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Abstract
Surface codes are quantum error correcting codes typically defined on a 2D array of
qubits. A [dx, dz] surface code design is being introduced, where dx(dz) represents the
distance of the code for bit (phase) error correction, motivated by the fact that the
severity of bit flip and phase flip errors in the physical quantum system is asymmetric. We
present pseudo‐threshold and threshold values for the proposed surface code design for
asymmetric error channels in the presence of various degrees of asymmetry of
Pauli X̂; Ŷ , and Ẑ errors in a depolarisation channel. We demonstrate that compared to
symmetric surface codes, our asymmetric surface codes can provide almost double the
pseudo‐threshold rates while requiring less than half the number of physical qubits in the
presence of increasing asymmetry in the error channel. Our results show that for low
degree of asymmetry, it is advantageous to increase dx along with dz. However, as the
asymmetry of the channel increases, higher pseudo‐threshold is obtained with increasing
dz when dx is kept constant at a low value. Additionally, we also show that the advantage
in the pseudo‐threshold rates begins to saturate for any possible degree of asymmetry in
the error channel as the surface code asymmetry is continued to be increased.
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1 | INTRODUCTION

Quantum computers use certain quantum mechanical phe-
nomena such as superposition and entanglement to attain a
substantial speedup over their conventional classical counter-
parts [1–3]. Therefore, they are speculated to help solve certain
problems that are intractable for even the most powerful
classical supercomputers in the areas of drug discovery [4],
artificial intelligence [5], material simulations [6] etc. However,

the current generation of quantum hardware, generally referred
to as noisy intermediate‐scale quantum (NISQ) hardware [7],
has limited computational capabilities due to a small number of
qubits, restrictive hardware connectivity, and poor qubit quality
[7]. A significant effort is being put forward into combating
these and possibly developing feasible quantum error correc-
tion strategies for mitigating the effects of external noise on
the qubits [8, 9] and making large‐scale quantum computation
viable [10, 11].
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One possible approach is to use a collection of physical
qubits to construct a logical qubit that would show more resil-
ience against noise. Based on this approach,many quantum error
correction codes (QECCs) such as the Shor code [12], Steane
code [13] etc. have been proposed in the past decades. However,
these codes often suffer from the nearest‐neighbouring problem
where overhead in the number of gates and error correction
cycle is huge in executing quantum circuits on hardware with
restrictive topologies due to interaction requirements amongst
non‐adjacent qubits [14]. Topological codes were introduced to
overcome this drawback [15]. Surface code is one such topo-
logical QECC acting on a two‐dimensional lattice of qubits with
nearest‐neighbour coupling. They have been shown to have a
high tolerance for local errors, that is, errors that can be corrected
using just local operators acting on qubits placed in a two‐
dimensional grid [16]. Due to their structure, they are scalable
and at the same time have a high error threshold, of a value
approaching 1% [17].

Most of these codes were studied for the symmetric noise
model, where each of Pauli X̂ (bit flip), Ẑ (phase flip), and
Ŷ ¼ iẐX̂ errors occur with equal probability. However, with
the physical implementations of quantum computers now be-
ing realised, it has been observed that many physical quantum
channels are biased, that is, the probability of one type of error
is generally much higher than other types of errors [18, 19].
Owing to this fact, the quantum error correction schemes must
exploit this bias [12]. Among the most recently studied quan-
tum codes for this purpose are the surface codes [20, 21], toric
codes [22], skew cyclic codes [23], bosonic codes [24] etc.

1.1 | Major Contributions

We propose a generalised and scalable [dx, dz] surface code for
the asymmetric depolarisation noise model. Here dx and dz
represent the distance of the code for correcting Pauli X̂ (bit flip)
and Ẑ (phase flip) errors, respectively. We demonstrate that it is
straightforward to design the code from the existing surface
code for the symmetric noise model, thus making it easy to
implement in near‐term quantum devices. Using the MWPM
decoder, we show that this code outperforms the existing sur-
face code model in the presence of asymmetry in the noisy
channel. Additionally, using numerical results, we demonstrate
the relationship between asymmetry in the surface code and
asymmetry in the error channel in relation to the pseudo‐
threshold and threshold values. We show that our proposed
asymmetric surface codes can provide almost double the
pseudo‐threshold rates while requiring less than half the number
of physical qubits compared to symmetric surface codes. For
example, the asymmetric surface code [3, 5] (Figure 3) achieves
almost twice the pseudo‐threshold rates than both [5, 5] and
[7, 7] in a channel where the ratio of bit flip errors to phase flip
errors is at most 1/10 and requires 59.18% and 70.10% lesser
physical qubits than them, respectively. Furthermore, since the
design of surface codes has rotational symmetry, a rotation by
π/2 will be sufficient if we ever have a channel that is biased
towards the bit flip errors. Moreover, it is straightforward to

