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Abstract. Linear delay or advanced differential equations with variable coefficients and several
not necessarily monotone arguments are considered, and some new oscillation criteria are
given. More precisely, sufficient conditions, involving lim sup and lim inf, are obtained, which
essentially improve several known criteria existing in the literature. Examples illustrating
the results are also given, numerically solved in MATLAB.
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1. INTRODUCTION

Consider the first-order linear differential equation with several variable deviating
arguments of either delay (DDE)

x′(t) +
m∑

i=1
pi(t)x (τi(t)) = 0, t ≥ t0, (E)

or advanced type (ADE)

x′(t)−
m∑

i=1
qi(t)x (σi(t)) = 0, t ≥ t0, (E′)

where pi, qi, 1 ≤ i ≤ m, are functions of nonnegative real numbers, and τi, σi,
1 ≤ i ≤ m, are functions of positive real numbers such that

τi(t) < t, t ≥ t0 and lim
t→∞

τi(t) =∞, 1 ≤ i ≤ m (1.1)
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and
σi(t) > t, t ≥ t0, 1 ≤ i ≤ m, (1.2)

respectively.
A solution of (E) is an absolutely continuous on [t0,∞) function satisfying (E) for

almost all t ≥ t0. By a solution of (E′) we mean an absolutely continuous on [t0,∞)
function satisfying (E′) for almost all t ≥ t0.

A solution of (E) or (E′) is oscillatory, if it is neither eventually positive nor
eventually negative. If there exists an eventually positive or an eventually negative
solution, the equation is nonoscillatory. An equation is oscillatory if all its solutions
oscillate.

The problem of establishing sufficient conditions for the oscillation of all solutions of
equations (E) or (E′) has been the subject of many investigations. The reader is referred
to [1−26] and the references cited therein. Most of these papers concern the special
case where the arguments are nondecreasing, while a small number of these papers
are dealing with the general case where the arguments are not necessarily monotone.
See, for example, [1−6, 10, 15] and the references cited therein. The consideration of
non-monotone arguments other than the pure mathematical interest, it approximates
the natural phenomena described by equation of the type (E) or (E′). That is because
there are always natural disturbances (e.g. noise in communication systems) that affect
all the parameters of the equation and therefore the fair (from a mathematical point
of view) monotone arguments become non-monotone almost always.

Throughout this paper, we are going to use the following notation:

α := lim inf
t→∞

t∫

τ(t)

m∑

i=1
pi(s)ds, β := lim inf

t→∞

σ(t)∫

t

m∑

i=1
qi(s)ds

and
D(ω) :=

{
0, if ω > 1/e,
1−ω−

√
1−2ω−ω2

2 , if ω ∈ [0, 1/e] .

1.1. DDES

By Remark 2.7.3 in [21], it is clear that if τi(t), 1 ≤ i ≤ m are nondecreasing and

lim sup
t→∞

t∫

τ(t)

m∑

i=1
pi(s)ds > 1, (1.3)

where τ(t) = max1≤i≤m{τi(t)}, then all solutions of (E) oscillate. This result is
similar to Theorem 2.1.3 [21] which is a special case of Ladas, Lakshmikantham and
Papadakis’s result [18].

In 1978 Ladde [20] and in 1982 Ladas and Stavroulakis [19] proved that if

lim inf
t→∞

t∫

τ(t)

m∑

i=1
pi(s)ds >

1
e
, (1.4)

then all solutions of (E) oscillate.
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In 1984, Hunt and Yorke [11] proved that if t− τi(t) ≤ τ0, 1 ≤ i ≤ m, and

lim inf
t→∞

m∑

i=1
pi(t) (t− τi(t)) >

1
e
, (1.5)

then all solutions of (E) oscillate.
Assume that τi(t), 1 ≤ i ≤ m are not necessarily monotone. Set

hi(t) = sup
t0≤s≤t

τi(s), t ≥ t0 and h(t) = max
1≤i≤m

hi(t), t ≥ t0 (1.6)

and

a1(t, s) := exp
{ t∫

s

m∑

i=1
pi(ζ)dζ

}
,

ar+1(t, s) := exp
{ t∫

s

m∑

i=1
pi(ζ)ar(ζ, τi(ζ))dζ

}
.

(1.7)

Clearly, hi(t), h(t) are nondecreasing and τi(t) ≤ hi(t) ≤ h(t) < t for all t ≥ t0.
In 2016, Braverman, Chatzarakis and Stavroulakis [1] proved that if for some r ∈ N

lim sup
t→∞

t∫

h(t)

m∑

i=1
pi(ζ)ar(h(t), τi(ζ))dζ > 1, (1.8)

or

lim sup
t→∞

t∫

h(t)

m∑

i=1
pi(ζ)ar(h(t), τi(ζ))dζ > 1−D(α), (1.9)

or

lim inf
t→∞

t∫

h(t)

m∑

i=1
pi(ζ)ar(h(t), τi(ζ))dζ >

1
e
, (1.10)

then all solutions of (E) oscillate.
In 2017, Chatzarakis and Péics [3] proved that if

lim sup
t→∞

t∫

h(t)

m∑

i=1
pi(ζ)ar(h(ζ), τi(ζ))dζ >

1 + lnλ0
λ0

−D(α), (1.11)

where λ0 is the smaller root of the transcendental equation eαλ = λ, then all solutions
of (E) oscillate.
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In the same year, Chatzarakis [4] proved that if

Pj(t) = P (t)


1 +

t∫

τ(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

Pj−1(ξ)dξ


 du


 ds


 ,

with P0(t) = P (t) =
∑m
i=1 pi(t), then for some j ∈ N either one of the conditions

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

Pj(u)du


 ds > 1, (1.12)

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

Pj(u)du


 ds > 1−D(α), (1.13)

lim sup
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

Pj(u)du


 ds >

1 + lnλ0
λ0

−D(α), (1.14)

lim sup
t→∞

t∫

h(t)

P (s) exp




t∫

τ(s)

Pj(u)du


 ds >

1
D(α) (1.15)

and

lim inf
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

Pj(u)du


 ds >

1
e
, (1.16)

implies that all solutions of (E) are oscillatory.
Several improvements were made to the above condition, see [5, 6] to arrive at the

recent form [5]

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

G`(ξ)dξ


 du


 ds > 1, (1.17)

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

G`(ξ)dξ


 du


 ds > 1−D(α), (1.18)

lim sup
t→∞

t∫

h(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

G`(ξ)dξ


 du


 ds >

1
D(α) − 1, (1.19)
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lim sup
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

G`(ξ)dξ


 du


 ds >

1 + lnλ0
λ0

−D(α),

(1.20)

lim inf
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

G`(ξ)dξ


 du


 ds >

1
e
, (1.21)

where

G`(t) = P (t)


1 +

t∫

τ(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

G`−1(ξ)dξ


 du


 ds




and

G0(t) = P (t)


1 +

t∫

τ(t)

P (s) exp


λ0

t∫

τ(s)

P (u)du


 ds


 .

