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1. Introduction
We propose a simple method of measuring acoustic

responses using any sound by converting them to be suitable
for measurement. This method enables us to use music pieces
for measuring acoustic conditions. It is advantageous to
measure such conditions using test sounds that do not annoy
the listeners. In addition, applying the underlying idea of the
simultaneous measurement of multiple paths [1,2] provides
features of practical value. For example, it is possible to
measure deviations (temporally stable, random, and time-
varying) and the impulse response while reproducing slightly
modified contents under target conditions. The key idea of the
proposed method is to add relatively small deterministic
signals that sound like noise to the original sounds. We call
the converted sounds as safeguarded test signals.

2. Safeguarded transfer function measurement
Let x½n� be a periodic discrete-time signal with a period L.

The convolution of x½n� and the impulse response h½n� of the
target system yields the output y½n�. Because the signal is
periodic, the discrete Fourier transforms (DFTs) of x½n� and
y½n� segments (their length is L) are invariant other than the
phase rotation proportional to frequency. Let X½k� and Y½k�
represent their DFTs, where k, (k ¼ 0; . . . ;L� 1), is the
discrete frequency. Then, the ratio Y½k�=X½k� is independent
of the location of the segment. This ratio agrees with the DFT
H½k� of the impulse response h½n�, where X½k� 6¼ 0 for all k
values is the condition of this relation to provide physically
meaningful results.

However, this simple solution is sensitive to noise when
the absolute value jX½k�j is very small relative to absolute
values jH½k�j of other k values. We propose to limit the
absolute value jX½k�j to be larger than the threshold.1 We
use the following equation to derive the DFT Xs½m� of the
safeguarded signal ~xs½n�.

Xs½k� ¼
�LX½k�
jX½k�j

for 0 < jX½k�j < �L

X½k� �L � jX½k�j

8<
: ð1Þ

Here, we set Xs½k� ¼ �L when X½k� ¼ 0. Then, we derive the
safeguarded transfer function Hs½k� as

Hs½k� ¼
Ys½k�
Xs½k�

; ð2Þ

where Ys½k� represents the DFT of the output of the target
system for the periodic test signal ~xs½n�. Because the
safeguarded signal ~xs½n� is periodic, we can make the
safeguarded test signal for acoustic measurement by concati-
nating it as many times as required. To analyze the
safeguarded transfer function, we can select the safeguarded
test and the output segment anywhere, obeying one rule: the
segment must have the length of exactly L samples.2

3. Measurement of other responses
When the target system is a linear time-invariant (LTI)

system, and no observation noise exists, the calculated
safeguarded transfer function Hs½k� is the same irrespective
of the location of the safeguarded test and the output
segments. Also, Hs½k� is independent of the safeguarded test
signals used. However, this is not the case when measuring
acoustic systems in the real world. We can use these
differences of Hs½k� measured at different observation
locations as well as different safeguarded test signals to
separate the LTI response and other spurious responses. They
are signal-induced deterministic and random responses.3

3.1. Separation of random responses
An additive noise d½n� in output observation produces a

deviation term D½k�. We define the time-invariant response
HsTI½k� and the squared absolute random response jDsTV½k�j2
by measuring the system M times.

HsTI½k� ¼
1

M

XM
m¼1

Hfnmgs ½k� ð3Þ
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1Generally, the threshold is a function of discrete frequency �L½k�.
We use a constant value here to make explanations simple.

2Do not use the initial segment of length L samples (plus samples for
propagation delay from the sound source to the microphone)
because it does not have any preceding cycle.

