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Abstract
Due to the difficulties of implementing joint measurements, quantum illumination
schemes that are based on signal‐idler entanglement are difficult to implement in practice.
For this reason, one may consider quantum‐inspired designs of quantum lidar/radar
where the input sources are semi‐classical (coherent states) while retaining the quantum
aspects of the detection. The performance of these designs could be studied in the
context of asymmetric hypothesis testing by resorting to the quantum Stein’s lemma.
However, here the authors discuss that, for typical finite‐size regimes, the second‐ and
third‐order expansions associated with this approach are not sufficient to prove quantum
advantage.
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1 | INTRODUCTION

In coherent‐state quantum target detection, one employs a semi‐
classical source, specifically coherent states but a quantum
detection scheme, not necessarily homodyne or heterodyne
detection (which are used classically [1]). This can therefore be
considered a quantum‐inspired radar (QIR) since we relax the
quantum properties of the transmitter (i.e., no use of entangle-
ment, differently from quantum illumination [2–8]) while
retaining the optimal quantum performance of the receiver. We
assume the single‐bin setting that corresponds to looking at
some fixed rangeR and solving a binary test of target absent (null
hypothesis H0) or present (alternative hypothesis H1). In
particular, we perform our study in the setting of asymmetric
hypothesis testing [9–17], so that we fix the false‐alarm proba-
bility to some reasonably low value, for example, pFA = 10−3, and
thenweminimise the probability ofmis‐detection pMD.Thus, we
look at the performance in terms of mis‐detection probability
pMD versus the signal‐to‐noise ratio (SNR) γ.

More precisely, the hypotheses mentioned above corre-
spond to the following:

H0: A completely thermalising channel, that is, a channel
with zero transmissivity in an environment with nB mean
thermal photons (target absent).
H1: A lossy channel with transmissivity η and thermal
noise nB=ð1 − ηÞ, where the re‐scaling avoids the possi-
bility of a passive signature (target present).

Let us consider an input coherent state αj i with a mean
number of photons nS ¼ jαj2 and a mean value
xS ¼ ðq; pÞT ¼

ffiffiffi
2
p
ðReα; ImαÞT . Without losing generality, we

can assume that α is real, so that xS ¼ ðq; pÞT ¼
ffiffiffi
2
p
ðα; 0ÞT .

On reflection from the potential target, we have two possible
output states:

H0: A thermal state ρth
0 with zero mean x0 ¼ 0 and the

covariance matrix (CM) V0 ¼ nB þ 1=2ÞIð .
H1: A displaced thermal state ρth

1 with the mean value
x1 ¼

ffiffiffiηp xS and same CM V1 ¼ nB þ 1=2ÞIð .

Note that we have ρth
1 ¼Dð ffiffiffiηp αÞρth

0 Dð−
ffiffiffiηp αÞ where D is

the phase‐space displacement operator.
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2 | QIR PERFORMANCE

In the setting of asymmetric hypothesis testing, the maximum
performance achievable by a QIR is given by the quantum
Stein’s lemma [9, 10, 13, 15]. Suppose we want to discriminate
between M copies of two states, ρ0 and ρ1, using an optimal
quantum measurement with output k = 0, 1. At fixed false‐
alarm probability pFA ≔ p 1jρ⊗M

0

� �
, we have the following

decay of the false‐negative (mis‐detection) probability

pMD ≔ p 0jρ⊗M
1

� �
≃ expð−βMÞ; ð1Þ

for some rate or error exponent β. According to the quantum
Stein’s lemma, the optimal rate β is equal to the relative en-
tropy between the two states, that is,

β¼D ρ0kρ1ð Þ≔ Tr ρ0 ln ρ0 − ln ρ1ð Þ½ �: ð2Þ

In a more refined version, we account for second‐order
asymptotics in M and write Ref. [18] (see also Refs [15, 17])

pMD ¼ e−MD ρ0kρ1ð Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MV ρ0kρ1ð Þ
p

Φ−1 pFAð ÞþOðlog MÞ; ð3Þ

where we also use the quantum relative entropy variance

V ρ0kρ1ð Þ ¼ Tr ρ0 ln ρ0 − ln ρ1ð Þ
2� �

− D ρ0kρ1ð Þ½ �
2
; ð4Þ

and the cumulative distribution function

ΦðεÞ≔
1
ffiffiffiffiffiffi
2π
p

Z ε

−∞
dx exp −x2

�
2

� �
; ð5Þ

with ɛ ∈ (0, 1) corresponding to (or bounding) the false‐alarm
probability pFA.