1.2. ADES

For Eq. (E′), the dual condition of (1.3) is

lim sup
t→∞

σ(t)∫

t

m∑

i=1
qi(s)ds > 1, (1.22)

where σi(t), 1 ≤ i ≤ m are nondecreasing and σ(t) = min1≤i≤m{σi(t)} (see [21, § 2.7]).
In 1978, Ladde [21] and in 1982 Ladas and Stavroulakis [19] proved that if

lim inf
t→∞

σ(t)∫

t

m∑

i=1
qi(s)ds >

1
e
, (1.23)

then all solutions of (E′) oscillate.
In 1990, Zhou [26] proved that if σi(t)− t ≤ σ0, 1 ≤ i ≤ m, and

lim inf
t→∞

m∑

i=1
qi(t) (σi(t)− t) >

1
e
, (1.24)

then all solutions of (E′) oscillate (see also [7, Corollary 2.6.12]).
Assume that σi(t), 1 ≤ i ≤ m are not necessarily monotone. Set

ρi(t) = inf
s≥t

σi(s), t ≥ t0 and ρ(t) = min
1≤i≤m

ρi(t), t ≥ t0 (1.25)
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and

b1(t, s) := exp
{ s∫

t

m∑

i=1
qi(ζ)dζ

}
,

br+1(t, s) := exp
{ s∫

t

m∑

i=1
qi(ζ)br(ζ, σi(ζ))dζ

}
.

(1.26)

Clearly, ρi(t), ρ(t) are nondecreasing and σi(t) ≥ ρi(t) ≥ ρ(t) > t for all t ≥ t0.
In 2016, Braverman, Chatzarakis and Stavroulakis [1] proved that if for some r ∈ N

lim sup
t→∞

ρ(t)∫

t

m∑

i=1
qi(ζ)br(ρ(t), σi(ζ)) dζ > 1, (1.27)

or

lim sup
t→∞

ρ(t)∫

t

m∑

i=1
qi(ζ)br(ρ(t), σi(ζ)) dζ > 1−D(β), (1.28)

or

lim inf
t→∞

ρ(t)∫

t

m∑

i=1
qi(ζ)br(ρ(t), σi(ζ)) dζ >

1
e
, (1.29)

then all solutions of (E′) oscillate.
In 2017, Chatzarakis [4] proved that if

Qj(t) = Q(t)


1 +

σ(t)∫

t

Q(s) exp




σ(s)∫

t

Q(u) exp




σ(u)∫

u

Qj−1(ξ)dξ


 du


 ds


 ,

with Q0(t) = Q(t) =
∑m
i=1 qi(t), then, for some j ∈ N either one of the conditions

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(t)

Qj(u)du


 ds > 1, (1.30)

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(t)

Qj(u)du


 ds > 1−D(β), (1.31)

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

t

Qj(u)du


 ds >

1
D(β) , (1.32)
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lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(s)

Qj(u)du


 ds >

1 + lnλ0
λ0

−D(β) (1.33)

and

lim inf
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(s)

Qj(u)du


 ds >

1
e
, (1.34)

implies that all solutions of (E′) are oscillatory.
Several improvements were made to the above condition, see [5, 6] to arrive at the

recent form [5]

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(t)

Q(u) exp




σ(u)∫

u

R`(ξ)dξ


 du


 ds > 1, (1.35)

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(t)

Q(u) exp




σ(u)∫

u

R`(ξ)dξ


 du


 ds > 1−D(β), (1.36)

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

t

Q(u) exp




σ(u)∫

u

R`(ξ)dξ


 du


 ds >

1
D(β) − 1, (1.37)

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(s)

Q(u) exp




σ(u)∫

u

R`(ξ)dξ


 du


 ds >

1 + lnλ0
λ0

−D(β),

(1.38)

lim inf
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(s)

Q(u) exp




σ(u)∫

u

R`(ξ)dξ


 du


 ds >

1
e
, (1.39)

where

R`(t) = Q(t)


1 +

σ(t)∫

t

P (s) exp




σ(s)∫

t

Q(u) exp




σ(u)∫

u

R`−1(ξ)dξ


 du


 ds




and

R0(t) = Q(t)


1 +

σ(t)∫

t

Q(s) exp


λ0

σ(s)∫

t

Q(u)du


 ds


 .

The purpose of this paper is to derive sufficient conditions for all solutions of (E)
and (E′) to be oscillatory when the arguments are not necessarily monotone. Our
results essentially improve several known criteria existing in the literature.
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2. MAIN RESULTS

2.1. DDES

Based on an iterative technique, we further study (E) and derive new sufficient
oscillation conditions, involving lim sup and lim inf, which essentially improve several
results in the literature.

We now cite three lemmas which will be used in the proof of our next results.
The proofs of their are similar to the proofs of Lemmas 2.1.1, 2.1.3 and 2.1.2 in [7],
respectively.
Lemma 2.1. Assume that h(t) is defined by (1.6). Then

lim inf
t→∞

t∫

τ(t)

m∑

i=1
pi(s)ds = lim inf

t→∞

t∫

h(t)

m∑

i=1
pi(s)ds. (2.1)

Lemma 2.2. Assume that x is an eventually positive solution of (E) and h(t) is
defined by (1.6). Then

lim inf
t→∞

x(t)
x(h(t)) ≥ D(α). (2.2)

Lemma 2.3. Assume that x is an eventually positive solution of (E) and h(t) is
defined by (1.6). Then

lim inf
t→∞

x(h(t))
x(t) ≥ λ0, (2.3)

where λ0 is the smaller root of the transcendental equation λ = eαλ.
Based on the above lemmas, we establish the following theorems.

