
Received: 25 May 2021 - Revised: 19 July 2021 - Accepted: 7 October 2021 - IET Quantum Communication
DOI: 10.1049/qtc2.12024

OR I G INAL RE SEARCH PA PER

QuaSiMo: A composable library to program hybrid workflows for
quantum simulation

Thien Nguyen1,2 | Lindsay Bassman Oftelie3 | Phillip C. Lotshaw2,4 |
Dmitry Lyakh2,5 | Alexander McCaskey1,2 | Vicente Leyton‐Ortega2,4 |
Raphael Pooser2,4 | Wael Elwasif2,4 | Travis S. Humble1,2 | Wibe A. de Jong3

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
2Quantum Computing Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
3Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
4Computer Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
5National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Correspondence

Thien Nguyen, Computer Science and Mathematics
Division, Oak Ridge National Laboratory, Oak
Ridge, TN, 37831, USA.
Email: nguyentm@ornl.gov

Funding information

U.S. Department of Energy, Grant/Award Number:
ACCELERATED RESEARCH IN QUANTUM
COMPUTING (ARQC)

Abstract
A composable design scheme is presented for the development of hybrid quantum/
classical algorithms and workflows for applications of quantum simulation. The proposed
object‐oriented approach is based on constructing an expressive set of common data
structures and methods that enables programming of a broad variety of complex hybrid
quantum simulation applications. The abstract core of the scheme is distilled from the
analysis of the current quantum simulation algorithms. Subsequently, it allows synthesis of
new hybrid algorithms and workflows via the extension, specialisation, and dynamic
customisation of the abstract core classes defined by the proposed design. The design
scheme is implemented using the hardware‐agnostic programming language QCOR into
the QuaSiMo library. To validate the implementation, the authors test and show its utility
on commercial quantum processors from IBM and Rigetti, running some prototypical
quantum simulations.

KEYWORD S
quantum computing, quantum information

1 | INTRODUCTION

Quantum simulation is an important use case of quantum
computing for scientific computing applications. While nu-
merical calculations of quantum dynamics and structure are
staples of modern scientific computing, quantum simulation
represents the analogous computation based on the principles

of quantum physics. Specific applications are wide‐ranging and
include calculations of electronic structure [1–4], scattering [5],
dissociation [6], thermal rate constants [7], materials dynamics
[8], and response functions [9].

Presently, this diversity of quantum simulation applications
is being explored with quantum computing despite the limita-
tions on the fidelity and capacity of quantum hardware [10–12].

This manuscript has been authored by UT‐Battelle, LLC under Contract No. DE‐AC05‐00OR22725 and Lawrence Berkeley National Laboratory under Contract No. DE‐AC02‐
05CH11231 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States
Government retains a non‐exclusive, paid‐up, irrevocable, world‐wide licence to publish or reproduce the published form of this manuscript, or allow others to do so, for United States
Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. (http://
energy.gov/downloads/doe‐public‐access‐plan).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

Published 2021. This article is a U.S. Government work and is in the public domain in the USA. IET Quantum Communication published by John Wiley & Sons Ltd on behalf of The
Institution of Engineering and Technology.

160 - IET Quant. Comm. 2021;2:160–170. wileyonlinelibrary.com/journal/qtc2

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

These applications are tailored to such limitations by designing
algorithms that can be tuned and optimised in the presence of
noise or model representations that can be reduced in dimen-
sionality. Examples include variational methods such as the
variational quantum eigensolver (VQE) [13–16], quantum
approximate optimisation algorithm (QAOA) [17], quantum
imaginary time evolution (QITE) [18], and quantum machine
learning (QML) among others.

The varied use of quantum simulation raises concerns for
efficient and effective programming of these applications. The
current diversity in quantum computing hardware and low‐
level, hardware‐specific languages imposes a significant
burden on the application user. For instance, IBM provides
Aqua [19], which is part of the Qiskit framework, targeting
high‐level quantum applications such as chemistry and finance.
The emphasis of Aqua is on providing robust implementations
of quantum algorithms, yet the concept of reusable and
extensible workflows, especially for quantum simulations, is
not formally supported. The user usually has to implement
custom workflows from lower‐level constructs, such as circuits
and operators, available in Qiskit Terra [20]. Similarly, Tequila
[21] is another Python library that provides commonly used
functionalities for quick prototyping of variational‐type quan-
tum algorithms. Orquestra [22], a commercially available so-
lution from Zapata, on the other hand, orchestrates quantum
application workflows as black‐box phases, thus requires users
to provide implementations for each phase.

The lack of a common workflow for applications of
quantum simulation hinders broader progress in testing and
evaluation of such hardware. A common, reusable and exten-
sible programming workflow for quantum simulation would
enable broader adoption of these applications and support
more robust testing by the quantum computing community.

