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Abstract
Deep neural networks were previously used in the arena of image retrieval. Siamese
network architecture is also used for image similarity comparison. Recently, the appli-
cation of quantum computing in different fields has gained research interest. Researchers
are keen to explore the prospect of quantum circuit implementation in terms of super-
vised learning, resource utilization, and energy‐efficient reversible computing. In this
study, the authors propose an application of quantum circuit in Siamese architecture and
explored its efficiency in the field of exudate‐affected retinal image patch retrieval.
Quantum computing applied within Siamese network architecture may be effective for
image patch characteristic comparison and retrieval work. Although there is a restriction
of managing high‐dimensional inner product space, the circuit with a limited number of
qubits represents exudate‐affected retinal image patches and retrieves similar patches
from the patch database. Parameterized quantum circuit (PQC) is implemented using a
quantum machine learning library on Google Cirq framework. PQC model is composed
of classical pre/post‐processing and parameterized quantum circuit. System efficiency is
evaluated with the most widely used retrieval evaluation metrics: mean average precision
(MAP) and mean reciprocal rank (MRR). The system achieved an encouraging and
promising result of 98.1336% MAP and 100% MRR. Image pixels are implicitly con-
verted to rectangular grid qubits in this experiment. The experimentation was further
extended to IBM Qiskit framework also. In Qiskit, individual pixels are explicitly encoded
using novel enhanced quantum representation (NEQR) image encoding algorithm. The
probability distributions of both query and database patches are compared through
Jeffreys distance to retrieve similar patches.
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1 | INTRODUCTION

Retina is the photoreceptor tissue at the back of the eye
responsible for changing light into nerve impulse that is sent to
the brain. Both ocular and circulatory diseases manifest
symptoms at an early stage in retinal fundus images. One of the
disease symptoms prevalent in the retina is the presence of
exudate. Retinal damage is irreversible in nature. Early detec-
tion and timely treatment are essential to avoid blindness.
Retinal fundus image retrieval technique can be used for

computer‐aided diagnosis of retinal and cardiovascular ab-
normalities. Content‐based retinal patch retrieval process
makes use of image characteristic features to retrieve similar
patches, index‐wise, from a database of affected and unaffected
image patches with nominal human involvement. A consistent
and rapid affected sample retrieval method will be of great help
in improving the retinal screening process at an early disease
stage.

Retrieval of affected fundus images is previously accom-
plished with the application of deep neural networks in this
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domain. Siamese network is a class of network architecture,
used for image similarity comparison. Siamese means twins.
Siamese network is composed of two same neural networks,
both having the same parameters. When two images from the
same class are fed to these networks in parallel, they produce
similar intermediate feature representations. Thus the differ-
ence between these two representations is lower when
compared with the difference between two dissimilar images.
The use of Siamese architecture is reasonable for similar image
retrieval. Siamese architecture avoids network training re-
quirements as part of its implementation principle.

Classical computing suffers from the loss of information in
the process of computing. On the other hand, quantum circuits
are able to provide reversible transformations of states. In
other words, the unitary operator preserves the inner product
space. Currently, researchers are showing interest to explore
the applicability, scope, and prospect of quantum neural
network in different fields. Parameterized quantum circuits
(PQCs) are referred to as quantum neural network (QNN). It
comprises three parts: encoding of classical data to quantum
data, PQC, and measurement [1]. According to TensorFlow
Quantum (TFQ) White Paper [2], TFQ is a quantum machine
learning library, able to prototype quantum‐classical machine
learning models. TFQ supports the use of PQCs as Quantum
Neural Networks (QNNs).

In this study, the proposed system deals with characteristic
comparison and retrieval of exudate‐affected retinal image
patches. The system uses PQC implemented within the twin
Siamese comparison structural foundation. It compares the
query image patch and database image patches using tensor
similarity computation. This technique can be utilized to
implement a computer‐aided diagnostic system leading to a
decision regarding the manifestation of disease symptoms in
retinal images. The system provides an opportunity to evaluate
network performance in the quantum computing environment.
It affords to cater a new skyline to the evolution of reversible
computing in a popular healthcare research domain.

2 | RELATED WORK

Following are different research studies we studied during our
work implementation. At the initial phase of research on
content‐based retrieval of retinal images, Ref. [3] contributed
significantly. Ref. [3] retrieved images with a machine learning‐
based approach. Ref. [4] handled multimodal medical images
for classification and content‐based medical image retrieval
with and without class prediction modelling. This study used a
deep convolutional neural network. They claimed better ac-
curacy for classification and better mean average precision for
retrieval. Ref. [5] retrieved DR‐affected retinal fundus images
exploiting local binary patterns. Ref. [6] used Siamese CNN for
similar work of DR‐affected image retrieval. Ref. [7] retrieved
similar images considering different pre‐processing techniques
and different features for vessels and exudates. In a very recent
literature [8], retinal classification has experimented with
quantum circuits in training of classical neural networks, and by

designing and training quantum orthogonal neural networks.
This work uses MNIST retinal dataset for image classification.
They experimented with five qubits and nine qubits. They
executed their experiments in the IBMQ processor as well as in
simulators. They also reduced the image to four or 8 di-
mensions considering the current reach of quantum develop-
ment. This work is an image classification work, not an image
retrieval work.