Theorem 2.4. Assume that h(t) is defined by (1.6) and for some ` ∈ N

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds > 1, (2.4)

where

W`(t) = P (t)


1 +

t∫

τ(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W`−1(ξ)dξ


 du


 ds


 (2.5)

with

W0(t) = P (t)


1 +

t∫

τ(t)

P (s) exp




t∫

τ(s)

P (ω) exp


λ0

ω∫

τ(ω)

P (u)du


 dω


 ds




and λ0 is the smaller root of the transcendental equation λ = eαλ. Then all solutions
of (E) are oscillatory.
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Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x(t) of (E). Since −x(t) is also a solution of (E), we can confine our discussion only
to the case where the solution x(t) is eventually positive. Then there exists a t1 > t0
such that x(t) and x (τi(t)) > 0 for all t ≥ t1. Thus, from (E) we have

x′(t) = −
m∑

i=1
pi(t)x (τi(t)) ≤ 0 for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function of positive numbers.
Now we divide (E) by x (t) > 0 and integrate on [τ(t), t], so

t∫

τ(t)

x′(u)
x(u) du = −

t∫

τ(t)

m∑

i=1
pi(u)x (τi(u))

x(u) du,

or
t∫

τ(t)

x′(u)
x(u) du ≤ −

t∫

τ(t)

(
m∑

i=1
pi(u)

)
x (τ(u))
x(u) du,

or
t∫

τ(t)

x′(u)
x(u) du ≤ −

t∫

τ(t)

P (u)x (τ(u))
x(u) du.

Therefore

ln x(t)
x(τ(t)) ≤ −

t∫

τ(t)

P (u)x (τ(u))
x(u) du,

i.e.,

x(τ(t)) ≥ x(t) exp




t∫

τ(t)

P (u)x (τ(u))
x(u) du


 . (2.6)

Combining (E) and (2.6), we have

0 = x′(t) +
m∑

i=1
pi(t)x (τi(t)) ≥ x′(t) + P (t)x (τ(t))

≥ x′(t) + P (t)x(t) exp




t∫

τ(t)

P (u)x (τ(u))
x(u) du




(2.7)

Now we divide (2.7) by x (t) > 0 and integrate on [τ(s), t], so

t∫

τ(s)

x′(ω)
x(ω) dω ≤ −

t∫

τ(s)

P (ω) exp




ω∫

τ(ω)

P (u)x (τ(u))
x(u) du


 dω,
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or

x(τ(s)) ≥ x(t) exp




t∫

τ(s)

P (ω) exp




ω∫

τ(ω)

P (u)x (τ(u))
x(u) du


 dω


 . (2.8)

Integrating (E) from τ(t) to t, we have

x(t)− x(τ(t)) +
t∫

τ(t)

m∑

i=1
pi(s)x (τi(s)) ds = 0

or

x(t)− x(τ(t)) +
t∫

τ(t)

P (s)x (τ(s)) ds ≤ 0. (2.9)

Combining (2.8) and (2.9), we have

x(t)−x(τ(t))+x(t)
t∫

τ(t)

P (s) exp




t∫

τ(s)

P (ω) exp




ω∫

τ(ω)

P (u)x (τ(u))
x(u) du


 dω


 ds ≤ 0.

Multiplying the last inequality by P (t), we take

P (t)x(t)− P (t)x(τ(t))

+ P (t)x(t)
t∫

τ(t)

P (s) exp




t∫

τ(s)

P (ω) exp




ω∫

τ(ω)

P (u)x (τ(u))
x(u) du


 dω


 ds ≤ 0.

(2.10)

Furthermore,

x′(t) = −
m∑

i=1
pi(t)x (τi(t)) ≤ −x (τ(t))

m∑

i=1
pi(t) = −P (t)x (τ(t)) . (2.11)

Combining the inequalities (2.10) and (2.11), we have

x′(t) + P (t)x(t)

+ P (t)x(t)
t∫

τ(t)

P (s) exp




t∫

τ(s)

P (ω) exp




ω∫

τ(ω)

P (u)x (τ(u))
x(u) du


 dω


 ds ≤ 0.

Since τ(u) ≤ h(u), clearly

x′(t) + P (t)x(t)

+ P (t)x(t)
t∫

τ(t)

P (s) exp




t∫

τ(s)

P (ω) exp




ω∫

τ(ω)

P (u)x (h(u))
x(u) du


 dω


 ds ≤ 0.
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Taking into account the fact that (2.3) of Lemma 2.3 is satisfied, the last inequality
becomes

x′(t) + P (t)x(t)

+ P (t)x(t)
t∫

τ(t)

P (s) exp




t∫

τ(s)

P (ω) exp


(λ0 − ε)

ω∫

τ(ω)

P (u)du


 dω


 ds ≤ 0.

Thus,

x′(t)

+ P (t)


1 +

t∫

τ(t)

P (s) exp




t∫

τ(s)

P (ω) exp


(λ0 − ε)

ω∫

τ(ω)

P (u)du


 dω


 ds


x(t) ≤ 0,

or
x′(t) +W0(t, ε)x(t) ≤ 0, (2.12)

with

W0(t, ε) = P (t)


1 +

t∫

τ(t)

P (s) exp




t∫

τ(s)

P (ω) exp


(λ0 − ε)

ω∫

τ(ω)

P (u)du


 dω


 ds


 .

Applying the Grönwall inequality in (2.12), we obtain

x(s) ≥ x(t) exp




t∫

s

W0(ξ, ε)dξ


 , t ≥ s.