In this contribution, we address development of common
workflows to unify applications of quantum simulation. Our
approach constructs common data structures and methods to
program varying quantum simulation applications, and we
leverage the hardware‐agnostic language QCOR and pro-
gramming framework XACC to implement these ideas. We
demonstrate these methods with example applications from
material science and chemistry, and we discuss how to extend
these workflows to the experimental validation of quantum
computation advantage, in which numerical simulations can
benchmark programs for small‐sized models [12, 23–26].

Upon release of the QuaSiMo library, we became aware of
the additional application modules available to the Qiskit
framework, which share a number of features with our pro-
posed composable workflow design. In particular, the Qiskit
Nature module [27] introduces new concepts to model and
solve quantum simulation problems, and reiterates the need for
modular, domain‐specific, and workflow‐driven quantum
application builders, which the QuaSiMo work addresses. The
key differentiators for our work lie in the performance and
extensibility of the implementation. Since QuaSiMo is devel-
oped on top of the C++ QCOR compiler infrastructure, it can
take advantage of optimal performance for classical computing
components of the workflow, such as circuit construction [28]

or post‐processing. Moreover, the plugin‐based extension
model of QuaSiMo is distinct from that of Qiskit Nature. Rather
than requiring new extensions being imported, QuaSiMo puts
forward a common interface for all of its extension points [29],
and therefore enables the development of portable user appli-
cations with respect to the underlying library implementation.

2 | SOFTWARE ARCHITECTURE

Cloud‐based access to quantum computing naturally differen-
tiates programming into conventional and quantum tasks
[30, 31]. The resulting hybrid execution model yields a loosely
integrated computing system by which common methods have
emerged for programming and data flow. We emphasise this
concept of workflow to organise programming applications for
quantum simulation.

Figure 1 shows the blueprint of our Quantum Simulation
Modelling (QuaSiMo) library. The programming workflow is
defined by a QuantumSimulationWorkflow concept, which en-
capsulates the hybrid quantum‐classical procedures pertinent to
a quantum simulation, for example, VQE, QAOA, or dynamical
quantum simulation. A quantum simulation workflow exposes
an execute method taking as input a QuantumSimulationModel
object representing the quantum model that needs to be simu-
lated. This model captures quantum mechanical observables,
such as energy, spin magnetisation, etc., that we want the
workflow to solve or simulate for. In addition, information about
the system Hamiltonian, if different from the observable oper-
ator of interest, and customised initial quantum state preparation
can also be specified in the QuantumSimulationModel.

By separating the quantum simulation model from the
simulation workflow, our object‐oriented design allows the
concrete simulation workflow to simulate rather generic
quantum models. This design leverages the ModelFactory
utility, implementing the object‐oriented factory method
pattern. A broad variety of input mechanisms, such as those
provided by the QCOR infrastructure or based on custom
interoperability wrappers for quantum‐chemistry software, can
thus be covered by a single customisable polymorphic model.
For additional flexibility, the last createModel factory method
overload accepts a polymorphic builder interface Mod-
elBuilder, the implementations of which can build arbitrarily
composed QuantumSimulationModel objects.

QuantumSimulationWorkflow is the main extension point
of our QuaSiMo library. Built upon the CppMicroServices
framework conforming to the Open Services Gateway Initia-
tive (OSGi) standard [29], QuaSiMo allows implementation of
a new quantum workflow as a plugin loadable at runtime. At
the time of this writing, we have developed the QuantumSi-
mulationWorkflow plugins for the VQE, QAOA, QITE, and
time‐dependent simulation algorithms, as depicted in Figure 1.
All these plugins are implemented in the QCOR language
[28, 33] using the externally provided library routines.

At its core, a hybrid quantum‐classical workflow is a
procedural description of the quantum circuit composition,
pre‐processing, execution (on hardware or simulators), and

NGUYEN ET AL. - 161

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

post‐processing. To facilitate modularity and reusability in
workflow development, we put forward two concepts,
AnsatzGenerator and CostFunctionEvaluator. AnsatzGener-
ator is a helper utility used to generate quantum circuits based
on a predefined method such as the Trotter decomposition
[34, 35] or the unitary coupled‐cluster (UCC) ansatz [36].
CostFunctionEvaluator automates the process of calculating
the expectation value of an observable operator. For example, a
common approach is to use the partial state tomography
method of adding change‐of‐basis gates to compute the
operator expectation value in the Z basis. Given the Cost-
FunctionEvaluator interface, quantum workflow instances can
abstract away the quantum backend execution and the corre-
sponding post‐processing of the results. This functional
decomposition is particularly advantageous in the NISQ
regime since one can easily integrate the noise‐mitigation
techniques, for example, the verified quantum phase estima-
tion protocol [37], into the QuaSiMo library, which can then be
used interchangeably by all existing workflows.