3In addition to background and observation noises (which are
independent of the source), there are source-related random noises,
for example, the turbulent noise caused by strong low-frequency
airflow in the bass-reflex port and the high-frequency phase
modulation noise due to the Doppler effect caused by air movement
[1].
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jDsTV½k�j2 ¼
1

M � 1

XM
m¼1

jHfnmgs ½k� � HsTI½k�j2 ð4Þ

The use of superscript afnmg indicates that the calculation of a
uses the segment starting from the discrete-time nm.4 The
denominator M � 1 of Eq. (4) is for unbiased variance.
3.2. Separation of signal-dependent responses

For LTI systems, the time-invariant response HsTI½k� is
the same irrespective of the test signals. However, again, this
is not the case in the real world measurements. We define the
LTI response HsLTI½k� by averaging the responses measured
using different test signals. Then, we represent the squared
absolute signal-dependent responses jHsSDR½k�j2 as the aver-
age squared absolute value of deviation from the time-
invariant response. We use index variable p to identify a
member of the set of test signals �P ¼ f ~xfpgs ½n� j p ¼
1; . . . ;Pg.

HsLTI½k� ¼
1

P

XP
p¼1

HðpÞs ½k� ð5Þ

jHsSDR½k�j2 ¼
1

P� 1

XP
p¼1

jHðpÞs ½k� � HsLTI½k�j2: ð6Þ

Here, aðpÞ indicates that we used the p-th member of the set
�P to calculate a. The denominator P� 1 of Eq. (6) is for
unbiased variance.

4. Numerical simulation
We conducted a set of numerical simulations to determine

the feasibility of the proposed method. We used white noise
for the original test signal and studied the effect of
safeguarding by flooring the low-level absolute values.
4.1. Effect of flooring in LTI response

Figure 1 shows the results of simulation using additive
white noise with SNR of 40 dB. We adjusted the noise level
for the safeguarded signal because flooring increases the
signal power. The threshold �L value we used here is the
average absolute value of the original spectrum. The sampling
frequency was 44,100 Hz, and the signal length was 100000
samples.

Figure 2 shows the maximum deviation5 of the safe-
guarded gain function for different SNR settings. Flooring
significantly reduces the maximum deviations.

Safeguarding by flooring adds a deterministic signal that
sounds like noise. The regression analysis of the flooring level
�LjdB (represented in dB) and the power of the deterministic
signal (�dB: also represented in dB) resulted in the following
experimental relation:

�dB � �10:321þ 1:995 �LjdB; ð7Þ

where the intercept and the slope indicate that 0 dB flooring
adds 10 dB smaller noise and the level decreases two times
faster than does the flooring level. For example, the �10 dB
flooring level causes SNR to be 30 dB. This relation suggests
that safeguarding does not severely damage the quality of the
original signal (for example, a music piece).

The estimated gain when using a safeguarded signal still
has random peaks and dips. Spectral smoothing is a common
practice to elucidate spectral characteristics of acoustical
systems. Figure 3 shows the standard deviation of the
smoothed gain functions when using one-third-octave-width
rectangular smoothing. A comparison with Fig. 2 reveals
that spectral smoothing significantly reduces the amount of
deviations.
4.2. Random response

Repeated measurements using the same test signal
provide the random response estimate using Eq. (4). Figure 4
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Fig. 1 The top panel shows power spectra of the
original white noise, safeguarded noise, and back-
ground white noise (original and adjusted). The middle
panel shows the level distribution. The bottom panel
shows the estimated gains using the original and
safeguarded signals.
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Fig. 2 Effect of flooring on the maximum deviations
from the ground truth (0 dB) under different SNR
values. A flooring level of �50 dB does not change any
frequency bins, whereas that of 20 dB changes all bins.

4It is better not to overlap analysis segments.
5We used the absolute difference between the true value (0 dB) and
the calculated transfer function for deviation.
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shows the estimated random response level. Note that the
estimate at 20 dB flooring provides the correct estimate of
the noise level because the test signal has a constant absolute
value with a randomized phase; in other words, it is a periodic
pseudorandom noise.6

4.3. Signal-dependent response
Repeated measurements using the same test signal do not

provide signal-dependent deviations such as harmonic dis-
tortion and intermodulation distortion caused by nonlinearity.
We introduced a sample nonlinearity using

y ¼
1

�
ðexpð�xÞ � 1Þ: ð8Þ

We used Gaussian white noise as x and added the other
Gaussian noise to the output y with the given SNR. We
prepared four types of original segment and repeated each
segment four times, assuming a piece of typical loop music
with the prospective application in mind.