Thus

x(τ(u)) ≥ x(u) exp




u∫

τ(u)

W0(ξ, ε)dξ


 . (2.13)

Now we divide (E) by x (t) > 0 and integrate on [s, t], so

−
t∫

s

x′(u)
x(u) du =

t∫

s

m∑

i=1
pi(u)x (τi(u))

x(u) du ≥
t∫

s

P (u)x (τ(u))
x(u) du,

or

ln x(s)
x(t) ≥

t∫

s

P (u)x (τ(u))
x(u) du ≥

t∫

s

P (u) exp




u∫

τ(u)

W0(ξ, ε)dξ


 du.
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or

x(s) ≥ x(t) exp




t∫

s

P (u) exp




u∫

τ(u)

W0(ξ, ε)dξ


 du


 . (2.14)

Setting s = τ (s) in (2.14) we take

x(τ (s)) ≥ x(t) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W0(ξ, ε)dξ


 du


 . (2.15)

Combining (2.9) and (2.15) we obtain

x(t)− x(τ(t)) + x(t)
t∫

τ(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W0(ξ, ε)dξ


 du


 ds ≤ 0.

Multiplying the last inequality by P (t), we find

P (t)x(t)− P (t)x(τ(t))

+ P (t)x(t)
t∫

τ(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W0(ξ, ε)dξ


 du


 ds ≤ 0,

which, in view of (2.11), becomes

x′(t)+P (t)x(t)+P (t)x(t)
t∫

τ(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W0(ξ, ε)dξ


 du


 ds ≤ 0.

Hence, for sufficiently large t

x′(t) + P (t)


1 +

t∫

τ(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W0(ξ, ε)dξ


 du


 ds


x(t) ≤ 0,

or
x′(t) +W1(t, ε)x(t) ≤ 0, (2.16)

where

W1(t, ε) = P (t)


1 +

t∫

τ(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W0(ξ, ε)dξ


 du


 ds


 .
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It becomes apparent, now, that by repeating the above steps, we can build inequalities
on x′(t) with progressively higher indices W`(t), ` ∈ N. In general, for sufficiently
large t, the positive solution x(t) satisfies the inequality

x′(t) +W`(t, ε)x(t) ≤ 0 (` ∈ N) ,

where

W`(t, ε) = P (t)


1 +


1 +

t∫

τ(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W`−1(ξ, ε)dξ


 du


 ds







and

x(τ (s)) ≥ x(h(t)) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 . (2.17)

Integrating (E) from h(t) to t, and using (2.11) and (2.17) we have

0 = x(t)− x(h(t)) +
t∫

h(t)

m∑

i=1
pi(s)x(τi (s))ds ≥ x(t)− x(h(t)) +

t∫

h(t)

P (s)x(τ (s))ds

or

x(t)− x(h(t)) + x(h(t))
t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ 0.

(2.18)
The inequality is valid if we omit x(t) > 0 in the left-hand side. Therefore

x(h(t))




t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds− 1


 < 0,

which means that

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ 1.

Since ε may be taken arbitrarily small, this inequality contradicts (2.4).
The proof of the theorem is complete.
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Theorem 2.5. Assume that h(t) is defined by (1.6) and for some ` ∈ N

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds > 1−D(α), (2.19)

where W` is defined by (2.5). Then all solutions of (E) are oscillatory.

Proof. Let x be an eventually positive solution of (E). Then, as in the proof
of Theorem 2.4, (2.18) is satisfied, i.e.,

x(t)− x(h(t)) + x(h(t))
t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ 0.

That is,

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ 1− x(t)

x(h(t)) ,

which gives

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds

≤ 1− lim inf
t→∞

x(t)
x(h(t)) .

By combining Lemmas 2.1 and 2.2, it becomes obvious that inequality (2.2) is fulfilled.
So, the above inequality leads to

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ 1−D(α).

Since ε may be taken arbitrarily small, this inequality contradicts (2.19).
The proof of the theorem is complete.

Theorem 2.6. Assume that h(t) is defined by (1.6) and for some ` ∈ N

lim sup
t→∞

t∫

h(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds >

1
D(α) − 1, (2.20)

where W` is defined by (2.5). Then all solutions of (E) are oscillatory.
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Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x of (E) and that x is eventually positive. Then, as in the proof of Theorem 2.4, for
sufficiently large t we have

x(τ (s)) ≥ x(t) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 . (2.21)

Integrating (E) from h(t) to t and in view of (2.21), we have

0 = x(t)− x(h(t)) +
t∫

h(t)

m∑

i=1
pi(s)x (τi(s)) ds

≥ x(t)− x(h(t)) +
t∫

h(t)

P (s)x (τ(s)) ds

≥ x(t)− x(h(t))

+ x(h(t))
t∫

h(t)

P (s) x(t)
x(h(t)) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds.

That is, for all sufficiently large t it holds

t∫

h(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ x(h(t))

x(t) − 1

and therefore

lim sup
t→∞

t∫

h(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ lim sup

t→∞

x(h(t))
x(t) − 1.

(2.22)
By combining Lemmas 2.1 and 2.2, it becomes obvious that inequality (2.2) is fulfilled.
So, (2.22) leads to

lim sup
t→∞

t∫

h(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ 1

D(α) − 1.

Since ε may be taken arbitrarily small, this inequality contradicts (2.20).
The proof of the theorem is complete.
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Theorem 2.7. Assume that h(t) is defined by (1.6) and for some ` ∈ N

lim sup
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds >

1 + lnλ0
λ0

−D(α),

(2.23)
where W` is defined by (2.5) and λ0 is the smaller root of the transcendental equation
λ = eαλ. Then all solutions of (E) are oscillatory.
Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x of (E) and that x is eventually positive. Then, as in the previous theorems, (2.21)
holds.

Observe that (2.3) implies that for each ε > 0 there exists a tε such that

λ0 − ε <
x(h(t))
x(t) for all t ≥ tε . (2.24)

Noting that by nondecreasing nature of the function x(h(t))
x(s) in s, it holds

1 = x(h(t))
x(h(t)) ≤

x(h(t))
x(s) ≤ x(h(t))

x(t) , tε ≤ h(t) ≤ s ≤ t,

in particular for ε ∈ (0, λ0 − 1), by continuity we see that there exists a t∗ ∈ (h(t), t]
such that

1 < λ0 − ε = x(h(t))
x(t∗) . (2.25)

By (2.21), it is obvious that

x(τ (s)) ≥ x(h(s)) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 . (2.26)

Integrating (E) from t∗ to t and using (2.26) we have

0 = x(t)− x(t∗) +
t∫

t∗

m∑

i=1
pi(s)x(τi(s))ds

≥ x(t)− x(t∗) +
t∫

t∗

(
m∑

i=1
pi(s)

)
x(τ(s))ds

= x(t)− x(t∗) +
t∫

t∗

P (s)x(τ(s))ds

≥ x(t)− x(t∗) + x(h(t))
t∫

t∗

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds
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or
t∫

t∗

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ x(t∗)

x(h(t)) −
x(t)

x(h(t)) .