However, we need to notice that the term OðlogMÞ in
Equation (3) may play a non‐trivial role in SNR calculations
where M is not so large. According to Theorem 5 of Ref. [18],
we have that OðlogMÞ is between 0 and 2 log M, so that we
have upper and lower bounds for pMD (with quite some gap). A
more refined calculation involves to compute the third
moment T appearing in that theorem. This will give more
refined upper and lower bounds for the performance of
coherent states.

3 | FIRST‐ AND SECOND‐ORDER
TERMS

We can write explicit formulae for the relative entropy
D ρ0kρ1ð Þ and the relative entropy variance V ρ0kρ1ð Þ of two
arbitrary N‐mode Gaussian states, ρ0 x0;V0Þð and ρ1 x1;V1Þð .
The first one is given by Ref. [19]

D ρ0kρ1ð Þ ¼ −Σ V0;V0ð Þ þ Σ V0;V1ð Þ; ð6Þ

where we have defined the function

Σ V0;V1ð Þ ¼
ln det V1 þ

iΩ
2

� �
þ Tr V0G1ð Þ þ δTG1δ
2

; ð7Þ

with δ¼ x0 − x1 and Gk ¼ 2iΩcoth−1 2iVkΩð Þ being the
Gibbs matrix for CM Vk (with k = 0, 1) [20]. The second one
is given by Ref. [21, 22]

V ρ0kρ1ð Þ ¼
Tr ΓV0ð Þ

2� �

2
þ
Tr ðΓΩÞ2
� �

8
þ δTG1V0G1δ; ð8Þ

where Γ = G0 − G1. Using the output states, ρth
0 and ρth

1 , it is
easy to compute

D ≔D ρth
0 kρth

1

� �
¼ ηnSln 1þ n−1

B Þ ¼ γnBln 1þ n−1
B Þ;

��
ð9Þ

V ≔V ρth
0 kρth

1

� �
¼ ηnS

�
2nB þ 1

�
ln2
�
1þ n−1

B
�

¼ γnB 2nB þ 1Þln2 1þ n−1
B Þ;

�� ð10Þ

where γ ≔ ηnS=nB is the SNR. Note that, for large background
noise nB ≫ 1, we can expand

D ≃ γ þO n−1
B Þ; V ≃ 2γ þO n−2

B Þ:
��

ð11Þ

Following Ref [18, Theorem 5], we may write the following
(approximate) bounds

Λ
M2 ≲ pMD ≲ Λ; ð12Þ

where

Λ ≔ exp −MD −
ffiffiffiffiffiffiffiffiffi
MV
p

Φ−1 pFAð Þ
h i

: ð13Þ

The upper bound in Equation (12) is the tool typically used in
the literature, while the lower bound is not taken into account
(despite the fact that the gap between the two bounds can
become quite large).

4 | COMPUTATION OF THE THIRD‐
ORDER MOMENT

A more accurate version of Equation (12) includes higher‐
order terms and suitable conditions of validity. Following Ref
[18], let us introduce the third‐order (absolute) moment

T ρ0kρ1ð Þ ¼
X

x;y

�
�
�
ax
�
�by
��
�2αx

�
�
�
�ln

αx
βy

− D ρ0kρ1ð Þ

�
�
�
�

3

; ð14Þ

where, we use the spectral decompositions of the states
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ρ0 ¼
X

x
αx axj i axh j; ρ1 ¼

X

y
βy by
�
�
�
by
� �
�: ð15Þ

See Appendix A for more details about the notation
behind the formula in Equation (14).

Let 0 < C < 0.4748 be the constant in the Berry–Esseen
theorem [23, 24]. Then, we may write the more accurate
bounds Ref. [18, Theorem 5]

1
29M2 exp −MD ρ0kρ1ð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MV ρ0kρ1ð Þ

p
Φ−1 θLð Þ

h i

≤pMD≤

exp −MD ρ0kρ1ð Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MV ρ0kρ1ð Þ

p
Φ−1 θUð Þ

h i
;

ð16Þ

where

θL ≔ pFA þ
1
ffiffiffiffiffi
M
p

CT
V ρ0kρ1ð Þ

3=2 þ 2

 !

; ð17Þ

θU ≔ pFA −
1
ffiffiffiffiffi
M
p

CT
V ρ0kρ1ð Þ

3=2: ð18Þ

More precisely, the bounds in Equation (16) are valid as
long as M is large enough to guarantee that θL ≤ 1 and θU ≥ 0,
so that they fall in the domain of Φ−1. From Equation (16), we
can again notice how the lower bound become loose for
increasing M.

Let us compute the third moment T for the output states
ρth
0 and ρth

1 , associated with the two hypotheses (see Intro-
duction). We have the following number‐state spectral
decompositions.