modify this code using more qubits to attain even better per-
formance in the presence of a higher degree of asymmetry.
There are other noise models studied in the literature, such as
the amplitude damping, phase damping, and erasure models,
which we do not consider in this study.

1.2 | Structure

Section 2 briefly reviews the theory of surface code, the sta-
biliser formalism, and the working principle of minimum
weight perfect matching (MWPM) based decoder. Section 3
consists of a short introduction to the asymmetric noise model
and a summary of existing quantum error correction codes
(QECCs) for it. Section 4 describes the structure of our pro-
posed surface code, along with the logical errors that can occur
in it and its scalability for different levels of asymmetry. Sec-
tion 5 presents the decoding results, the performance of our
proposed structure, and the comparison of the symmetric and
the asymmetric surface codes. Finally, Section 6 summarises
and concludes the discussion and the achieved results.

2 | SURFACE CODES

Surface codes lie at the intersection of topological codes and
stabiliser codes and are implemented on a two‐dimensional
lattice of physical qubits [25]. They make use of the stabiliser
formalism, where the stabiliser operators perform error detec-
tion and correction. These operators are abelian sub‐groups of
Pauli groups, and eigenvalues of their generators encode in-
formation regarding any possible occurrence of an error.
Overall, the surface codes consist of two types of physical
qubits: (i) data qubits, on which the actual quantum computa-
tion is performed and (ii) ancilla qubits, on which syndrome
measurement occurs for detecting errors. The latter consists of
X syndrome and Z syndrome qubits, each of which interacts
with the neighbouring data qubits through parity checks, that is,
the value of the measurement, which is determined by the state
of the connected data qubits. In Figure 1, we show one of the
smallest surface codes consisting of nine data qubits and eight
ancilla qubits. Here, the stabilisers are represented by the square
and semi‐circular tiles, where ancilla qubits lie in the plaquette
(or face of the lattice) and data qubits are on the vertices [26],
and their parity check operations can be represented as:

X 0 ¼ X0X1 X 1 ¼ X1X2X4X5
X 2 ¼ X3X4X6X7 X 3 ¼ X7X8

ð1Þ

Z0 ¼ Z3Z6 Z1 ¼ Z0Z1Z3Z4
Z2 ¼ Z4Z5Z7Z8 Z3 ¼ Z2Z5

ð2Þ

In each surface code cycle, X and Z syndrome qubits are
initialised in their ground state and entangled with the neigh-
bouring data qubits using CNOT gates. At the end of the
surface code cycle, an error syndrome measurement (ESM) is
performed on all the syndrome qubits. These measurements
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measure the X̂ or Ẑ stabilisers, that is, their outcome can
predict the presence of errors without perturbing the system. If
the parity checks for the current surface code cycle are the
same as the previous one, we conclude that the state of the
data qubits involved in the parity checks has not changed due
to any erroneous operation. However, if the state of an odd
number of data qubits involved in a parity check is changed,
the parity check returns a different value (0 ↔ 1), triggering a
detection event. Hence, the state of the system |ψ〉 that it is
prepared into at the end of the first surface code cycle is
maintained as long as errors do not occur, and this state is
known as the quiescent state. The altered values are passed to a
decoder, which combines them to identify the possible location
of the errors, that is, the indices of the data qubits.

In general, there is no decoding algorithm that provably
works best for all scenarios. But, the most widely used one is
the MWPM [27], in which a weighted graph is generated where
the syndromes serve as nodes, and dummy nodes as boundary
nodes [28]. Each node can connect to either of the four
boundary nodes by hopping over one or more physical qubit
(s), forming an edge. A weight is associated with this edge,

depending upon the number of physical qubits hopped. The
edges with the minimum weight are considered, and the
physical qubits hopped over are marked as erroneous and are
corrected accordingly (Figure 2).