Until now, the restriction of few qubits could not be
overcome in the case of hybrid quantum classical model. This
is due to gradient estimation complexity and the exponential
dimension of Hilbert space or inner product space [9]. The
probability of the gradient in a parameterized quantum circuit
(PQC), towards any direction, is the function of the number of
qubits involved and is non‐zero to some fixed precision that is
exponentially small. This problem requires further study. Ref.
[10] discussed superposition and entanglement. These quan-
tum phenomena can be used to solve problems of classical
neural network learning. Quantum neural networks, when
compared with equivalent classical neural networks, accom-
plish better performance and attain effective dimensions [11].
In Ref. [11], the authors utilized Fisher information spectrum
of the barren plateaus to quantify the training capability of
quantum models. They tried to deal with the vanishing gradient
problem also. In Ref. [12], the authors designed a QNN that
can be trained with supervised learning and is capable of
representing classical or quantum labelled data. Unitary trans-
formations are applied to qubits. These parameter‐dependent
transformations form the quantum circuit. Pauli operator is
the predictor of QNN which is measured at the readout. This
is the output of the binary predictor. Ref. [12] used a classical
dataset comprising n bit string and the classes. The input
quantum state is an n‐bit computational basis. The circuit was
implemented and labels were represented with Boolean func-
tion. A quantum feedforward neural network, capable of
exercising universal quantum computations, is demonstrated in
Ref. [13]. Here, the neurons are the quantum counterpart of
classical neurons. The authors used fidelity as the cost function
and proposed efficient training of QNN. It was claimed that
the method was optimized faster and the memory re-
quirements are less. According to Ref. [14], quantum con-
volutional neural network helps in evaluating the scope and
prospect of CNN in quantum computing environment. It
shows a horizon where a performance expansion is possible
for an already existing learning model. The application of
quantum CNN (QCNN) may open a new era of image
recognition and proper research work is required on larger
convolution kernels and inputs [15]. Quantum CNN is a circuit
analogous to classical CNN in terms of non‐linearity repre-
sentation and pooling operation. Hybrid quantum‐classical
models enable the utilization of quantum computers to
diversified application domains. Within this framework,
parameterized quantum circuits can be regarded as machine
learning models with remarkable expressive power [16].

Regarding classical data to quantum data conversion, in the
Qubit Lattice model [17], every pixel is stored in a single qubit,
and all pixel operations are changed into their quantum
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counterpart operations on a single qubit. Thus, every quantum
image is represented as a qubit matrix. Zhang et al. [18] also
proposed a novel enhanced quantum representation (NEQR)
for classical to quantum conversion of digital images. The
application of NEQR can be observed in Ref. [19]. The
experiment in Ref. [19] is carried out in both Cirq and Qiskit
environments.

The role of quantum computing in the field of machine
learning is tried to be explored by the Google AI Quantum
team [20]. Quantum computers can be used for training a
learning model using quantum environment. TensorFlow
Quantum (TFQ) was released in early March, 2020 by Google
along with the University of Waterloo and Volkswagen AG.
Quantum machine learning (QML) is simulated with a python
library named TensorFlow Quantum. TFQ simulates noisy
intermediate‐scale quantum (NISQ) devices that are available
in the present era. These simulators run on classical computers
allowing researchers to run and test qubit operations. Further,
IBM Quantum Composer and IBM Quantum Lab provide
access to cloud‐based IBM quantum computing services to
public and premium users on an online platform. IBM Qiskit
provides open‐source tools for handling quantum programs.
An online open‐source Qiskit textbook [21] is also maintained
by IBM Qiskit community. Ref. [22] represented a discussion
and review on simulation of quantum computation for classical
neural network.

Currently, quantum applications are in a rapid developing
phase. These applications utilize different quantum algorithms
for higher accuracy and reduced time complexity compared to
classical computing. Significant quantum computing benefit is
likely to be observed in the healthcare sector also. Quantum
computing does not merely provide an incremental speedup.
Quantum computers may enable accurate diagnoses enabling
precise treatments, as well as a better way to reflect cost bene-
ficial model from the patient viewpoint. Quantum computing
has the potential to sustainably improve medical image analysis
and retrieval through image matching. These improvements
would enhance image‐aided diagnostics. Further, in references
[11–15], authors experimented extensively on the training in-
tricacies of quantum neural networks. In this work, we try to reap
the results of removing this complex network training by
implementing parameterized quantum circuit within Siamese
architecture. Conversion of Cirq objects to TensorFlow string
tensors enables to successfully compare and retrieve similar
image patches. These may be considered as the motivations
behind our work implementation.