ρth
0 ¼

X∞

k¼0

γk kj i kh j; γk ≔
nkB

nB þ 1Þkþ1;
� ð19Þ

ρth
1 ¼Dð

ffiffiffiηp αÞρth
0 Dð−

ffiffiffiηp αÞ

¼
P∞

k¼0
γk k;

ffiffiffiηp α
�
�

�
k; ffiffiffiηp α
� �

�;
ð20Þ

where k; ffiffiffiηp α
�
�

�
¼Dð ffiffiffiηp αÞ kj i is a displaced number state.

Using these decompositions in Equation (14), we find

T ρth
0 kρth

1

� �
¼
P∞

k;l¼0
kh jl; ffiffiffiηp α
�
�

�
2γk ln

γk
γl

− D ρ0kρ1ð Þ

�
�
�

�
�
�
3

¼
P∞

k;l¼0
kh jDð ffiffiffiηp αÞ lj i
�
�

�
�2γk ln

γk
γl

− D ρ0kρ1ð Þ

�
�
�

�
�
�
3
:

ð21Þ

Because

D ρth
0 kρ

th
1

� �
¼ ηnS ln

�
nB þ 1
nB

�

; ð22Þ

γk
γl
¼

nk−l
B

ðnB þ 1Þk−l ; ð23Þ

ln
γk
γl
¼ ðk − lÞln

�
nB

nB þ 1

�

; ð24Þ

we may simplify

T ρth
0 kρ

th
1

� �
¼
P∞

k;l¼0
kh jDð ffiffiffiηp αÞ lj i
�
�

�
�2

�γk

�
�
�
�

�
k − l þ ηnS

�
ln
�

nB
nBþ1

��
�
�
�

3

:

ð25Þ

Now recall that [25, Eq. (3.30) and Appendix B]

kh jDðαÞ lj i ¼
ffiffiffiffi
l!
k!

r

αk−le−jαj2=2L
ðk−lÞ
l jαj2

� �
; ð26Þ

where LðmÞn ðxÞ is an associated Laguerre polynomial, which
takes the following form in terms of the binomial coefficient
[26]

LðmÞn ðxÞ≔
Xn

k¼0

nþm
n − k

� �
ð−xÞk

k!
: ð27Þ

Therefore, for nS ¼ jαj2, we may compute

kh jDð
ffiffiffi
η
p

αÞ lj i
�
�

�
�2 ¼

l!
k!
ðηnSÞk−le−ηnS

h
L
ðk−lÞ
l

�
ηnS
�i2

; ð28Þ

so that we find the analytical expression

T ρth
0 kρ

th
1

� �
¼ e−ηnS

P∞

k;l¼0

l!
k!

γkðηnSÞ
k−l
h
L
ðk−lÞ
l

�
ηnS
�i2

�

�
�
�
�

�
k − l þ ηnS

�
ln
�

nB
nB þ 1

��
�
�
�

3

:

ð29Þ

Note that this expression can be put in terms of the SNR
γ ¼ ηnS=nB and the thermal background nB, that is, we may
equivalently write

T ρth
0 kρ

th
1

� �
¼ e−γnB

P∞

k;l¼0

l!
k!

γkðγnBÞ
k−l
h
Lk−l
l ðγnBÞ

i2

�

�
�
�
�ðk − l þ γnBÞln

�
nB

nB þ 1

��
�
�
�

3

:
ð30Þ

Furthermore, suitable bounds might be used for the Laguerre
polynomials (see Appendix B).
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5 | NUMERICAL INVESTIGATION

In order to perform a numerical comparison, we consider the
error exponent

εMD ≔
−ln pMD

M
; ð31Þ

that corresponds to β in Equation (1) at the first order. It is
clear that the higher the value of ɛMD is, the better is the
discrimination performance.

To show the finite‐size behaviour, we consider pFA = 10−3,
M = 5000 and bright background nB ¼ 600. With these pa-
rameters, we plot ɛMD versus SNR in decibels (i.e., 10 log10γ)
for the optimised detection of coherent states considering the
first order formula of Equation (1) and the higher‐order
bounds in Equation (16). As a comparison, we also plot the
error exponent achievable by a classical radar, which employs
coherent state pulses and heterodyne detection [1]. This can be
computed from the Marcum Q‐function [27, 28]

pMD ¼ 1 − Q
ffiffiffiffiffi
2γ

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln pFA

p� �
; ð32Þ

Qðx; yÞ≔
Z ∞

y
dt te− t2þx2ð Þ=2I0ðtxÞ; ð33Þ

with I0(.) being the modified Bessel function of the first kind of
zero order.