Other than this, look‐up table [29] and machine learning
(ML) based decoders have been proposed for surface codes as
well [26, 30, 31]. Even though ML decoders have been
observed to outperform MWPM decoders for the symmetric
noise model, it is not known whether the same ML model with
the same parameters will provide the best performance for an
asymmetric model with any degree of asymmetry (since the
structure becomes more and more rectangular). This would be
an interesting topic for future work. Since the MWPM decoder
carries over naturally from a square lattice to a rectangular one,
we stick with the MWPM decoder for this study.

As illustrated in Section 4.1, all of the physical qubits
present in the surface can be encoded as one or more logical
qubits that are expected to be more resilient against errors.
These logical qubits can be manipulated by the logical opera-
tors X̂L and ẐL, which are defined as a chain of Pauli X̂ and
Pauli Ẑ operators spanning between two vertical and horizontal
boundaries, respectively. The length of these operators is ≥d,
where d is defined as the distance of the surface code [26]. The
number of errors (t) that a surface code can successfully cor-
rect is also determined by its distance d as per the following
equation:

t ¼
�

d − 1
2

�

ð3Þ

Thus, a d = 3 surface code (Figure 1) will be successfully able
to correct up to a single logical X̂ and logical Ẑ error.

At the moment, our simulation considers errors only on
data qubits. The study of the performance where both data and
measure qubits can be erroneous is reserved as a future
extension of this research. The decoding performance is usu-
ally quantified by two metrics: threshold and pseudo‐threshold.
The threshold value helps to characterise the decoding per-
formance of a surface code design and is defined as the point

XL

ZL

F I GURE 1 A distance 3 surface code

(a)

11

(b) (c) (d)

F I GURE 2 Error correction via the minimum weight matching (MWPM) algorithm. (a) Error syndromes are highlighted in green and labelled with the type
of error that puts them in the −1 state. (b) Error syndromes (highlighted black nodes) and dummy boundary nodes (grey) are mapped to a weighted graph. The
dotted lines here represent the boundaries. (c) The goal is to find a subgraph such that each vertex (error syndrome) with either another vertex or a boundary of
the total weight of matched edges is minimal. Here we represent one such possible subgraph with weight w = 2. (d) Using the subgraph, data qubits on which the
error occurred are identified (marked with red crosses). They are corrected, and all error syndromes (displayed in red) are restored to the +1 state again
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of intersection of logical error rate curves for different code
distances. Beyond this, increasing the distance of the code leads
to a higher probability of logical error. The pseudo‐threshold
value determines the highest probability of physical error
below which error correction leads to lower logical error
probability. It is defined as the point of intersection of logical
error rate curves for a given code distance with the curve for
which the physical error rate is equal to the logical error rate.

3 | THE ASYMMETRIC NOISE MODEL

Quantum error‐correcting codes serve to correct errors
resulting from noise inherent in modern quantum computers.
Studying the nature of the physical noise is crucial for creating
QECCs with low levels of redundancy. The noise is typically
asymmetric in modern physical quantum devices, and phase
errors are much more probable than bit flips. It's possible to
characterise the level of noise by two parameters, relaxation
time and dephasing time. While dephasing only results in phase
flip errors, relaxation results in both phase flip errors and bit
flips [18]. This leads to a large asymmetry, where phase flips
occur much more frequently than bit flips.

There exist several QECCs that exploit this asymmetry of
errors. One of the most popular approaches is to concatenate
two QECC codes. The simplest codes of this nature are pre-
sented in Ref. [32], where the repetition code is concatenated
with the CSS code, and in Ref. [33], where a concatenation of
the repetition code and error avoiding code is presented. In
Ref. [34], a symmetric code is combined with an asymmetric
one, and fault‐tolerant circuits are needed to switch between
the symmetric and asymmetric encodings. Both Refs. [18, 35]
analyse a CSS construction, which uses a classical LDPC code
for the more common phase errors and a classical Bose–
Chaudhuri–Hocquenghem (BCH) code for bit flips. In Ref.
[36], the authors use a different approach, where a higher
frequency is used for syndrome measurements of X‐only
generators as compared to Z‐only generators. Some ap-
proaches have also focussed on creating the shortest possible
QECC for the asymmetric noise model. For example, in Ref.
[37], the CSS‐based codes are constructed using a specific
syndrome assignment, and in Ref. [38], a random search of
codes of up to a length of nine is performed in the hope of
finding ones with desirable properties.