In view of (2.25) and Lemma 2.2, for the ε considered, there exists t′ε ≥ tε such that

t∫

t∗

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds <

1
λ0 − ε

−D(α) + ε, (2.27)

for t ≥ t′ε.
Dividing (E) by x(t) and integrating from h(t) to t∗ we find

−
t∗∫

h(t)

x′(s)
x(s) ds

=
t∗∫

h(t)

m∑

i=1
pi(s)

x(τi (s))
x(s) ds ≥

t∗∫

h(t)

(
m∑

i=1
pi(s)

)
x(τ (s))
x(s) ds

≥
t∗∫

h(t)

P (s)x(h(s))
x(s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds.

(2.28)

By (2.25), for s ≥ h(s) ≥ t′ε, we have x(h(s))
x(s) > λ0 − ε, so from (2.28) we get

(λ0 − ε)
t∗∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds < −

t∗∫

h(t)

x′(s)
x(s) ds .

Hence, for all sufficiently large t we have

t∗∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds

< − 1
λ0 − ε

t∗∫

h(t)

x′(s)
x(s) ds = 1

λ0 − ε
ln x(h(t))

x(t∗) = ln (λ0 − ε)
λ0 − ε

,

i.e.,
t∗∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds <

ln (λ0 − ε)
λ0 − ε

. (2.29)
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Adding (2.27) and (2.29), and then taking the limit as t→∞, we have

lim sup
t→∞

t∗∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds

≤ 1 + ln(λ0 − ε)
λ0 − ε

− 1− α−
√

1− 2α− α2

2 + ε.

Since ε may be taken arbitrarily small, this inequality contradicts (2.23).
The proof of the theorem is complete.

Theorem 2.8. Assume that h(t) is defined by (1.6) and for some ` ∈ N

lim inf
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds >

1
e
, (2.30)

where G` is defined by (2.5). Then all solutions of (E) are oscillatory.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x(t) of (E). Since −x(t) is also a solution of (E), we can confine our discussion only to
the case where the solution x(t) is eventually positive. Then there exists t1 > t0 such
that x(t), x (τi(t)) > 0, 1 ≤ i ≤ m for all t ≥ t1. Thus, from (E) we have

x′(t) = −
m∑

i=1
pi(t)x (τi(t)) ≤ 0, for all t ≥ t1,

which means that x(t) is an eventually nonincreasing function of positive numbers.
Furthermore, as in previous theorem, (2.26) is satisfied.

Dividing (E) by x(t) and integrating from h(t) to t, for some t2 ≥ t1, we have

ln
(
x(h(t))
x(t)

)
=

t∫

h(t)

m∑

i=1
pi(s)

x (τi(s))
x (s) ds

≥
t∫

h(t)

(
m∑

i=1
pi(s)

)
x (τ(s))
x (s) ds =

t∫

h(t)

P (s)x (τ(s))
x (s) ds.

(2.31)

Combining the inequalities (2.26) and (2.31) we obtain

ln
(
x(h(t))
x(t)

)
≥

t∫

h(t)

P (s)x(h(s))
x (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds.
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From (2.30), it follows that there exists a constant c > 0 such that for a sufficiently
large t holds

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds ≥ c > 1

e
.

Choose c′ such that c > c′ > 1/e. For every ε > 0 such that c− ε > c′ we have

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≥ c− ε > c′ >

1
e
. (2.32)

Hence,
ln
(
x(h(t))
x(t)

)
≥ c′, t ≥ t3.

Thus
x(h(t))
x(t) ≥ ec′ ≥ ec′ > 1,

which implies for some t ≥ t4 ≥ t3
x(h(t)) ≥ (ec′)x(t).

Repeating the above procedure, it follows by induction that for any positive integer k,
x(h(t))
x(t) ≥ (ec′)k, for sufficiently large t.

Since ec′ > 1, there is k ∈ N satisfying k > 2(ln(2)− ln(c′))/(1 + ln(c′)) such that for
t sufficiently large

x(h(t))
x(t) ≥ (ec′)k >

(
2
c′

)2
. (2.33)

Taking the integral on [h(t), t], which is not less than c′, we split the interval into two
parts where integrals are not less than c′/2, let tm ∈ (h(t), t) be the splitting point:

tm∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≥ c′

2 ,

t∫

tm

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≥ c′

2 .

(2.34)

Integrating (E) from tm to t, gives

x(t)− x(tm) +
t∫

tm

m∑

i=1
pi(s)x(τi(s)) = 0,
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or

x(t)− x(tm) +
t∫

tm

(
m∑

i=1
pi(s)

)
x(τ(s)) ≤ 0.

Thus

x(t)− x(tm) +
t∫

tm

P (s)x(τ(s)) ≤ 0,

or

x(t)− x(tm) + x(h(t))
t∫

tm

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ 0.

The strict inequality is valid if we omit x(t) > 0 in the left-hand side:

−x(tm) + x(h(t))
t∫

tm

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds < 0.

Together with the second inequality in (2.34), implies

x(tm) > c′

2 x(h(t)). (2.35)

Similarly, integration of (E) from h(t) to tm with a later application of (2.26)
leads to

x(tm)−x(h(t))+x(h(tm))
tm∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds ≤ 0.

The strict inequality is valid if we omit x(tm) > 0 in the left-hand side:

−x(h(t)) + x(h(tm))
tm∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ, ε)dξ


 du


 ds < 0.