In this study, we propose a quantum neural network
implemented within Siamese architecture to evaluate the effi-
cacy of this model for the affected image patch retrieval task.
In a quantum neural network, entanglement gates are applied
on input quantum states or qubits. Images are not directly
resized and fed to QNN to avoid medically significant infor-
mation loss. Instead 20 � 20 original image patches are taken
and resized to 4 � 4 resolution. Otherwise, data cannot be
handled with currently available quantum opportunities. This
classical pre‐processing certainly may reduce the system per-
formance but we tried to benchmark such retrieval approach

on the current quantum scenario and understand if quantum
machine learning methods can be used as a better alternative to
the classical approach in future. In classical Siamese neural
network, elimination of weight adjustment and hidden layer
manipulation are exploited to reduce the time, memory, and
computational complexity of the task at hand. We propose a
Siamese Quantum Neural Network which is capable of
comparing two tensors representing the input patch and the
database patch. Like its classical Siamese counterpart, weight
updating and network training are avoided in this work. The
intention is to extend the computation capability of classical
Siamese neural network to the domain of quantum computing.
QNN is evaluated on a simulation framework. In this way, it is
tried to evaluate a different neurocomputing way for infor-
mation processing.

The contribution of the work is the implementation of a
quantum circuit within the Siamese paradigm in Cirq frame-
work and evaluation of its applicability and efficiency in the
research area of affected retinal fundus image retrieval through
twin comparison of patch representations. Though retinal
fundus image retrieval is a significantly explored research
domain, yet the pertinence of applying either quantum
computing itself or Siamese implementation of it has never
been explored in the relevant field, as per our knowledge.
Exudate‐affected image patches are input to the retrieval
system. Query patch and database patch are fed to two parallel
and identical instances of the same PQC and the system re-
trieves similar images on the basis of Siamese comparison of
circuit representation, converted to tensor. The outcome of
our work is that the system performance is notable while
retrieving affected image patches from the patch database. A
different patch retrieval approach has been experimented in
Qiskit framework also. In this approach, classical data is
encoded using NEQR encoding algorithm and the probability
distributions of measurement results of query patch and
database patch are computed with Jeffreys distance. The
experimental results are evaluated with widely used retrieval
evaluation metrics such as mean average precision (MAP) and
mean reciprocal rank (MRR). Managing ever growing visual
data has now become quite critical for medical image retrieval
systems. Evaluation of a large volume of medically significant
data can be performed with quantum computation in an
exponentially faster way though it requires further technolog-
ical advancement. If the process would have been implemented
in a quantum processor removing the restriction of handling
few qubits, it may have yielded remarkable and optimistic re-
sults. Classical computation has the constraint of architecture
that it is irreversible in nature. In quantum computation,
quantum states are passed through quantum gates which are
unitary operators, capable of producing reversible architecture.
Unitary transformation is a bijection that preserves the inner
products of tensors. Reversible computing is the future di-
rection of energy and cost‐effective computing. These possi-
bilities may open up a new paradigm shift in the domain of
classical computation. In Ref. [23], a detailed discussion
regarding generalized reversible circuit design is available.
Adiabatic logic avoids information loss and energy dissipation
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in a logically reversible circuit. But the main challenge is to
overcome qubit restriction and quantum hardware limitation in
real life which is an ongoing process right now.

3 | PRELIMINARIES

3.1 | Diabetic Retinopathy symptoms

Retinopathy causes damages in the retina. In Diabetic Reti-
nopathy (DR), retina gets damaged due to the development of
Diabetes in patients. The most prevalent DR symptoms in the
affected retina are presence of microaneurysm‐haemorrhage
(MA‐HM) and exudates (EX). Abnormal widening or
ballooning of vessel wall in DR‐affected retinal images are
microaneurysms. Weakened vessel walls are responsible for the
development of this symptom. Blood filters out through these
weak portions of blood vessels. Any fluid that leaks out in the
inflammation area and gets deposited there is known as exudate.

3.2 | Content‐based retrieval

In content‐based retrieval, the visual content of the data helps
in retrieving similar data samples. In an automated medical
diagnosis system, a retrieval system can be utilized. Given an
affected sample it helps in retrieving similar samples obtained
from mass health screening procedures. Nowadays, CBIR is
facing the need for managing ever‐growing visual data.

3.3 | Quantum circuit implementation
frameworks

Cirq was released by Google in the year 2020 [24]. Cirq is the
open‐source framework, capable of providing a quantum
computing setup to experiment on NISQ quantum processors
and quantum simulators. TensorFlow Quantum (TFQ) is a
new open‐source python library that affords quantum circuit
simulator, parameterized quantum circuit (PQC). Cirq and
Tensorflow have a common interface. Cirq provides the
capability of circuit implementation with static and parame-
terized gates. Cirq and TFQ interface provides the simulation
of noisy intermediate‐scale quantum (NISQ) devices.

