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Abstract. In this paper we complete the study started in [Existence of entire solutions for
quasilinear equations in the Heisenberg group, Minimax Theory Appl. 4 (2019)] on entire
solutions for a quasilinear equation (Eλ) in Hn, depending on a real parameter λ, which
involves a general elliptic operator A in divergence form and two main nonlinearities. Here,
in the so called sublinear case, we prove existence for all λ > 0 and, for special elliptic
operators A, existence of infinitely many solutions (uk)k.
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1. INTRODUCTION

Lately, great attention has been devoted to nonlinear elliptic problems involving critical
nonlinearities, in the context of stratified groups. We just refer to [2, 7–9] and to the
references therein. Indeed, Geometric Analysis in the Heisenberg group, and more in
general in sub–Riemannian manifolds, represents one of the currently most active and
exciting areas of mathematics. The main reason lies in the fact that the Heisenberg
group Hn, n = 1, 2, 3, . . . , plays an important role in several branches of mathematics,
such as representation theory, partial differential equations, number theory, several
complex variables and quantum mechanics.

Actually, several recent results have been also established by many authors in
the Euclidean elliptic setting. We mention only [11], as well as the references and
comments given there, since this paper is an extension of [11] to the Heisenberg setting
and also a completion of the study started in [9] on existence of entire solutions for
a quasilinear equation (Eλ) in Hn, depending on a real parameter λ, which involves
a general elliptic operator A in divergence form and two main nonlinearities.
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More precisely, we consider here as in [9] the one parameter elliptic equation in Hn

−divHA(q,DHu) + a(q) |u|p−2
u = λw(q) |u|m−2

u− h(q) |u|m−2
u, (Eλ)

where λ ∈ R and A : Hn × HH → HH admits a potential A , with respect to its
second variable ξ, while HH is the span generated by {Xj , Yj}nj=1, and

Xj = ∂

∂xj
+ 2yj

∂

∂t
, Yj = ∂

∂yj
− 2xj

∂

∂t

are vector fields for any j = 1, . . . , n. The horizontal vector field A satisfies the
following assumption (A1), required throughout the paper.

(A1) The potential A = A (q, ξ) is a continuous function in Hn × HH , with
continuous derivative with respect to ξ, A = ∂ξA (q, ξ), and verifies:

(i) A (q, 0H) = 0 and A (q, ξ) = A (q,−ξ) for all (q, ξ) ∈ Hn ×HH ;
(ii) A (q, ·) is strictly convex in HH for all q ∈ Hn;
(iii) There exist positive constants c1, c2 > 0 and an exponent p such that

c1 |ξ|pH ≤ (A(q, ξ), ξ)H , |A(q, ξ)|H ≤ c2 |ξ|
p−1
H (1.1)

for all (q, ξ) ∈ Hn ×HH , where 1 < p < Q, and Q = 2n+ 2 is the homogeneous
dimension of Hn, while (·, ·)H is the natural inner product in HH and | · |H the
related norm introduced properly in Section 2.

Let r be the Heisenberg norm, defined for all q = (z, t) ∈ Hn by

r(q) = (|z|4 + t2)1/4, z = (x, y) ∈ Rn × Rn, t ∈ R,

where | · | is the Euclidean norm in R2n. In the entire paper we assume for (Eλ)
conditions

(H1) (i) a ∈ L∞loc(Hn), and a(q) ≥ a1[1 + r(q)]−p for all q ∈ Hn and some constant
a1 ∈ (0, 1].

(ii) The exponents m and m are such that 1 < m < m <∞.
(iii) 0 < h ∈ L1

loc(Hn), 0 ≤ w ∈ L1
loc(Hn) and w 6≡ 0.

(H2) The coefficients h and w are related by the condition that either
(
wm

hm

)1/(m−m)
∈ L1(Hn), or (1.2)

(
wm−1

hm−1

)1/(m−m)

∈ Lp∗′(Hn), p∗ = nQ

n−Q, (1.3)

where p∗′ is the Hölder conjugate of p∗.

For detailed comments, concerning natural conditions under which (1.3) is weaker
than (1.2), we refer to the Introduction of [9].
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The elliptic equation (Eλ) is quasilinear, with two competing nonlinear terms which
combine each other. The presence of a possible critical or supercritical nonlinearity
makes the study fairly delicate. In the Euclidean setting several papers are devoted on
problems of this kind, we just cite for historical comments given in the papers [1,10,11]
and in the references therein. Motivated by these papers, we extend the multiplicity
result of [11] from the Euclidean to the Heisenberg setting. However, (Eλ) is more
delicate to handle in the Heisenberg setting, since the general framework produces new
interesting complications, as shown in [9]. In any case, this paper is strongly based on
the preliminary key properties proved in [9].