Together with the first inequality in (2.34) implies

x(h(t)) > c′

2 x(h(tm)). (2.36)

Combining the inequalities (2.35) and (2.36), we obtain

x(h(tm)) < 2
c
x(h(t)) <

(
2
c′

)2
x(tm),

which contradicts (2.33).
The proof of the theorem is complete.
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2.2. ADES

Similar oscillation conditions for the (dual) advanced differential equation (E′) can
be derived easily. The proofs are omitted, since they are quite similar to the delay
equation.
Theorem 2.9. Assume that ρ(t) is defined by (1.25) and for some ` ∈ N

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(t)

Q(u) exp




σ(u)∫

u

S`(ξ)dξ


 du


 ds > 1, (2.37)

where

S`(t) = Q(t)


1 +

σ(t)∫

t

P (s) exp




σ(s)∫

t

Q(u) exp




σ(u)∫

u

S`−1(ξ)dξ


 du


 ds


 , (2.38)

with

S0(t) = Q(t)


1 +

σ(t)∫

t

Q(s) exp




σ(s)∫

t

Q(ω) exp


λ0

σ(ω)∫

ω

Q(u)du


 dω


 ds




and λ0 is the smaller root of the transcendental equation λ = eβλ. Then all solutions
of (E′) are oscillatory.
Theorem 2.10. Assume that ρ(t) is defined by (1.25) and for some ` ∈ N

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(t)

Q(u) exp




σ(u)∫

u

S`(ξ)dξ


 du


 ds > 1−D(β), (2.39)

where S` is defined by (2.38) Then all solutions of (E′) are oscillatory.
Theorem 2.11. Assume that ρ(t) is defined by (1.25) and for some ` ∈ N

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

t

Q(u) exp




σ(u)∫

u

S`(ξ)dξ


 du


 ds >

1
D(β) − 1, (2.40)

where S` is defined by (2.38) Then all solutions of (E′) are oscillatory.
Theorem 2.12. Assume that ρ(t) is defined by (1.25) and for some ` ∈ N

lim sup
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(s)

Q(u) exp




σ(u)∫

u

S`(ξ)dξ


 du


 ds >

1 + lnλ0
λ0

−D(β),

(2.41)
where S` is defined by (2.38) and λ0 is the smaller root of the transcendental equation
λ = eβλ. Then all solutions of (E′) are oscillatory.
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Theorem 2.13. Assume that ρ(t) is defined by (1.25) and for some ` ∈ N

lim inf
t→∞

ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(s)

Q(u) exp




σ(u)∫

u

S`(ξ)dξ


 du


 ds >

1
e
, (2.42)

where S` is defined by (2.38). Then all solutions of (E′) are oscillatory.

2.3. DIFFERENTIAL INEQUALITIES

A slight modification in the proofs of Theorems 2.4–2.8 (resp. 2.9–2.13) leads to the
following results about differential inequalities.
Theorem 2.14. Assume that all the conditions of Theorem 2.4 or 2.5 or 2.6 or 2.7
or 2.8 (resp. 2.9 or 2.10 or 2.11 or 2.12 or 2.13) hold. Then
(i) the delay (resp. advanced) differential inequality

x′(t) +
m∑

i=1
pi(t)x (τi(t)) ≤ 0

(
x′(t)−

m∑

i=1
qi(t)x (σi(t)) ≥ 0

)
, ∀t ≥ t0,

has no eventually positive solutions;
(ii) the delay (resp. advanced) differential inequality

x′(t) +
m∑

i=1
pi(t)x (τi(t)) ≥ 0

(
x′(t)−

m∑

i=1
qi(t)x (σi(t)) ≤ 0

)
, ∀t ≥ t0,

has no eventually negative solutions.

3. EXAMPLES

In this section, examples illustrate cases when the results of the present paper imply
oscillation while previously known results fail. Also, these examples illustrate the
strength of the obtained conditions over known ones. The calculations were made by
the use of MATLAB software.
Example 3.1. Consider the delay differential equation

x′(t) + 127
1250x(τ1(t)) + 127

5000x(τ2(t)) = 0, t ≥ 0, (3.1)

with (see Fig. 1(a))

τ1(t) =





−t+ 12k − 1, if t ∈ [6k, 6k + 1] ,
6k − 2, if t ∈ [6k + 1, 6k + 2] ,
3t− 12k − 8, if t ∈ [6k + 2, 6k + 3] ,
−0.5t+ 9k + 2.5, if t ∈ [6k + 3, 6k + 5] ,
5t− 24k − 25, if t ∈ [6k + 5, 6k + 6]

and τ2(t) = τ1(t)− 0.5

where k ∈ N0 and N0 is the set of nonnegative integers.
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By (1.6), we see (Fig. 1, (b)) that

h1(t) =





6k − 1, if t ∈ [6k, 6k + 7/3] ,
3t− 12k − 8, if t ∈ [6k + 7/3, 6k + 3] ,
6k + 1, if t ∈ 6k + 3, 6k + 26/5],
5t− 24k − 25, if t ∈ [6k + 26/5, 6k + 6]

and h2(t) = h1(t)− 0.5

and consequently

h(t) = max
1≤i≤2

{hi(t)} = h1(t) and τ(t) = max
1≤i≤2

τi(t) = τ1(t).
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Fig. 1. The graphs of τ1(t) and h1(t)

It is easy to see that

α = lim inf
t→∞

t∫

τ(t)

2∑

i=1
pi(s)ds = lim inf

k→∞

6k+6∫

6k+5

(
127
1250 + 127

5000

)
ds = 0.127

and therefore, the smaller root of e0.127λ = λ is λ0 = 1.1585.
Observe that the function F` : R0 → R+ defined as

F`(t) =
t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds,

attains its maximum at t = 6k + 26/5, k ∈ N0, for every ` ∈ N.
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Specifically

F1(t = 6k + 26/5) =
6k+26/5∫

6k+1

P (s) exp




6k+1∫

τ(s)

P (u) exp




u∫

τ(u)

W1(ξ)dξ


 du


 ds,

where

W1(ξ) = P (ξ)


1 +

ξ∫

τ(ξ)

P (v) exp




ξ∫

τ(v)

P (w) exp




w∫

τ(w)

W0(z)dz


 dw


 dv




and

W0(z) = P (z)


1 +

z∫

τ(z)

P (ω) exp




z∫

τ(ω)

P (ϕ) exp


λ0

ϕ∫

τ(ϕ)

P (r)dr


 dϕ


 dω


 .