Qiskit is another open‐source SDK provided by IBM [21].
Qiskit was released in the year 2017. Qiskit is used for working
with quantum computer simulators and the IBM Q quantum
processors. Aer simulator is a noisy quantum circuit simulator
backend. The backend imitates the execution of a real device.
The quantum circuit returns a dictionary of measurement
outcomes.

3.4 | Siamese architecture

DNN requires a huge number of labelled samples for suc-
cessful training. In the field of medical images, the difficulty to

collect a huge number of labelled samples is still difficult. Here
comes the concept of one shot learning which helps in learning
and comparing through twin network. Twin network evaluates
the reference sample and the test samples in parallel to
compute the difference between them. The intermediate
network features are compared to generate the similarity score.
The less the difference between samples, the more is the
similarity between them. This architecture avoids computa-
tionally exhaustive weight updating and training phase of the
network.

3.5 | NEQR image representation

NEQR is one of the quantum image representation schemes
[18]. Qubits are required to create a characteristic quantum
circuit to represent a grayscale image. Two groups of qubits
represent pixel values as well as pixel positions. Detailed
illustration of NEQR is available in Ref. [25].

4 | IMPLEMENTATION
REQUIREMENT

The experiments have been carried out with Intel Core i5
10,400F CPU @ 2.90 GHz with 6M Cache, upto 2.90 Ghz and
16 GB DDR4 RAM. Software versions used for work evalu-
ation are as follows, Python 3.8.6, Tensorflow v1, Keras 2.3.1,
Tensorflow.Quantum 0.4.0 and Cirq 0.9.1, qiskit 0.29.0, qiskit‐
aer 0.8.2.

5 | RETRIEVAL EVALUATIONMETRICS

The most commonly used image retrieval evaluation metrics
[26] are mean average precision (MAP) and mean reciprocal
rank (MRR).

We considered three predefined rank threshold values (K).
For K = 3, 5, and 7, the percentage of relevant retrievals
among top K retrievals indicates system precision. MAP is the
mean of average precisions for different Ks.

MAP ¼1
�
N
XN

i¼1
AP ð1Þ

In MRR, the first relevant rank value for retrieval is
considered and the mean of reciprocal of rank values is
computed over query sets.

MRR¼ 1
�
N
XN

i¼1

1
ranki

ð2Þ

where N is the number of elements in the query set and
ranki is the rank of the first relevant retrieved sample in ith
query.
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6 | DATASET DESCRIPTION

E‐ophtha [27] is a colour fundus image dataset. It comprises
both healthy and Diabetic Retinopathy manifested images.
Retinal images with different types of lesions (exudate and
microaneurysm‐haemorrhage) along with their ground truth
versions annotated by ophthalmologists are there in the
dataset. E‐ophtha dataset contains two sub‐databases.
Microaneurysm‐haemorrhage sub‐database has 148 images
with symptoms of micro aneurysms and small haemorrhages
and 233 healthy images. Exudate sub‐database has 47 im-
ages with symptoms of exudates and 35 healthy images. Three
different resolutions, 2544 � 1696, 2048 � 1360, and
1440 � 960, are available in the dataset, for affected images,
and two different resolutions, 2544 � 1696 and 1440 � 960,
are available for healthy images. Ground truths are used as
labelled samples.

7 | EXPERIMENTS

7.1 | Patch Extraction and Patch Database
Formation

Retinal images are converted to the green channel and
20 � 20 overlapping patches are extracted from 47 exudate
affected image samples. Further reduced patch sizes are not
expected to encompass exudates properly. Affected and
healthy patches are identified on the basis of a threshold
number of affected pixels. We assumed that, in the case of
affected patches, the number of affected pixels is greater
than 100 whereas, in healthy patches, the number of affected
pixels is less than 20. Figure 1 represents classical data
preprocessing phase.

7.2 | Experiment in Google's cirq
framework

The overview of the experiment in Google's Cirq framework is
represented in Figure 2.

7.2.1 | Input to quantum circuit

Theproblemofhandlingmore thana fewqubits is still there in the
field of quantum computing. Hence, 20� 20 image patches are
resized to 4� 4. These 4� 4 small patches are flattened and input
to the circuit in the form of qubits. A rectangular lattice of 16
qubits is created from 16 intensity values available from the
resized patch. Encoding classical image points to quantum data-
points is accomplished directly using the inbuilt mechanism of
theGoogle Cirq environment. In qubit latticemodel, one‐to‐one
pixel‐qubit mapping is maintained [17] to form the qubit lattice.

