, are unitarily equivalent, then the unitary equivalence is
given by a diagonal operator. It follows from a similar argument as in Lemma 2.6
that ‖Sn‖ = ‖Tn‖ for each n ∈ N. As we can see in Example 3.1, this is not true for
bilateral operator valued weighted shifts with weights defined on a Hilbert space of
dimension greater than one.

Next proposition states that, if there are exactly two nonzero diagonals in a unitary
operator, then both diagonals contain only partial isometries.

Proposition 3.2. Suppose that U ∈ B(`2(Z,H)) is a unitary operator that has exactly
two nonzero diagonals and all other elements are zero operators. Then the elements
on these diagonals are partial isometries such that elements in each row of U have
orthogonal ranges.

Proof. Let us fix k = k2 − k1 > 0. Note that U is unitary if and only if conditions

I = U (1)
n (U (1)

n )∗ + U (2)
n (U (2)

n )∗, (3.3)

I = (U (1)
n+k)∗U (1)

n+k + (U (2)
n )∗U (2)

n , (3.4)

0 = U
(1)
n+k(U (2)

n )∗, (3.5)
0 = (U (1)

n )∗U (2)
n , (3.6)

hold for all n ∈ Z. Now, we can multiply (3.3) by U (1)
n from the right and get

U (1)
n = U (1)

n (U (1)
n )∗U (1)

n + U (2)
n (U (2)

n )∗U (1)
n . (3.7)
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Now, by (3.6), we see that U (2)
n (U (2)

n )∗U (1)
n = 0 and thus, by (3.7) and the characteriza-

tion of partial isometries (see [4, Exercise VIII.3.15]), U (1)
n is a partial isometry for all

n ∈ Z. It is clear that operators U (2)
n are also partial isometries. From (3.6) we deduce

that R(U (1)
n ) is orthogonal to R(U (2)

n ) for all n ∈ Z. This completes the proof.

It is worth noting that, using property (3.5), we can deduce that
R((U (2)

n )∗) ⊥ R((U (1)
n+k)∗) for all n ∈ Z.

The unitary operator in Example 3.1 consists only of orthogonal projections. Next
example shows that, in general, sequences {U (1)

n }n∈Z, {U (2)
n }n∈Z do not need to be

sequences of orthogonal projections.
Example 3.3. Let H = C2. We define the following

U (1)
n =

[
0 u

(1)
n

0 0

]
, U (2)

n =
[ 0 0
u

(2)
n 0

]
,

where |u(1)
n | = |u(2)

n | = 1 for all n ∈ Z. The reader can verify that these operators
satisfy conditions (3.3) - (3.6) from the proof of Proposition 3.2 and form a unitary
operator U with nonzero diagonals determined by k1 = −1 and k2 = 1. Now we define
S ∼ {Sn}n∈Z in the following way

Sn =
[
s1,n 0

0 s2,n

]
,

where s1,ns2,n 6= 0 for all n ∈ Z. It is easy to check that USU∗ is a bilateral operator
valued weighted shift and neither U (1)

n nor U (2)
n are orthogonal projections for any

n ∈ Z.
The next result states that there cannot be more than m nonzero diagonals which

contain partial isometries in a unitary operator giving unitary equivalence of bilateral
operator valued weighted shifts with weights defined on a m-dimensional Hilbert space
for m ≥ 2.
Proposition 3.4. Let H be a m-dimensional Hilbert space for m ≥ 2 and let
S ∼ {Sn}n∈Z, T ∼ {Tn}n∈Z have quasi-invertible weights. Assume U ∈ B(`2(Z,H)) is
unitary and its matrix representation consists of partial isometries only. If US = TU ,
then U has at most m nonzero diagonals and all other elements of U are zero operators.

Proof. By the fact that UU∗ = I we get that
∑

j∈Z U
(j)
n (U (j)

n )∗ = I for all
n ∈ Z. Fix n ∈ Z. It follows from [4, Exercise VIII.3.15] that P (j)

n := U
(j)
n (U (j)

n )∗
is an orthogonal projection for all j ∈ Z. It is a well-known fact that, if

∑
j∈Z P

(j)
n is

an orthogonal projection, then R(P (i)
n ) ⊥ R(P (j)

n ) for all i, j ∈ Z such that i 6= j. The
rest follows directly from the fact that H is m-dimensional and from Corollary 2.2.

Pilidi stated in [15, Theorem 5] that in the case dimH = 2 unitary equiva-
lence is given by an operator with at most two nonzero diagonals and all opera-
tor entries in matrix representation of this unitary operator are partial isometries.
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Unfortunately, this result was not provided with proof and it is difficult to see how
it can be verified. If it was true, then the problem of characterization of unitary
equivalence when dimH = 2 would be solved.

4. FURTHER REMARKS

It is an open question, whether for S ∼ {Sn}n∈Z, T ∼ {Tn}n∈Z, where H is
a m-dimensional Hilbert space, S ∼= T implies that there exists U that has at most m
nonzero diagonals with all other elements of U being zero operators such that S ∼=U T
for m ≥ 2. If one proves that any unitary equivalence of bilateral operator valued
weighted shifts with weights defined on finite-dimensional Hilbert space can be given
by an operator consisting only of partial isometries, then Proposition 3.4 gives the
positive answer.

Another interesting problem for further investigation, which comes up naturally, is
the problem of characterization of unitary equivalence of bilateral shifts with weights
defined on an arbitrary Hilbert space. Corollary 2.4 gives the characterization of
unitary equivalence given only by an operator of diagonal form. Example 3.1 shows
that there is a rich class of unitary operators in `2(Z,Cm) for m ≥ 2 which are not of
diagonal form and can give unitary equivalence of bilateral weighted shifts.
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