By using an algorithm on MATLAB software, we obtain

F1(t = 6k + 26/5) ' 1.0673

and therefore
lim sup
t→∞

F1(t) ' 1.0673 > 1.

That is, condition (2.4) of Theorem 2.4 is satisfied for ` = 1, and therefore all solutions
of (3.1) are oscillatory.

Observe, however, that

lim sup
k→∞

6k+26/5∫

6k+1

(
127
1250 + 127

5000

)
ds ' 0.5334 < 1,

α = 0.127 < 1
e

and

lim inf
t→∞

2∑

i=1
pi(t) (t− τi(t))

= lim inf
t→∞

[
127
1250 (t− τ1(t)) + 127

5000 (t− (τ1(t)− 0.5))
]

= lim inf
t→∞

[0.127 (t− τ1(t)) + 0.0127] = lim inf
t→∞

[0.127 (t− τ1(t))] + 0.0127

= 0.127 · lim inf
t→∞

(t− τ1(t)) + 0.0127 = 0.127 · 1 + 0.0127 = 0.1397 < 1
e
.
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Also, observe that the function Dr : [0,∞)→ R+ defined as

Dr(t) =
t∫

h(t)

2∑

i=1
pi(ζ)ar(h(t), τi(ζ))dζ

attains its maximum at t = 6k + 26/5 and its minimum at t = 6k + 6, k ∈ N0, for
every r ∈ N. Specifically,

D1(t = 6k + 26/5) =
6k+26/5∫

6k+1

2∑

i=1
pi(ζ)a1(6k + 1, τi(ζ))dζ

=
6k+2∫

6k+1

[p1(ζ)a1(6k + 1, τ1(ζ)) + p2(ζ)a1(6k + 1, τ2(ζ))] dζ

+
6k+3∫

6k+2

[p1(ζ)a1(6k + 1, τ1(ζ)) + p2(ζ)a1(6k + 1, τ2(ζ))] dζ

+
6k+5∫

6k+3

[p1(ζ)a1(6k + 1, τ1(ζ)) + p2(ζ)a1(6k + 1, τ2(ζ))] dζ

+
6k+26/5∫

6k+5

[p1(ζ)a1(6k + 1, τ1(ζ)) + p2(ζ)a1(6k + 1, τ2(ζ))] dζ

' 0.6468

and

D1(t = 6k + 6) =
6k+6∫

6k+5

2∑

i=1
pi(ζ)a1(6k + 5, τi(ζ))dζ

=
6k+6∫

6k+5

[p1(ζ)a1(6k + 5, τ1(ζ)) + p2(ζ)a1(6k + 5, τ2(ζ))] dζ

' 0.1797.

Thus,
lim sup
t→∞

D1(t) ' 0.6468 < 1,

lim inf
t→∞

D1(t) ' 0.1797 < 1/e

and
0.6468 < 1−D(α) ' 0.9907.
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Clearly
6k+26/5∫

6k+1

2∑

i=1
pi(ζ)a1(h(ζ), τi(ζ))dζ ≤ D1(t = 6k + 26/5) ' 0.6468.

Thus,

lim sup
k→∞

6k+26/5∫

6k+1

2∑

i=1
pi(ζ)a1(h(ζ), τi(ζ))dζ ≤ 0.6468

<
1 + lnλ0

λ0
−D(α) ' 0.9808.

Finally, using algorithms on MATLAB software, we obtain

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P1(u)du


 ds ' 0.7739 < 1,

0.7739 < 1−D(α) ' 0.9907,

lim sup
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P1(u)du


 ds ≤ 0.7739

<
1 + lnλ0

λ0
−D(α) ' 0.9808,

lim sup
t→∞

t∫

h(t)

P (s) exp




t∫

τ(s)

P1(u)du


 ds ' 2.4233 < 1

D(α) ' 107.09,

lim inf
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P1(u)du


 ds ' 0.129 < 1

e
,

lim sup
t→∞

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

G1(ξ)dξ


 du


 ds ' 0.9309 < 1,

0.9309 < 1−D(α) ' 0.9907,

lim sup
t→∞

t∫

h(t)

P (s) exp




t∫

τ(s)

P (u) exp




u∫

τ(u)

G1(ξ)dξ


 du


 ds

' 4.8645 < 1
D(α) − 1 ' 106.09,
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lim sup
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

G1(ξ)dξ


 du


 ds

≤ 0.9309 < 1 + lnλ0
λ0

−D(α) ' 0.9808,

lim inf
t→∞

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

G1(ξ)dξ


 du


 ds ' 0.131 < 1

e
.

That is, none of the conditions (1.3)–(1.5), (1.8)–(1.11) (for r = 1), (1.12)–(1.16)
(for j = 1) and (1.17)–(1.21) (for ` = 1) is satisfied.

It is worth noting that the improvement of condition (2.4) to the corresponding
condition (1.3) is significant, approximately 100.09%, if we compare the values on
the left-side of these conditions. Also, the improvement compared to conditions (1.8),
(1.12) and (1.17) is very satisfactory, around 65.01%, 37.91% and 14.65%, respectively.
In addition, observe that conditions (1.8)–(1.21) do not lead to oscillation for first
iteration. On the contrary, condition (2.4) is satisfied from the first iteration. This
means that our condition is better and much faster than (1.8)–(1.21).
Example 3.2. Consider the advanced differential equation

x′(t)− 6
25x(σ1(t))− 3

50x(σ2(t)) = 0, t ≥ 0, (3.2)

with (see Fig. 2(a))

σ1(t) =





t+ 1, if t ∈ [3.5k, 3.5k + 1] ,
3t− 7k − 1, if t ∈ [3.5k + 1, 3.5k + 1.5] ,
−t+ 7k + 5, if t ∈ [3.5k + 1.5, 3.5k + 2] ,
t+ 1, if t ∈ [3.5k + 2, 3.5k + 2.5] ,
3t− 7k − 4, if t ∈ [3.5k + 2.5, 3.5k + 3] ,
−t+ 7k + 8, if t ∈ [3.5k + 3, 3.5k + 3.5]

and σ2(t) = σ1(t) + 0.5

where k ∈ N0 and N0 is the set of nonnegative integers.
By (1.25), we see (Fig. 2(b)) that