7.2.2 | PQC model creation using cirq

Quantum Neural networks are represented with parameterized
quantum circuits (PQCs) which are defined with quantum gates.
Sometimes, PQCs are quite efficient in producing significant
inference. The classical data is pre‐processed and fed to PQCs.
At the output end as well, the classical processor observes the
measurement values from the model output. Thus this model
can be referred to as a quantum‐classical model. TFQ loads
quantum data as tensors. Cirq objects are converted to Tensor-
Flow string tensors, with the tfq.convert_to_tensor function.
The cirq.Circuit objects are parameterized by SymPy objects.
These tensors are then converted to classical information via
TFQ ops. Quantum states are produced as per the format of

F I GURE 1 Patch extraction and patch database formation
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PQCs and measurements are obtained. From measurement
outcomes, predictions are computed. In this work, Cirq circuits
are converted to TensorFlow Quantum circuits with defined
data qubits and readout qubits. Circuit Layer Builder class is used
to build model circuit. The model‐circuit is enveloped in a tfq‐
keras model using Parameterized Quantum Circuit (PQC). A
quantum circuit has been implemented where two qubit gates
are used to connect each data input qubit and are directed to
readout. Figures 3 and 4 show the block diagram ofQNNmodel
and the block diagram of QNN model implementation in Cirq
framework, respectively. Summary of the parameterized quan-
tum model is shown in Figure 5. The model has 32 model pa-
rameters. The detailed circuit diagram is present in Figure 10.

7.2.3 | Similarity score computation and retrieval
in cirq

Input query patch and database patch are run through PQC
in parallel. Input data is converted to rectangular grid qubits.
PQC is applied over the tensors obtained by applying tfq
package on the circuits. The absolute difference between the
intermediate test patch tensor and database patch tensor
from PQC is considered as the similarity score between
these two patches. Thus, the whole database patches are
compared with the query patch and sorted against absolute
difference. Similar image patches are retrieved following
sorted similarity score.

F I GURE 3 Block diagram of quantum neural network model. PQC, parameterized quantum circuit

F I GURE 2 Experiment in Cirq environment. PQC, parameterized quantum circuit

F I GURE 4 Block diagram of quantum neural network model implementation in Cirq framework
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7.3 | Experiment in IBM's qiskit framework

The outline of the experiment in IBM's Qiskit framework is
represented in Figure 6.

7.3.1 | Encoding pixels

In NEQR, pixel value encoding of a 2n scale image requires n
qubits. Thus to encode a grayscale image pixel in NEQR
representation, eight qubits are required. If image size is 2 � 2,
to represent each pixel position uniquely two qubits are
required. So, to represent a 2 � 2 grayscale image, 10 qubits are
required. To create the circuit, positional qubits are passed
through Hadamard gates. To characterize grey pixels consid-
ering their binary representations, 1 bit along with its pixel
position is encoded with CCX gate.

In general, a 2nx2n resolution image can be represented in
NEQR encoding scheme as a quantum state |I〉 [21] as

�
�I〉¼

1
2n
X2
2n−1

Y¼0

X2
2n−1

X¼0
jf ðX;Y Þ〉jYX〉

X2
2n−1

Y¼0

X2
2n−1

X¼0

�
�⊗q−1

i¼0 〉
�
�Ci

YX jYX〉

ð3Þ

So, for example, a 2 � 2 pixel image with four different
pixel intensities, NEQR state will be represented as

�
�I〉¼

�
1
ffiffiffi
2
p

�

ðj00110011〉 j00〉

þ j01100100〉 j01〉 j00000011〉 j10〉
þ j01100000〉 j11〉 Þ

ð4Þ

where 00110011, 01100100, 00000011 and 01100000 are four
different intensity values.

The detailed circuit diagram of NEQR encoding is given in
Figure 13. Figure 7 shows the block diagram of NEQR circuit
representation in Qiskit.

7.3.2 | Similarity score computation and retrieval
in qiskit

The probability distribution of measurement results obtained
out of quantum circuit representation of the grayscale image is
used to find the distance between two patches. Jeffreys distance
[28] indicates how similar those two probability distributions
are. Jeffreys distance is defined as

F I GURE 5 Parameterized quantum model

F I GURE 6 Experiment in Qiskit environment. NEQR, novel enhanced quantum representation
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KðP;QÞ ¼
Xn

k¼1

� ffiffiffi
p
p

− ffiffiffi
q
p �2

ð5Þ

where

fP ¼ ðp1; p2; ……:; pnÞ
�
� 0 < pk < 1;

Xn

k¼1

pk¼ 1g

and fQ¼ ðq1; q2; ……:; qnÞ
�
� 0 < qk < 1;

Pn

k¼1
qk¼ 1g are

two discrete probability distributions.
This measure has many applications in pattern identifica-

tion. Thus, the whole database patches are compared with the

query patch and sorted against Jeffreys distance. Similar image
patches are retrieved following sorted similarity scores.