Closest to our work are the approaches that utilise the
surface code to tackle the asymmetric noise model. In Ref. [39],
a variant of the surface code is introduced, which is concate-
nated with a two‐qubit phase detection code. A decoding
scheme based on the toric code was used in Ref. [21] and
tested using the MWPM decoder [27], which we also perform
on our design. In Refs. [12, 40] authors demonstrate the ad-
vantages of using a rectangular form of the traditional surface
code, albeit with a different decoding scheme that exploits the
symmetries of its syndrome. Finally, in Refs. [41, 42], the
performance of XZZX surface codes has been studied for
asymmetric noise and the circuit noise model with Kerr‐cat
qubits, respectively.

This work aims to design a surface code for an asymmetric
noise model, increasing the error‐correction thresholds while
still being easy to implement, and test it using an MWPM
decoder.

4 | PROPOSED SURFACE CODE
DESIGN

In the past, surface codes have generally been designed to
protect the qubits against equiprobable Pauli errors, that is, the
bit flip X, phase flip Z and combined bit‐phase flip Y errors.
Inherent to their construction, their error correction capabil-
ities depend upon their distance d, that is, a surface code of
distance d can correct up to t = ⌊(d − 1)/2⌋ Pauli X̂ and Ẑ
errors. Usually, it is assumed that the surface codes are sym-
metric, that is, dx = dz = d. However, as explained in Section 3,
Pauli errors do not occur symmetrically in all quantum chan-
nels. Instead, the phase flips errors Z happen with a different
severity than the bit flip errors X for real quantum systems,
majorly due to the complexity of the noise processes. There-
fore, it feels natural to include this asymmetry in the design of
surface codes as well. We propose to do this by introducing
asymmetry in the distance of the surface codes, that is, we
represent an asymmetric surface code by [dx, dz]. This way,
such a surface code can correct up to tx = ⌊(dx − 1)/2⌋ bit flip
errors and tz = ⌊(dz − 1)/2⌋ phase flip errors, and the sym-
metric surface codes become a special case of asymmetric
surface codes with dx = dz.

Now depending upon the asymmetry in the channel, one
can choose whether dx > dz should be true or dx < dz. Since
we assume that bit flip errors are less prevalent than phase flip
errors, we choose dx < dz. A symmetric surface code of dis-
tance d is a d � d square lattice. Since logical Z (discussed in
detail in the next subsection) is, in general, defined as a hori-
zontal operator, our asymmetric surface code will be a dz � dx
lattice. An example design of the asymmetric surface code [3,
5] is illustrated in Figure 3. The position of data and ancilla
qubits remains the same as in the symmetric surface code,
making this straightforward to design. Our example [3, 5]
asymmetric surface code has 8 X stabilisers and 6 Z stabilisers,
which can correct up to one bit flip and two phase flip errors,
respectively.

4.1 | Logical operators

For any given surface code [dx, dz], we have dxdz data qubits
and dzdx − 1 measurement qubits, which give 2dxdz degrees of
freedom and 2 dxdz−1ð Þ degrees of constraints. The two un-
constrained degrees of freedom allow us to consider the entire
lattice as one logical qubit that can be manipulated by logical
operators X̂L and ẐL. We build these logical operators by
looking at multi‐qubit operator products that commute with
the stabilisers and connect the opposite boundaries. Similar to
the case of symmetric surface codes, the logical operators X̂L
and ẐL are defined by X̂ and Ẑ operations on the data qubits in
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each column and row, respectively, where kX̂k ¼ dx and
kẐk ¼ dz. These are represented in the Figure 3.