ρ1(t) =





t+ 1, if t ∈ [3.5k, 3.5k + 1] ,
3t− 7k − 1, if t ∈ [3.5k + 1, 3.5k + 4/3] ,
3.5k + 3, if t ∈ [3.5k + 4/3, 3.5k + 2] ,
t+ 1, if t ∈ [3.5k + 2, 3.5k + 2.5] ,
3t− 7k − 4, if t ∈ [3.5k + 2.5, 3.5k + 17/6] ,
3.5k + 4.5, if t ∈ [3.5k + 17/6, 3.5k + 3.5]

and ρ2(t) = ρ1(t) + 0.5

and consequently

ρ(t) = min
1≤i≤2

{ρi(t)} = ρ1(t) and σ(t) = min
1≤i≤2

{σi(t)} = σ1(t).
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Fig. 2. The graphs of σ1(t) and ρ1(t)

It is easy to see that

β = lim inf
t→∞

ρ(t)∫

t

m∑

i=1
qi(s)ds = lim inf

k→∞

3.5k+2∫

3.5k+1

0.3ds = 0.3

and therefore, the smaller root of e0.3λ = λ is λ0 = 1.63134.
Observe, that the function F` : R0 → R+ defined as

F`(t) =
ρ(t)∫

t

Q(s) exp




σ(s)∫

ρ(s)

Q(u) exp




σ(u)∫

u

S`(ξ)dξ


 du


 ds,

attains its minimum at t = 3.5k + 1, k ∈ N0, for every ` ∈ N. Specifically, by
using an algorithm on MATLAB software and taking into account the fact that
Q(t) =

∑2
i=1 qi(t) = 0.3, we obtain

F1(t = 3.5k + 1) =
3.5k+2∫

3.5k+1

Q(s) exp




σ(s)∫

ρ(s)

Q(u) exp




σ(u)∫

u

S1(ξ)dξ


 du


 ds ' 0.375

and therefore
lim inf
t→∞

F1(t) ' 0.375 > 1
e
.
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That is, condition (2.42) of Theorem 2.13 is satisfied for ` = 1, and therefore all
solutions of (3.2) oscillate.

Observe, however, that

lim sup
t→∞

ρ(t)∫

t

2∑

i=1
qi(s)ds = lim sup

k→∞

3.5k+3∫

3.5k+4/3

0.3ds = 0.5 < 1,

β = 0.3 < 1
e
,

lim inf
t→∞

2∑

i=1
qi(t) (σi(t)− t) = lim inf

t→∞

2∑

i=1
qi(t) (ρi(t)− t)

= lim inf
t→∞

[
6
25 (ρ1(t)− t) + 3

50 (ρ1(t) + 0.5− t)
]

= lim inf
t→∞

[0.3 (ρ1(t)− t) + 0.03]

= lim inf
t→∞

[0.3 (ρ1(t)− t)] + 0.03

= 0.3 · 1 + 0.03 = 0.33 < 1
e
.

Finally, by a similar procedure as in previous example and by using algorithms on
MATLAB software, we obtain

Condition Value Conclusion
(1.27) for r = 1 ' 0.6171 < 1 is not satisfied
(1.28) for r = 1 0.6171 < 1−D(β) ' 0.9284 q
(1.29) for r = 1 ' 0.312 < 1/e q
(1.30) for j = 1 ' 0.723 < 1 q
(1.31) for j = 1 0.723 < 1−D(β) ' 0.9284 q
(1.32) for j = 1 ' 2.0476 < 1/D(β) ' 13.9642 q
(1.33) for j = 1 ' 0.546 < 1+lnλ0

λ0
−D(β) ' 0.8414 q

(1.34) for j = 1 ' 0.3374 < 1/e q
(1.35) for ` = 1 ' 0.8663 < 1 q
(1.36) for ` = 1 0.8663 < 1−D(β) ' 0.9284 q
(1.37) for ` = 1 ' 4.02 < 1/D(β)− 1 ' 12.9642 q
(1.38) for ` = 1 ' 0.573 < 1+lnλ0

λ0
−D(β) ' 0.8414 q

(1.39) for ` = 1 ' 0.3584 < 1/e q

That is, none of the conditions (1.22)–(1.24), (1.27)–(1.29) (for r = 1), (1.30)–(1.34)
(for j = 1) and (1.35)–(1.39) (for ` = 1) is satisfied.
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It is worth noting that the improvement of condition (2.42) to the correspond-
ing condition (1.23) is significant, approximately 25%, if we compare the values on
the left-side of these conditions. In addition, observe that conditions (1.27)–(1.39) do
not lead to oscillation for first iteration. On the contrary, condition (2.42) is satisfied
from the first iteration. This means that our condition is better and much faster than
(1.27)–(1.39).

Remark 3.3. Similarly, one can construct examples to illustrate the other main
results.

4. ASSESSMENT OF THE MAIN RESULTS

4.1. DDES

Since

exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ≥ 1

and

exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds ≥ 1,

it is clear that

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds ≥

t∫

h(t)

m∑

i=1
pi(s)ds

and

t∫

h(t)

P (s) exp




h(s)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds ≥

t∫

h(t)

m∑

i=1
pi(s)ds,

respectively. Therefore the condition (2.4) and (2.30) are weaker than the conditions
(1.3) and (1.4), respectively.

Also, since
W0(t) ≥ G0(t) > P0(t),
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clearly

t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

W`(ξ)dξ


 du


 ds

≥
t∫

h(t)

P (s) exp




h(t)∫

τ(s)

P (u) exp




u∫

τ(u)

G`(ξ)dξ


 du


 ds

≥
t∫

h(t)

P (s) exp




h(t)∫

τ(s)

Pj(u)du


 ds.

Therefore, the condition (2.4) is weaker than the conditions (1.17) and (1.12).

4.2. ADES

Similar comments as the above, can be made for Theorems 2.9 and 2.13,
concerning equation (E′). Hence, the conditions (2.37) and (2.42) are weaker
than the conditions (1.22) and (1.23), respectively. Also, the condition
(2.37) is weaker than the conditions (1.35) and (1.30).
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