Equation (Eλ) is variational and the entire (weak) solutions u of (Eλ) are exactly
the critical points of the underlying energy functional Φλ : X → R, defined by

Φλ(u) =
∫

Hn

A (q,DHu)dq + 1
p
‖u‖pp,a −

λ

m
‖u‖mm,w + 1

m
‖u‖mm,h

for all u ∈ X, where X is the natural solution space of (Eλ), introduced properly in
the next Section 2 together with the involved weighted Lebesgue spaces.

Theorem 1.1. Let (A1), (H1) and (H2) hold and let m < p. Then

(i) (Eλ) admits at least a nontrivial nonnegative entire solution for any λ > 0;
(ii) if also assumption

(A2) A is uniformly convex, i.e. for any ε ∈ (0, 1) there exists a number
δ = δ(ε) ∈ (0, 1) such that either |ξ − η| ≤ εmax{|ξ| , |η|}, or

A (q, (ξ + η)/2) ≤ 1
2(1− δ)[A (q, ξ) + A (q, η)]

for any q ∈ Hn and all ξ, η ∈ HH ,
is satisfied, then for all λ > 0 equation (Eλ) has at least two nontrivial nonnegative
entire solutions, and actually (Eλ) possesses infinitely many solutions (uk)k, whose
negative critical values ck = Φλ(uk) tend to 0 as k → ∞, where Φλ is the
underlying functional of (Eλ), defined above.

The operator A(q, ξ) = α(q) |ξ|p−2
H ξ, where α ∈ C(Hn) and 0 < α1 ≤ α ≤ α2 in Hn

for suitable numbers α1, α2 ∈ R+, satisfies (A1) and (A2), provided that 1 < p < Q.
This popular prototype is the non–homogeneous horizontal p-Laplacian operator on
the Heisenberg group, with continuous coefficient. Therefore, in the subcase α ≡ 1,
along any ϕ ∈ C∞c (Hn)

divHA(q,DHϕ) = divH(|DHϕ|p−2
DHϕ) = ∆H,pϕ

reduces to the so called horizontal p-Laplacian on the Heisenberg group. When p = 2
it becomes the Kohn–Spencer Laplacian operator ∆H .

Several standard convexity conditions on A imply (A2). This is shown in the
Remark of Section 3 of [11]. Concerning the famous condition (1.2) we refer to the
historical comments given in [9, 11]. We recall in passing that under very general
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assumptions Lemma 3.1 of [9] shows that if (Eλ) admits a nontrivial entire solution
u ∈ X, then λ > 0.

The paper is divided into three sections. Section 2 contains some preliminaries and
notations and Section 3 is devoted to the proof of Theorem 1.1.

2. PRELIMINARIES

We briefly recall the relevant definitions and notations related to the Heisenberg group
functional setting. For a complete treatment, we refer to [3, 5, 6].

Let Hn denote the Heisenberg group of dimension 2n+ 1, that is the Lie group
whose underlying manifold is R2n+1, endowed with the non–commutative group law

q ◦ q′ =
(
z + z′, t+ t′ + 2

n∑

i=1
(yix′i − xiy′i)

)

for all q, q′ ∈ Hn, with

q = (z, t) = (x1, . . . , xn, y1, . . . , yn, t), q′ = (z′, t′) = (x′1, . . . , x′n, y′1, . . . , y′n, t′).

The Heisenberg group Hn is the most commutative among the non–commutative
Lie groups, and hence gives the greatest opportunity for generalizing the remarkable
results stated in Euclidean analysis.

In Hn the natural origin is denoted by O = (0, 0). Define

r(q) = r(z, t) = (|z|4 + t2)1/4 for all q = (z, t) ∈ Hn,

where | · | is the Euclidean norm in R2n. The Korányi norm is homogeneous of
degree 1, with respect to the dilations δR : (z, t) 7→ (Rz,R2t), R > 0. Indeed,
for all q = (z, t) ∈ Hn

r(δR(q)) = r(Rz,R2t) = (|Rz|4 +R4t2)1/4 = Rr(q).

Hence, the Korányi distance is

dK(q, q′) = r(q−1 ◦ q′) for all (q, q′) ∈ Hn ×Hn,

and the Korányi open ball of radius R centered at q0 is

BR(q0) = {q ∈ Hn : dK(q, q0) < R}.