8 | EXPERIMENTAL RESULTS

8.1 | Patch Extraction

Exudate‐affected E‐Ophtha images are converted to the
green channel. From affected green channel images,
20 � 20 overlapping patches are extracted. These patches
are considered normal patches if they contain the number of

F I GURE 7 Block diagram of circuit comparison in Qiskit framework

F I GURE 8 Some 20 � 20 affected patches

F I GURE 9 Some 20 � 20 healthy patches
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affected pixels less than 20 and considered unhealthy if they
contain the number of affected pixels greater than 100.
Figures 8 and 9 show some affected patches and some
unaffected patches.

8.2 | PQC model creation and retrieval in
cirq

Two qubit gates are used to connect each data input qubit and
directly forwarded to readout. 20 � 20 patches are resized to
4 � 4 patches, as quantum classical models are not able to
manage more than few qubits until now [9]. The quantum

model circuit has been implemented with 4 � 4 grid for data
qubits and one readout qubit. Flattened images that is 16
classical pixel data points are converted by Cirq framework
internally to 4� 4 grid qubit. Google quantum AI defined cirq.
GridQubit to label qubits by two numbers in a 4 � 4 grid of
qubit lattice [17]. The circuit uses two‐qubit gates which creates
the connectivity between the data qubit and the readout qubit.
The connectivity is implemented using consecutive Ising (XX)
coupling gate and Ising (ZZ) coupling gate. The PQC diagram
is displayed in Figure 10.

A total of 116,365 affected patches and 1,136,505 healthy
patches have been extracted from 47 exudate‐affected images
available in E‐ophtha dataset. The experimental patch database

TABLE 1 Sample patch retrieval distances for query patch‐
C0001273_EX_Patch‐561,745.jpg

Query patch‐ C0001273_EX_Patch‐561745.jpg

Retrieved patches
Siamese tensor
distance

Positive ‐‐ C0001273_EX_Patch‐608556.jpg 2.29E‐05

Positive ‐‐ C0001273_EX_Patch‐575646.jpg 3.31E‐05

Positive ‐‐ C0001273_EX_Patch‐608567.jpg 6.09E‐05

Positive ‐‐ C0001273_EX_Patch‐559272.jpg 6.82E‐05

Positive ‐‐ C0001273_EX_Patch‐581905.jpg 7.21E‐05

Positive ‐‐ C0001273_EX_Patch‐600978.jpg 7.33E‐05

Positive ‐‐ C0001273_EX_Patch‐571795.jpg 8.80E‐05

Positive ‐‐ C0001273_EX_Patch‐603510.jpg 0.000100628

Negative ‐‐ C0021833_EX_Patch‐101052.jpg 0.000100628

Positive ‐‐ C0001273_EX_Patch‐613608.jpg 0.000101958

TABLE 2 Sample patch retrieval distances for query patch‐
C0002369_EX_Patch‐393,828.jpg

Query patch‐ C0002369_EX_Patch‐393828.jpg results

Retrieved patches
Siamese tensor
distance

Positive ‐‐ C0001273_EX_Patch‐568001.jpg 0

Positive ‐‐ C0001273_EX_Patch‐566799.jpg 5.74E‐08

Positive ‐‐ C0001273_EX_Patch‐570526.jpg 5.86E‐08

Positive ‐‐ C0001273_EX_Patch‐564275.jpg 7.26E‐08

Positive ‐‐ C0001273_EX_Patch‐598333.jpg 1.93E‐07

Positive ‐‐ C0002369_EX_Patch‐397618.jpg 3.08E‐07

Positive ‐‐ C0001273_EX_Patch‐612218.jpg 4.63E‐07

Positive ‐‐ C0001273_EX_Patch‐570589.jpg 5.90E‐07

Positive ‐‐ C0001273_EX_Patch‐571788.jpg 5.90E‐07

Positive ‐‐ C0001273_EX_Patch‐570590.jpg 5.90E‐07

F I GURE 1 0 Cirq implementation‐parameterized quantum circuit diagram
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F I GURE 1 1 10 minimum distance patch retrieval visualization for query patch‐ C0001273_EX_Patch‐561,745.jpg

TABLE 3 Mean average precision

Precision Metric
Sample query patch K = 3 K = 5 K = 10 Average precision (AP)

C0001273_561745 100 100 90 96.67

C0001273_566737 100 100 100 100

C0001273_628776 100 100 100 100

C0002369_264807 100 100 100 100

C0002396_388536 100 100 100 100

Mean average precision (MAP) 99.334

TABLE 4 Mean reciprocal rank

Reciprocal rank Metric
Sample query patch K = 3 K = 5 K = 10 Reciprocal rank (RR)

C0001273_561745 100 100 100 100

C0001273_566737 100 100 100 100

C0001273_628776 100 100 100 100

C0002369_264807 100 100 100 100

C0002396_388536 100 100 100 100

Mean reciprocal rank (MRR) 100

F I GURE 1 2 10 minimum distance patch retrieval visualization for query patch‐ C0002369_EX_Patch‐393,828.jpg
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comprises 2475 affected patches and 2500 healthy patches
whereas the query database consists of 250 exudate‐affected
patches. The outputs of the parameterized quantum circuit
are converted to tensors and the absolute distance between
these two extracted tensors is computed within the twin
network architecture. Patches are sorted according to the dis-
tance and retrieved. Two sample patch retrieval results are
given in Tables 1 and 2. Corresponding query and retrieved
patch visualizations are obtained in Figures 11 and 12,
respectively.