X̂L∈ X̂0X̂5X̂10; X̂1X̂6X̂11; X̂2X̂7X̂12;
n

X̂3X̂8X̂13; X̂4X̂9X̂14

o ð4Þ

ẐL∈ Ẑ0Ẑ1Ẑ2Ẑ3Ẑ4; Ẑ5Ẑ6Ẑ7Ẑ8Ẑ9;
n

Ẑ10Ẑ11Ẑ12Ẑ13Ẑ14

o ð5Þ

In addition to these, one can choose some other multi‐
qubit operator that satisfies the above conditions to build

other logical operators X̂
0

L and Ẑ
0

L. However, these operators
will be linearly dependent on the previously defined logical
operators X̂L and ẐL. For example, consider the following case

X̂
0

L ¼ X̂0X̂6X̂12

¼ X̂1X̂2X̂5X̂7X̂10X̂11 X̂0X̂5X̂10

� �
X̂1X̂6X̂11

� �

� X̂2X̂7X̂12

� �

¼ X̂1X̂2X̂7X̂6

� �
X̂6X̂5X̂10X̂11

� �
X̂
0
LX̂

1
LX̂

2
L

ð6Þ

In this case, X 0L turns out to be a few X̂
i
L operators multiplied

by a couple of operator products representing stabilisers X1

and X4, which are stabilised to a �1 eigenvalue by the surface
code. Using this fact, we can show that the action of X 0L on the
quiescent state |ψ〉 will be

X̂
0

Ljψ〉¼ X̂1;2;7;6X̂5;6;10;11X̂
0
LX̂

1
LX̂

2
Ljψ〉¼�jψL〉 ð7Þ

This will hold true for any X 0L (or Z0L) that can be written
as a product of stabilisers times X̂L (or ẐL) operators.
Therefore, instead of looking at the complete, exhaustive list of

possible logical operators, we can just focus on the logical
operators X̂L and ẐL.

4.2 | Logical errors

Now, having defined logical operators, we can look at logical
errors in the asymmetric surface code. Usually, a Pauli error on
a single data qubit is more likely, but sometimes Pauli errors
can occur on two or more data qubits together, creating error
chains. As already explained in Section 2, these are physical
errors as they occur on the data (physical) qubits. These can be
identified by using the MWPM algorithm [27] and then cor-
rected manually with the help of some control software. For
example, in Figure 4, we show an error chain Ŷ 6Ẑ3 acting on
the data qubits indexed 6 and 3. The error Ŷ 6 would trigger
the stabilisers Z1, Z2, X1 and X4, whereas the Ẑ3 would trigger
the stabilisers X2 and X3. The syndrome for X stabilisers would
be [0, 1, 1, 1, 0, 0, 0, 0] and for Z stabilisers would be [0, 1, 1, 1,
0, 0]. These are used by MWPM for decoding and identifying
which data qubits possibly suffered the errors.

However, there are times when MWPM misidentifies the
errors, especially when the error chain formed is not sparse. In
such cases, there is a possibility of errors persisting even after
the correction. These errors are more dangerous when they are
logical errors, that is, they change the state of the logical qubit
made by the surface code. It is only those errors, which anti‐
commute with at least one of the X̂ (or Ẑ) logical operators
forming the Z (or X ) logical errors. Therefore, these errors
remain undetected and affect the computation henceforth
since the logical state has changed. For example, if in the
previous example, the error chain would have been Ẑ2Ẑ4X̂6Ẑ10

X

X

Z

Z

Z

Z

Y

Z

F I GURE 4 The working of the asymmetric surface code [3, 5]. Z and
X measure qubits shown in red and blue, respectively, are measured in each
surface code cycle. X̂ Ẑ

� �
errors on an odd number of data qubits involved

in the Z (X ) syndrome measurements will result in −1 eigenvalues, triggering a
detection event shown in green (yellow). Here, the Pauli Ŷ ¼ iẐX error on the
data qubit indexed 6 is captured by the syndromes for both Z and X stabilisers.
Whereas the Pauli Ẑ error on the data qubit indexed 3 affects the syndromes
for only X stabilisers. The X (Z) syndrome measurement outcomes are
represented by a binary vector where all the syndromes involved in the
detection events have a value of 1. These binary vectors are sent to the MWPM
decoder, which combines them to identify the possible indices of data qubits
that suffered the errors

XL

ZL

F I GURE 3 Asymmetric surface code having distance [3, 5]. Z and X
measure qubits are shown in red (indexed Z0 − Z5) and blue (indexed
X 0 − X7), respectively
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instead of Ŷ 6Ẑ3, the syndromes generated (and hence the
decoding result) would still have been the same, leading to an
overall error of Ẑ2Ẑ4Ẑ3Ŷ 6Ẑ10. This is a logical Z error because
it anti‐commutes with more than one X̂L operator such as
X̂0X̂5X̂10 or X̂2X̂7X̂12. Therefore, comparing how many such
logical errors occur from a given number of decoding trials
provides us with estimates of the asymmetric surface code's
tolerance against errors, which we present in the next section.