For simplicity BR denotes the ball of radius R centered at q0 = O.
The Jacobian determinant of δR is R2n+2. The natural number Q = 2n+ 2, which

is the so called homogeneous dimension of Hn, plays a role analogous to the topological
dimension in the Euclidean context.

The Haar measure on Hn coincides with the Lebesgue measure on R2n × R. It is
invariant under left translations and Q–homogeneous with respect to dilations. Hence,
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as noted in [6], the topological dimension 2n+1 of Hn is strictly less than its Hausdorff
dimension Q. We denote by |E| the measure of any measurable set E ⊂ Hn. Then

|δR(E)| = RQ|E|, d(δRq) = RQdq.

In particular, if E = BR, then |BR| = RQwQ, where wQ is the measure of the unit
sphere of Hn.

The vector fields for j = 1, . . . , n

Xj = ∂

∂xj
+ 2yj

∂

∂t
, Yj = ∂

∂yj
− 2xj

∂

∂t
,

∂

∂t
,

constitute a basis for the real Lie algebra of left–invariant vector fields on Hn. This basis
satisfies the Heisenberg canonical commutation relations for position and momentum
[Xj , Yk] = −4δjk∂/∂t, all other commutators being zero. The span of {Xj , Yj}nj=1 is
briefly denoted by HH and a vector field in HH is called horizontal.

Let u ∈ C1(Hn) be fixed. The horizontal gradient DHu is

DHu =
n∑

j=1
[(Xju)Xj + (Yju)Yj ] ,

that is, it is an element of HH . Furthermore, if f ∈ C1(R), then DH(f ◦u) = f ′(u)DHu.
The natural inner product in HH

(
W,Z

)
H

=
n∑

j=1

(
wjzj + w̃j z̃j

)

for W = {wjXj + w̃jYj}nj=1 and Z = {zjXj + z̃jYj}nj=1 produces the Hilbertian norm

|DHu|H =
√(

DHu,DHu
)
H

for the horizontal vector field DHu. Moreover, if also v ∈ C1(Hn) then the
Cauchy–Schwarz inequality

∣∣(DHu,DHv
)
H

∣∣ ≤ |DHu|H |DHv|H

continues to be valid.
Then the horizontal divergence is defined, for horizontal vector fields

W = {wjXj + w̃jYj}nj=1 of class C1(Hn,R2n), by

divHW =
n∑

j=1
[Xj(wj) + Yj(w̃j)].

If furthermore g ∈ C1(Hn), then the Leibnitz formula holds, namely

divH(gW ) = g divHW +
(
DHg,W

)
H
.
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The Kohn–Spencer Laplacian ∆H , or equivalently the horizontal Laplacian in Hn,
of a function u of class C2(Hn) is defined by

∆Hu =
n∑

j=1
(X2

j + Y 2
j )u =

n∑

j=1

(
∂2

∂x2
j

+ ∂2

∂y2
j

+ 4yj
∂2

∂xj∂t
− 4xj

∂2

∂yj∂t

)
u+ 4|z|2 ∂

2u

∂t2
,

and ∆H is hypoelliptic according to the celebrated Theorem 1.1 due to Hörmander
in [4]. In particular, ∆Hu = divHDHu for each u ∈ C2(Hn).

A well known generalization of the Kohn–Spencer Laplacian is the horizontal
p-Laplacian on the Heisenberg group given by

∆H,pu = divH(|DHu|p−2
H DHu),

which is well defined for all function u ∈ C2(Hn) and p ∈ (1,∞). But in this paper
1 < p < Q.

Throughout the paper we assume that (A1), (H1) and (H2) are fulfilled, without
further mentioning. Clearly, (Eλ) involves weighted Lebesgue spaces. Hence, denoted
by ω a generic weight on Hn of class L1

loc(Hn), for any σ, with 1 < σ <∞, we define

Lσ(Hn, ω) = {u : Hn → R measurable : ω1/σ|u| ∈ Lσ(Hn)},

endowed with the norm ‖u‖σ,ω = ‖ω1/σu‖σ. For the main properties of the weighted
spaces Lp(Hn, a), Lm(Hn, w) and Lm(Hn, h) we refer to Lemma 2.1 of [9] and for
a complete general treatment to [5].