Figure 5 shows the results. Colored lines represent the
signal-dependent response level calculated using Eq. (6). The
black dashed lines represent the random response level
calculated using Eq. (4). The random response levels nor-
malized by the total output levels are virtually constant, which
reflects the assigned SNR. The signal-dependent levels
decrease as the input level decreases. This decrement saturates
at the effective (�3 dB for each doubling of number of
repetitions) random response level.

5. Sample measurement using loop music
We conducted acoustic measurements in a connected

Japanese room with an area of about 40 m2. The sound source
is a loudspeaker (Fostex FF85WK) with a bass-reflex

enclosure (Fostex BK85WB 2). To drive the loudspeaker,
we used a power amplifier (Fostex AP20d) connected to an
audio interface (PRESONUS STUDIO 2j6). A wide-range
omnidirectional condenser microphone (EARTHWORKS
M50) connected to the audio interface acquired the repro-
duced sounds.

We used four loop-music (5 s each) pieces composed for
this research. We mixed the stereo track into a monaural track.
The sampling frequency was 44,100 Hz.
5.1. Example 1: single test segment

For the first experiment, we positioned the microphone
10 cm in front of the center of the loudspeaker. The sound
pressure level (SPL), measured using A-weighting, at the
microphone was 95.8 dB. The background noise level was
24 dB. We repeated each segment six times. We used the
middle four segments for calculation.7

Figure 6 shows the absolute value distribution of the DFT
X½k� of the original signal. We floored absolute values at the
average absolute value of the DFT.

Figure 7 shows the absolute DFT values of the original
and safeguarded signals. The safeguarded signal sounds like
the original signal with a slight amount of white noise.

Figure 8 shows the calibrated SPL of the DFT of the
acquired loudspeaker output and the background noise. Note
that the loudspeaker output in the high-frequency range
reflects spectral flooring.

Figure 9 shows the LTI, random and time-varying
responses, and the effects of the background noise. We used
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Fig. 4 Estimated random response level dependence on
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Fig. 6 Absolute value distribution of a loop music
segment. We set the threshold �s to the average value.
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Fig. 3 Standard deviations of the smoothed gain esti-
mated using safeguarded signals. The flooring level is
0 dB and the smoothing width is 1/3 octave.

6CAPRICEP and FVN also provide correct estimates [1,2].

7For loop music, it is better to repeat each segment four times and
use three segments excerpted after the expected reverberation time
plus propagation delay. As long as the length of the segment is
exactly identical to that of the signal period, it is not necessary to
match the location with the beginning of the segment.
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1/3 octave smoothing to clarify essential features of the
responses. This representation suggests that the random
component in the high-frequency region is the result of a
high SPL.
5.2. Example 2: multiple test segments

Figure 10 shows the effects of playback levels. The upper
plot shows the results of A-weighting SPL at 87.3 dB, and the
lower plot at 93.5 dB. The louder playback result8 shows that
the signal-dependent distortion is significantly higher than the
random response. The signal-dependent random noise men-
tioned previously contributes to this difference.

6. Conclusion
We proposed a simple method of measuring the attributes

of acoustic systems using arbitrary sounds by safeguarding
them. This method enables us to use music to measure
acoustic conditions in a room or during concert with an

audience without disrupting their musical experience. In this
work, the feasibility of the proposed method was demon-
strated. The safeguarding makes it possible to measure the
LTI response of the entire frequency range even using an
arbitrary signal including a pure tone by adding a slight
deterministic noise.

This method has a wide range of applications. For
example, for assessing the listening conditions of a classroom,
we can use words and phrases. We are planning theoretical
and comprehensive investigations of this method and the
introduction of frequency-dependent flooring.
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Fig. 8 DFT of the measured segment and background
noise segment.

Fig. 9 Separated responses with 1/3 octave smoothing.

Fig. 10 Measured responses with A-weighting SPLs at
87.3 dB (upper plot) and at 93.5 dB (lower plot).

Fig. 7 Absolute value of DFT of the original and
safeguarded signals.

8The LTI gain in Fig. 9 and Fig. 10 are different because they were
measured at different times with different sensitivity settings.
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