5 | RESULTS

We analyse the performance of our proposed surface code
design for correcting errors with different levels of asymmetry
in (i) code distance pair [dx, dz], (ii) Pauli errors in the depo-
larising noise channel, and (iii) a combination of both of them.

As mentioned before, we use pseudo‐threshold values to
compare the decoding performance of two surface codes with

different code distance pairs dx; d
i
z

h i
and dx; d

j
z

h i
. This value

is estimated for a given surface code by performing a simula-
tion to calculate logical error rates PL for a range of physical
error rates p, where the former is defined for any given value of
the latter as the ratio of total logical errors accumulated in all
error correction cycles to the number of net error correction
cycles performed. Each of the simulations was averaged over
50,000 repetitions, with the range of physical error κ varying
between κ ∈ [10−4, 5.5 � 10−2], which corresponded to the
physical error rate of p = 1 − (1 − κ)8 for the complete
execution of a surface code cycle. Here, the factor of 8 arises
from the fact that each cycle consists of eight steps as shown in
Ref. [25].

Additionally, for decoding, we have used the PyMatching
library [43], which implements the MWPM algorithm [27] to
calculate the data qubits that need correction from a provided
error syndrome.

5.1 | Performance on bit flip (X) and phase
flip (Z) errors

In the first set of experiments, we compared the performance
of proposed asymmetric surface codes [dx, dz], where dx,
dz ∈ {3, 5, 7} and dx < dz, against their corresponding sym-
metric counterparts [d, d], where d ∈ {3, 5, 7}, for correcting
bit flip (X ) and phase flip (Z) errors, independently. To do this,
we tested them for error channels with only one kind of error,
either Pauli X̂ or Ẑ, and not both. From the results presented
in Figure 5, it is evident that there is an overall improvement in
the performance of correcting phase errors as the asymmetry
in the surface codes [dx, dz] is increased. This can also be
inferred from their higher pseudo‐threshold values than their
symmetric variants [dx, dx] and [dz, dz]. For example, [3, 5] and
[3, 7] have much better pseudo‐threshold values than [3, 3], [5,
5] and [3, 3], [7, 7], respectively.

However, at the same time, we also notice a considerable
decrease in the performance of correcting bit flip errors for

asymmetric surface codes. We attribute this decrease to an
insufficient increase in the number of Z stabilisers in com-
parison to the rise in the number of possible combinations
of XL, due to an increase in the number of qubits
(dx � dx → dx � dz; dz > dx). For example, in the case of [3, 5],
the increase in possible combinations of XL is from 9C3 to
15C3, while Z stabilisers increment from 4 to only 6. Similar
logic can also explain the intermediate performance of [5, 7] in
both cases compared to the rest of the codes.

5.2 | Performance on symmetric and
asymmetric noise models

The graphs in Figure 5 imply that the probability of a bit flip
error increases with increasing asymmetry of the surface code
structure. This naturally raises the question of whether, for
asymmetric depolarising noise, it is suitable to increase only dz
with asymmetry, or should dx also be increased at a regular
interval. In the second experiment, we numerically establish
that when the degree of asymmetry is low, one should indeed
increase dx along with dz to avoid performance degradation.
But with a higher degree of asymmetry, it is better to keep dx
fixed and increase dz only.

We first analysed how the performance of a set of asym-
metric surface codes [dx, dz] varies with an increase in asym-
metry (Δ) in the depolarising error channel: [px = p/(Δ + 2),
py = p/(Δ + 2), pz = pΔ/(Δ + 2)], where, p is the value of the
physical error rate for a given physical error κ. As presented in
Table 1, for the symmetric noise model, that is, at Δ = 1,
asymmetric models perform poorly in comparison to their
symmetric counterparts. For example, the pseudo‐threshold
for [3, 5] is much lower both [3, 3] and [5, 5]. This behav-
iour of asymmetric models is a consequence of their reduced
ability to correct for bit flip errors compared to symmetric
models, as discussed in the previous subsection.