The natural solution space, associated to (Eλ), is X = (X, ‖ · ‖), where

X =



u ∈ E :

∫

Hn

h(q)|u(q)|mdq <∞



 ,

and ‖u‖ = ‖u‖E + ‖u‖m,h, while E is the completion of C∞c (Hn), with respect to the
norm ‖u‖E =

(
‖DHu‖pp + ‖u‖pp,a

)1/p, where

‖DHu‖p =



∫

Hn

|DHu(q)|pHdq




1/p

, ‖u‖p,a =



∫

Hn

a(q)|u(q)|pdq




1/p

.

Clearly E and X are well defined, since C∞c (Hn) ⊂ X ⊂ E. Moreover, X is a separable
reflexive Banach space, as proved in Lemma 2.2 of [9]. Finally, the key historical
condition (H2) assures that the embedding

X ↪→↪→ Lm(Hn, w)

is compact.
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A (weak) entire solution of (Eλ) is a function u ∈ X satisfying the identity
∫

Hn

(A(q,DHu), DHv)Hdq +
∫

Hn

a(q) |u|p−2
uvdq

= λ

∫

Hn

w(q) |u|m−2
uvdq −

∫

Hn

h(q) |u|m−2
uvdq

for all v ∈ X.
As already noted in the Introduction, (Eλ) has a variational structure and (weak)

entire solutions u of (Eλ) are exactly the critical points of the energy functional
Φλ : X → R, defined by

Φλ(u) = ΦA (u) + Φa(u)− λΦw(u) + Φh(u),

ΦA (u) =
∫

Hn

A (q,DHu)dq, Φa(u) = 1
p
‖u‖pp,a, Φw(u) = 1

m
‖u‖mm,w,

Φh(u) = 1
m
‖u‖mm,h,

for all u ∈ X.

3. PROOF OF THEOREM 1.1

Under very general conditions, Lemma 3.1 of [9] asserts that λ > 0, if (Eλ) admits
a nontrivial entire solution u ∈ X. Consequently, from now on we consider only the
case λ > 0, without further mentioning.

Before proving Theorem 1.1, we present some useful properties. Since X is a sepa-
rable and reflexive Banach space thanks to Lemma 2.2. of [9], there exist two sequences
(ej)j ⊂ X and (e∗j )j ⊂ X ′ such that

X = span {ej , j = 1, 2, . . .}, X ′ = spanw
∗{e∗j , j = 1, 2, . . .},

and < e∗i , ej >= δij , i, j = 1, 2, . . ., where < ·, · > is the dual pairing between X and
its dual space X ′, while δij denotes the Kronecker symbol and w∗ is the closure of
a subset of X ′ with respect to the weak star topology on X ′.

For brevity, we put

Xj = span {ej}, Yk =
k
⊕
j=1

Xj , Zk =
∞
⊕
j=k

Xj . (3.1)

Let us state for completeness a useful result proved in [11].
Lemma 3.1 (Lemma 5.1 of [11]). Let Φ : X → R be sequentially weakly continuous
in X, with Φ(0) = 0. Fix R > 0 and put

βk = sup {Φ(u) : ‖u‖ ≤ R, u ∈ Zk}
for all k. Then βk → 0 as k →∞.
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Proof of Theorem 1.1. Fix λ > 0 and recall that by assumption

1 < m < p and m < m (3.2)

holds.
(i) The functional Φλ is weakly lower semi–continuous in X by Lemma 3.6 of [9]

and also coercive in X by Lemma 3.2(i) of [9]. Hence, since X is a reflexive Banach
space by Lemma 2.2 of [9], the functional Φλ attains its infimum at some u1 ∈ X and
clearly u1 is a solution of (Eλ).

Now conditions (A1)(i) and (ii) imply that

A (q, ξ) ≤ (A(q, ξ), ξ)H for all (q, ξ) ∈ Hn ×HH . (3.3)

Moreover, (A1)(i) and (iii) give

A (q, ξ) =
1∫

0

d

dt
A (q, tξ)dt =

1∫

0

1
t
(A(q, tξ), tξ)Hdt ≥

c1
p
|ξ|pH ,

which, together with (1.1) and (3.3), yields

c |ξ|pH ≤ A (q, ξ) ≤ (A(q, ξ), ξ)H ≤ c2 |ξ|pH (3.4)

for all (q, ξ) ∈ Hn ×HH .
Fix a nontrivial function ϕ ∈ C∞c (Ω). Then, putting C = max{c2, 1}/p, for all

t > 0 small enough, we have

Φλ(tϕ) ≤ tpC



∫

Hn

|DHϕ|pH dq +
∫

Hn

a(q) |ϕ|p dq


+ tm

m

∫

Hn

h(q) |ϕ|m dq

− λ t
m

m

∫

Hn

w(q) |ϕ|m dq < 0,

since w > 0 in Ω and (3.2) is valid.
Thus, infu∈X Φλ(u) < 0. Therefore (Eλ) has a nontrival nonnegative entire solution.
(ii) Since in this case A is uniformly convex, Theorem 1.1(iii) of [9] asserts that