8.3 | Performance evaluation of cirq
experiment

The retrieval performance has been evaluated with 250
exudate affected patches at rank k = 3, 5, and 10. The
experimental mean average precision of this Siamese Quan-
tum system is 98.1336%. The rank of the first retrieved
similar sample is one in all the test cases. So mean reciprocal
rank of the system is 100%. Average precisions and reciprocal
ranks of some of the sample patches are referenced in
Tables 3 and 4. Some more retrieval results are uploaded as
Supporting Information.

8.4 | Pixel encoding and retrieval in qiskit

The image is subdivided into four quadrants of size 2 � 2.
Grey valued pixels are represented with 8 bits. In Qiskit, the
classical patch is converted to quantum patch applying NEQR
algorithm. In this representation, eight qubits are required to
encode grayscale value and two qubits are required to identify
each position of a 2 � 2 image segment.

The similarity between two patches is computed consid-
ering the individual probability distribution of measurement
results. The difference between two probability distributions
has been computed using statistical distance metric – Jeffreys
distance. Jeffreys distance is the measure of divergence be-
tween two probabilities. Figure 13 represents the Qubit con-
version circuit of a 2 � 2 quad of a 4 � 4 image patch. Here, 1
bit along with its pixel position is encoded with controlled‐
controlled‐not gate or Toffoli gate. Measurements are ob-
tained accordingly.

8.5 | Performance evaluation of qiskit
experiment

The retrieval performance of Qiskit experiment has been
evaluated with 250 exudate‐affected patches at rank k = 3, 5,
and 10. Experimental mean average precision of this system is
52%. The mean reciprocal rank of the system is 71.36%.
Average precisions and reciprocal ranks of some of the sample
patches are referenced in Tables 5 and 6.

9 | DISCUSSION

Deep learning and convolutional neural network have been
explored in the last decade for image similarity identification and
retrieval. Deep network training requires a huge number of
labelled training samples for successful learning. Further, this
training phase is computationally heavy and consumes consid-
erable training time. To cope with this hindrance, the Siamese
network entered into the scenario where model training re-
quirements are eliminated, instead image characteristics are
compared in runtime inside the network. Thus, similar images or
image patches are identified. If QNN can be utilized for image/
image patch retrieval within Siamese architecture, QNN training
will not be required to retrieve similar patches. On removing the
shortcoming of using the restricted number of qubits, QNN is
expected to provide fast and efficient information processing
results in real life. The prospect of quantum learning has been
explored from the viewpoint that the computation can be car-
ried out without losing information that is, the computation can
be reversed to recover the previous states. Reversible computing
is the future trend for further improvement of generating
energy‐efficient computing algorithms. Quantum computers are
able to compute matrix multiplication and tackle a large volume
of data very fast as well.

In the application area of retinal image patch identification,
the entire image is not resized to minimize medically significant
information loss, instead, 20 � 20 overlapping patches are
extracted from the image first. Patches of smaller sizes may not
be able to represent exudates appropriately. Now, to overcome
the limitations of quantum circuits which can still handle only
few qubits, these patches are resized to a resolution of 4 � 4.
Patches with different resolutions may also be used but the
qubit capability of the device/simulator is to be considered

F I GURE 1 3 Qubit conversion circuit of a 2 � 2 quad of a 4 � 4 image patch
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while creating the circuit. The research may reach from 50 to a
few hundred qubits in the next few years which will empower
the capability of quantum computing for sure.

In this work, two identical circuits are simultaneously input
with images. Pair‐wise distance measurement between the
feature representations indicates whether the images are similar
to each other. Intermediate network tensor encodings are
extracted to compute the absolute difference between query
patch and database patch. Siamese architecture removes the
requirements of computation exhaustive network training. As
per our knowledge, the QNN model never evaluated exploiting
Siamese architecture in the field of content‐based image
retrieval. We are able to effectively capture the distance be-
tween two patches while the user input is an affected patch.

QNN application may expose a new frontier in image identi-
fication, retrieval, and object detection.