Furthermore, as the asymmetry increases step‐wise (Δ →
Δ + 1), we see an improvement in the performance of asym-
metric models, as inferred from their increased pseudo‐
threshold values. This happens because asymmetric codes
can now correct overall more number of logical errors as bit
flip errors decrease in the creation of logical errors with the
simultaneous increase in the contribution of phase flip errors.
Additionally, even among the asymmetric models themselves,
the ones with dx = 3 dominate the performance for Δ ≥ 4.
Therefore, we infer from Table 1 that for Δ < 4, the asymmetry
in the channel is weak, and one should increase dx regularly
with dz to obtain optimal performance. However, for Δ ≥ 4,
the asymmetry of the channel becomes strong enough to allow
an increase in dz alone, keeping dx constant, to improve the
pseudo‐threshold. Therefore, as asymmetry in the error
channel increases, or in other words, when the channel be-
comes sufficiently asymmetric, one can achieve much better
logical error correction with fewer physical qubits simply by
increasing the asymmetry in the surface code. From our nu-
merical results, the crossover point appears to be Δ = 4 for our
noise model.
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Therefore, when the degree of asymmetry is greater than
the crossover point, our proposed method leads to a better
decoding performance while requiring fewer number of qubits.
A traditional distance d surface code creates a single logical
qubit using d2 data qubits. Whereas, our proposed modification
requires dx � dz data qubits to create a single logical qubit. The
percentage savings, therefore, is (dz − dx)/dz � 100%. For
example, when the degree of asymmetry (Δ) is 10, the (3, 7)
code achieves a percentage increase of ≃48% in the pseudo‐
threshold with a percentage savings of ≃57% in the number
of qubits.

Subsequently, we also note that, for some initial values of Δ,
there is a slight improvement in the performance of symmetric
surface codes [3, 3], [5, 5], and [7, 7]. However, these gains soon
get diminished as asymmetry is increased further in the depo-
larisation channel. This initial increment could be due to a slight

dip in net logical errors because the combined decrease in both
σx and σy errors overpowers an increase in σz errors.

5.3 | Comparison of symmetric and
asymmetric surface codes

In our third set of experiments, building upon the results from
the previous two subsections, we compared the performance
of a series of surface codes [dx, dz], where dx = 3 and dz ∈ {3,
5, …, 17} by analysing the variation of their pseudo‐threshold
values for Δ ∈ [1, 10, 20, …100]. The resulting data has been
plotted in Figure 6, and it shows that there is an evident in-
crease in the performance of error correction in the presence
of asymmetric error channels as the asymmetry in surface
codes is increased.

F I GURE 5 Performance of asymmetric surface codes, {[3, 5], [3, 7], [5, 7]}, in comparison to symmetric surface codes, {[3, 3], [5, 5], [7, 7]}, for correcting
(a) bit flip errors and (b) phase flip errors. Pseudo‐thresholds for each surface code (dx, dz) is represented by γdx ;dz
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We compare these performances to that of the three
symmetric surface codes [dx, dz], where dx = dz ∈ {3, 5, 7}. We
divide the whole range of asymmetry into three regions: (i)
symmetric (Δ = 1), (ii) intermediate asymmetry (Δ ∈ [10, 100]),
and (iii) strong asymmetry (Δ → ∞). In the first region, we see
that that the symmetric surface codes perform much better
than asymmetric ones for correcting logical errors, majorly due
to the decrease in the capability of asymmetric surface codes in
solving phase errors, as explained in Section 5.1. However, the

asymmetric surface codes become more efficient at correcting
logical errors as sufficient asymmetry is introduced in the noise
model in the second region. Similar to the trend observed in
the previous section for low asymmetry (Δ ∈ [2, 9]), we see a
steady increase in the values of pseudo‐thresholds as the
asymmetry is increased in the surface code [dx, dz], that is, the
value of dz is incremented while keeping dx constant. In
contrast to symmetric surface codes, where the pseudo‐
threshold values appear to be saturated right from the begin-
ning, for asymmetric surface codes, we first observe a steady
decrease in the improvement of pseudo‐threshold values. Only
then, it appears to be saturating for sufficiently bigger asym-
metric surface codes, that is, the number of data qubits being
greater than 50.