(Eλ) admits at least two nontrivial nonnegative entire solutions in X.
Thanks to the fact that in this case m < p, we claim that (Eλ) has a sequence of

solutions (±uk)k such that Φλ(±uk) < 0 and Φλ(±uk)→ 0 as k →∞.
The functional Φλ is even in X, since the potential A (q, ·) is even in HH for all

q ∈ Hn by virtue of assumption (A1)(i). Moreover, Φλ is coercive in X by Lemma 3.2(i)
of [9] and Φλ satisfies the (PS) condition in X by Lemma 3.9 of [9]. Using Definition 5.1
on page 94 of [12], we denote by γ(B) the genus of B ∈ C , where

C = {B ⊂ X\{0} : B is compact and B = −B},
Ck = {B ∈ C : γ(B) ≥ k}, ck = inf

B∈Ck

sup
u∈B

Φλ(u), k = 1, 2, . . .
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Thus
−∞ < c1 ≤ c2 ≤ . . . ≤ ck ≤ ck+1 ≤ . . .

We assert that ck < 0 for every k.
As shown in Section 2, the test space C∞c (Ω) is a subspace of X. Fix k ∈ N and

choose a k–dimensional linear subspace Fk of C∞c (Ω). Since all the norms on Fk
are equivalent, there exists ρk ∈ (0, 1) such that ϕ ∈ Fk and ‖ϕ‖ ≤ ρk implies that
‖ϕ‖∞ ≤ δ < 1. Put

S(k)
ρk

= {u ∈ Fk : ‖u‖ = ρk}.

From the compactness of S(k)
ρk and the fact that w > 0 in Ω, for all k there exist

constants θk, ηk > 0 such that for all ϕ ∈ S(k)
ρk

Φw(ϕ) = 1
m

∫

Hn

w(q)|ϕ|mdq ≥ 1
m

∫

Ω

w(q)|ϕ|mdq ≥ θk

and
ΦA (ϕ) + Φa(ϕ) + Φh(ϕ) ≤ C‖ϕ‖pE + Φh(ϕ) ≤ ηk.

Therefore, for ϕ ∈ S(k)
ρk and t ∈ (0, 1)

Φλ (tϕ) = ΦA (tϕ) + Φa(tϕ) + Φh(tϕ)− λΦw(tϕ)
≤ Ctp‖ϕ‖pE + tmΦh(ϕ)− λ tmΦw(ϕ)
≤ ηk

(
C tp + tm

)
− λ θktm.

Since 1 < m < p and m < m by (3.2), for all k there exist tk ∈ (0, 1) and εk > 0 so
small that for all ϕ ∈ S(k)

ρk

Φλ (tkϕ) ≤ −εk < 0, that is Φλ (u) ≤ −εk < 0

for all u ∈ S(k)
tkρk

. Finally, γ(S(k)
tkρk

) = k, so that ck ≤ −εk < 0 for all k and the assertion
is proved.

By the genus theory, see for instance Theorem 4.2 and the Remark on page 97
of [12], each ck is a critical value of Φλ. Hence there is a sequence of solutions (±uk)k
such that Φλ(±uk) < 0. It only remains to show that ck → 0 as k →∞.

Since Φλ is coercive in X by Lemma 3.2(i) of [9], there exists a constant R > 0
such that Φλ(u) > 0 for all u, with ‖u‖ ≥ R. Fix k and let Yk, Zk be as in (3.1). Take
B ∈ Ck, so that γ(B) ≥ k. Therefore, according to the properties of genus, B∩Zk 6= ∅.
Put

βk = sup {λΦw(u) : u ∈ Zk, ‖u‖ ≤ R} .
Thus βk → 0 as k → ∞ by Lemma 3.1, since Φw is sequentially weakly continuous
in X by Lemma 3.5 of [9]. If u ∈ Zk and ‖u‖ ≤ R, then

Φλ(u) = ΦA (u) + Φa(u) + Φh(u)− λΦw(u) ≥ −λΦw(u) ≥ −βk.
Hence, sup

u∈B
Φλ(u) ≥ −βk, and so 0 > ck ≥ −βk. This implies at once that ck → 0

as k →∞.
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