As we can see from Figure 1, the QIR would have a clear
advantage over the Marcum benchmark if we consider the
asymptotic first order formula. However, the first order
expression of Equation (1) is valid only for very large M. For a
typical finite size value of M, we need to consider the higher‐
order bounds in Equation (16), but we see that the gap is too
large to reach a conclusion of quantum advantage.

6 | CONCLUSION

In this work, we have studied a quantum‐inspired lidar/radar
based on coherent states and optimal quantum detection, ana-
lysing the performance in the context of asymmetric hypothesis
testing (quantum Stein’s lemma, higher‐order asymptotics).
According to our study, the current mathematical tools do not
allow us to prove quantum advantage over classical strategies
based on coherent states and heterodyne detection when a finite
number of probes is considered. Such an advantage may be
claimed in the asymptotic limit of a very large number of probes,
so that the first order becomes completely dominant over the
higher‐order terms. However, such an asymptotic regime is not
relevant for practical applications.
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APPENDIX A

RELATIVE ENTROPY NOTATION [29]
Relative entropy is given by

D ρ0kρ1ð Þ≔ Tr ρ0 ln ρ0 − ln ρ1ð Þ½ �: ðA1Þ

Using the spectral decompositions

ρ0 ¼
X

x
αx axj i axh j; ρ1 ¼

X

y
βy by
�
�
�
by
� �
�; ðA2Þ

and therefore

ln ρ0 ¼
X

x
ln αx axj i axh j; ðA3Þ

ln ρ1 ¼
X

y
ln βy by

�
�
�
by
� �
�; ðA4Þ

we may write

D ρ0kρ1ð Þ ¼
X

x
αx axh j ln ρ0 − ln ρ1ð Þ axj i ðA5Þ

¼
X

x
αx ln αx −

X

y
ln βy axh jby

�
�

�2

" #

: ðA6Þ

Let us set axj i ¼
P

yγxy by
�
�
�
with complex γxy such that

P
x

�
�
�γxy
�
�
�
2
¼
P

y

�
�
�γxy
�
�
�
2
¼ 1. Therefore,

D ρ0kρ1ð Þ ¼
P

x
αx ln αx −

P

y
ln βy

�
�γxy
�
�2

 !

¼
P

x;y
αx
�
�γxy
�
�2 ln αx − ln βy
� �

¼
P

x;y
pxy ln

αx
βy

≔

*

ln
αðXÞ
βðY Þ

+

;

ðA7Þ

where α(X )≔{αx, px}, and β(Y)≔{βy, py} where px and py are
the marginal distributions of the joint probability

pxy ≔ αx
�
�
�γxy
�
�
�
2
, which is the probability to get X = x and Y = y

by measuring ρ0 in the basis axj if g and then in by
�
�
�� �

. In this

notation, we may also write the relative entropy variance as
follows:

V ρ0kρ1ð Þ ¼ ln
αðXÞ
βðY Þ

� �2

− D ρ0kρ1ð Þ
2
: ðA8Þ

The third‐order moment entering the quantum Stein’s
lemma is given by [18]

T ρ0kρ1ð Þ ¼ ln
αðXÞ
βðY Þ

− D ρ0kρ1ð Þ

�
�
�
�

�
�
�
�

3
* +

ðA9Þ

¼
X

x;y

�
�
�
ax
�
�by
��
�2αx

�
�
�
�ln

αx
βy

− D ρ0kρ1ð Þ

�
�
�
�

3

: ðA10Þ

APPENDIX B

USEFUL BOUNDS
Various bounds are known for the associated Laguerre poly-
nomials. A well‐known uniform bound is the Szegö bound [26]

LðmÞn ðxÞ
�
�
�

�
�
� ≤
ðmþ 1Þn

n!
ex=2; ðB1Þ

for x, m ≥ 0, n = 0, 1, …where we use the Pochhammer’s
symbol (or shifted factorial)

ðaÞ0 ¼ 1; ðB2Þ

ðaÞn ¼ aðaþ 1Þðaþ 2Þ⋯ðaþ n − 1Þ; ðB3Þ

ðaÞn ¼
Γðaþ nÞ
ΓðaÞ

ðB4Þ

with Γ(a) being the Gamma function. Another one is Ref. [30]

�
�LðmÞn ðxÞ

�
� ≤ 2−mqnex=2; ðB5Þ

for x ≥ 0, m ≤ −1/2, n = 0, 1, … and where we set

qn ¼
ffiffiffiffiffiffiffiffiffiffi
ð2nÞ!

p

2nþ1=2n!
≃

1
ffiffiffiffiffiffiffiffi
4πn4
p for large n: ðB6Þ
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