Overall, once there is a sufficient increase in the asymmetry
in the noise model, the performance of both symmetric and
asymmetric surface codes remains almost constant. A
remarkable consequence of this observation is that by using
asymmetric surface codes, one can get significantly improved
pseudo‐threshold rates while requiring less than half the
number of physical qubits than the symmetric surface codes.
For example, for any Δ > 10, we were able to almost double
the pseudo‐threshold rates with our [3, 5] surface code in
comparison to both [5, 5] and [7, 7], decreasing physical qubit
counts by 59.18% and 70.10% respectively. Furthermore, there
is an observable slight dip in the final region where only phase
errors exist as Δ → ∞. This slight decrease in this region can
be attributed to the fact that the complete absence of any σx
and σy errors allows for slightly more logical Z errors to come
up from the possibledxdz Cdz combinations.

TABLE 1 Variation in pseudo‐threshold γdx ;dz

� �
values with respect

to step‐wise change in the asymmetry of depolarising noise

Asymmetry (Δ)

Pseudo‐thresholds

γ3,3 γ3,5 γ3,7 γ5,5 γ5,7 γ7,7

1 0.082 0.073 0.065 0.102 0.096 0.110

2 0.094 0.108 0.096 0.110 0.122 0.118

3 0.094 0.128 0.128 0.110 0.132 0.116

4 0.096 0.137 0.151 0.108 0.136 0.112

5 0.092 0.145 0.167 0.104 0.138 0.108

6 0.094 0.151 0.176 0.102 0.136 0.104

7 0.092 0.153 0.184 0.100 0.134 0.102

8 0.09 0.155 0.187 0.098 0.132 0.100

9 0.089 0.157 0.190 0.096 0.130 0.098

10 0.088 0.155 0.192 0.095 0.128 0.098

F I GURE 6 Analysing change in pseudo‐threshold values for different asymmetric and symmetric surface codes with the asymmetry in the noise. Here, we
consider three regions of asymmetry demarcated by different values of Δ—(i) symmetric: Δ = 1 (red), (ii) intermediate asymmetry: Δ ∈ [10, 100] (blue), and (iii)
strong asymmetry: Δ → ∞ (yellow)
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5.4 | Thresholds values for asymmetric
surface codes

As seen in previous subsections, the relationship between PL
and p changes with (i) asymmetric distances of the surface
code, represented by dx and dz, and (ii) asymmetry in the Pauli
errors occurring in the channel. In this experiment as well, we
have kept dx = 3 constant, while varying the dz ∈ {5, 7, …,
17}. For all values of asymmetry Δ ∈ {1, 10, 20, …, 90, 100,
∞}, we see that the values of PL increases (or decreases) with
an increase (or decrease) in p as the dz is increased until a
certain value of p = γ* is reached, after which the trend re-
verses itself. This value γ* is known as the threshold rate, and
we list them down for asymmetric surface code design in
Table 2. Following a similar trend as pseudo‐threshold rates,
the threshold rates follow a monotonous increasing trend as
the asymmetry in the Pauli errors is increased.

6 | CONCLUSIONS

This paper investigates a novel design for asymmetric surface
codes for the quantum asymmetric Pauli channels. We have
proposed the design of a [dx, dz] surface code, where dz > dx in
general, for better error correction when the underlying
channel is more biased towards Pauli Z errors. In the first look,
our rectangular structure (dx ⋅ dz) seems to use more qubits
than the traditional square (dx ⋅ dx) surface code. However, we
show that as the asymmetry of the channel increases, our
proposed [dx, dz] code, where dx < dz, provides a higher
pseudo‐threshold than the traditional surface code, where
dx = dz, using a much smaller number of qubits. When the
degree of asymmetry is low, it seems advantageous to some-
what increase dx regularly with the increase in dz to retain the
optimum performance. But with a higher degree of asymmetry,

we obtain better performance for a constant dx which is kept
fixed at the minimum value of 3, thus providing percentage
savings of (dz − dx)/dz� 100% in qubits. Moreover, by varying
dx instead of dz, these results immediately apply to the inverse
case of the noise model studied here, that is, where bit flips
(rather than phase flips) are prevalent. Therefore, we conclude
that the proposed asymmetric surface code is more advanta-
geous than symmetric surface codes in the presence of asym-
metry in the channel's noise.

6.1 | Note added

During the revision of this paper, we were made aware of some
recent articles [44–46] that also describe codes tailored to biased
noise. These work are based on XY surface codes, XYZ2 sta-
biliser codes, and Clifford‐deformed surface codes, respectively,
unlike the XXZZ surface codes we have used in our work.
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