Eyesight deterioration and other indicators of Diabetic
Retinopathy arise late in the process of disease progression.
Late diagnosis usually leads to an irreversible decline of vision
which ultimately moves towards blindness. Early diagnosis and
timely treatment slow down the disease progression remarkably.
Quantum Neural Network has been achieved research interest
recently. As per our knowledge, the contribution of QNN has
not been evaluated in this field and to date, no papers are
available on retinal image retrieval using QNN. Thus, providing
any comparison table for previous retinal image retrieval per-
formances using QNN is not possible. Hence, we provided a
comparative performance table of similar retrieval work with

TABLE 6 Mean reciprocal rank
Reciprocal rank Metric

Sample query patch K = 3 K = 5 K = 10 Reciprocal rank (RR)

Positive‐‐C0001273_607166 50 50 50 50

Positive‐‐C0002369_418850 50 50 50 50

Positive‐‐C0001273_605900 100 100 100 100

Negative‐‐C0021833_100153 100 100 100 100

Negative‐‐C0021833_100304 100 100 100 100

Mean reciprocal rank (MRR) 80

TABLE 5 Mean average precision
Precision Metric

Sample query patch K = 3 K = 5 K = 10 Average precision (AP)

Positive‐‐C0001273_607166 66.67 60 50 58.89

Positive‐‐C0002369_418850 66.67 80 80 75.56

Positive‐‐C0001273_605900 66.67 60 60 62.22

Negative‐‐C0021833_100153 66.67 80 80 75.56

Negative‐‐C0021833_100304 100 100 60 86.670

Mean average precision (MAP) 71.78

TABLE 7 Comparison with other works

Method, year Retrieval features MAP MRR Category

Chandakkar et al., 2013 [3] Lesion type/severity bag features 87.6% – ML based

Gajanan et al., 2017 [5] Colour and LBP features 57.82% – Non‐ML based

Chung et al., 2017 [6] Deep features (3rd last layer) 62.09% 76.08% DL based

Deep features (2nd last layer) 63.69% 76.91% DL based

Deep features (SoftMax layer) 66.73% 77.45% DL based

Deep features (last layer) 64.92% 77.37% DL based

Sukhia et al., 2019 [7] Fused texture and shape features 79.47% – Non‐ML based

Proposed method Quantum features of image patches 98.1336% 100% QNN based

Abbreviations: MAP, Mean Average Precision; MRR, Mean Reciprocal Rank; QNN, quantum neural network.
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some non‐machine learning‐based, machine learning‐based and
deep learning‐based approaches. In this work, QNN efficiency
in the relevant field has been evaluated quantitatively with the
most widely used retrieval evaluation metrics‐ MAP and MRR.
As per the results obtained from experiments, the proposed
QNN‐based affected retinal patch retrieval system performs
excellently in retrieving affected retinal patches. An affected
patch is user input from a static database and the system will
retrieve affected patches from the dataset, obtained from the
mass Diabetic Retinopathy screening program. The results
provide 98.1336% of MAP value and 100% MRR value, which
is encouraging to observe the effectiveness of QNN involve-
ment. Always the system is able to retrieve an affected patch as
the most similar sample. We compare the performance of this
work with state‐of‐art DR‐affected retinal image retrieval
works. Refs. [5, 7] are research references that retrieve DR‐
affected images following non‐machine learning approaches
whereas Ref. [3] retrieves DR‐affected images exploiting
traditional machine learning architectures. In Ref. [6], deep
CNN architecture has been exploited by Yu‐An Chung and
Wei‐Hung Weng. In this work, the effectiveness of retinal image
retrieval is obtained considering layer wise deep features. They
provided four different experimental results as shown in
Table 7. They received the maximum MAP of 66.73% and
maximum MRR of 77.45% for DR image retrieval considering
SoftMax layer. These comparisons show better performance of
QNN (Table 7), though our work represents a patch retrieval
work considering the current limitation of quantum‐classical
network implementation.

10 | CONCLUSION

In this work, parameterized quantum circuit framework has
been evaluated in the field of retinal image patch retrieval. The
circuit has been implemented within the Siamese comparison
paradigm in Google Cirq environment. A retrieval system has
been implemented which is able to retrieve exudate‐affected
image patches by comparing Absolute distance between
input exudate‐affected patch and database patches. The pro-
posed architecture received patch retrieval result Mean Average
Precision of 98.1336% and a Mean Reciprocal Rank of 100%.
Another retrieval approach has also been experimented in IBM
Qiskit environment, where the probability distributions of
explicitly encoded image pixel representations are compared
for retrieval. Even though, the result is not impressive. Qiskit
implementation of PQC is kept as the future scope of the
work. We have not used any error correction algorithm. This
may also be considered as another future scope of the work.

Until now, quantum classical model cannot be extended
beyond few qubits, transformation is taking place which will
lead to a more competent quantum technology developed in
the future. Implementation and evaluation in a larger scale with
a reversible quantum neural circuit is the future direction of
this research. It is undoubtedly expected that quantum tech-
nologies will strive to successfully handle more and more
qubits and eventually will move towards fault‐tolerant

computing. Minimizing quantum computation involvement
through the use of error‐correcting algorithm and allowing
only the part of code which is difficult to evaluate on a classical
computer, to execute in quantum processor, is the feasible
pathway to reap the advantage of ‘Quantum supremacy’.
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