Finally, our abstract QuantumSimulationWorkflow class
also exposes a public validate method accepting a variety of
concrete implementations of the abstract QuantumValida-
tionModel class via a polymorphic interface. Given the quan-
tum simulation results produced by the execute method of
QuantumSimulationWorkflow, the concrete implementations
of QuantumValidationModel must implement its accept_-
results method based on different validation protocols and
acceptance criteria. For example, the acceptance criteria can

consist of distance measures of the results from previously
validated values, or from the results of validated simulators. The
measure may also be taken relative to experimentally obtained
data, which, with sufficient error analysis to bound confidence
in its accuracy, can serve as a ground truth for validation. A
more concrete example in a NISQ workflow includes the use of
the QuantumSimulationWorkflow class to instantiate a varia-
tional quantum eigensolver simulator, followed by the use of
validate to instantiate a state vector simulator. Results from
both simulators can be passed to the QuantumValidationModel
accept_results method that evaluates a distance measure
method and optionally calls a decision method that returns a
binary answer. Other acceptance criteria include evaluation of
formulae with input data, application of curve fits, and user‐
defined criteria provided in the concrete implementation of
the abstract QuantumValidationModel class. The validation
workflow relies on the modular architecture of our approach,
which effectively means that writing custom validation methods
and constructing user‐defined validation workflows is achieved
by extending the abstract QuantumValidationModel class.

In our opinion, the proposed object‐oriented design is well
suited to serve as a pattern for implementing diverse hybrid
quantum‐classical simulation algorithms and workflows, which
can then be aggregated inside a library under a unified object‐
oriented interface. Importantly, our standardised polymorphic
designwith a clear separation of concerns andmultiple extension
points provides a high level of composability to developers
interested in implementing rather complex quantum simulation

F I GURE 1 The class UML diagram of the quantum simulation application. The fully typed version is provided separately (see [32])

162 - NGUYEN ET AL.

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

workflows. The modularity and composability of our workflow
design scheme provide an effectivemechanism to break complex
quantumsimulationprocedures into reusablebuildingblocks and
also serve as a platform for iterative quantum algorithm devel-
opment. Inparticular,weenvisionthat avarietyofnewalgorithms
could leverage or be derived from existing algorithms using the
workflow representation as we proposed here. By leveraging the
workflow design formalism and the QuaSiMo library, algorithm
developers benefit from pre‐built and validated software com-
ponents while focussing on novel implementations of workflow
subroutines and compositions of workflow protocols.

3 | TESTING AND EVALUATION

As shown in Figure 1, QuaSiMo includes several built‐in
workflow implementations, such as time‐dependent dynam-
ical simulation, VQE, QAOA, and QITE. Here, we presented
an extended evaluation of these workflows by testing the
implementation against several of the original use cases to
validate the correctness of the implementation and to evaluate
performance considerations. It is worth noting that the cor-
rectness validation of quantum simulation results in the
following is performed against known ‘ground truth’ values.
Automatic result validation via QuantumValidationModel,
proposed as a part of this QuaSiMo library (Figure 1), is for
future consideration and is not included in this evaluation. Our
implementation of the programming workflow for applications
of quantum simulation is available online [38].

We also note that a preliminary evaluation of VQE and
dynamical simulation workflows has been presented in Ref.
[39] due to their representative characteristics. Specifically, the
VQE algorithm demonstrates the variational simulation pro-
cedure comparable to that of the QAOA algorithm. Similarly,
both QITE and generic time‐dependent simulation procedures
are classified broadly as dynamical time evolution algorithms.

3.1 | Dynamical simulation

As a first sample use case, we consider a non‐equilibrium dy-
namics simulation of the Heisenberg model in the form of a
quantum quench. A quench of a quantum system is generally
carried out by initialising the system in the ground state of some
initial Hamiltonian, Hi, and then evolving the system through
time under a final Hamiltonian, Hf . Here, we demonstrate a
simulation of a quantum quench of a one‐dimensional (1D)
antiferromagnetic (AF) Heisenberg model using the QCOR
library to design and execute the quantum circuits.

Our AF Heisenberg Hamiltonian of interest is given by

H ¼ J
X

〈i;j〉
fσxi σ

x
j þ σyi σ

y
j þ gσ

z
iσ
z
j g ð1Þ

where J > 0 gives the strength of the exchange couplings
between nearest neighbour spins pairs 〈i; j〉, g > 0 defines the
anisotropy in the system, and σα

i is the α‐th Pauli operator

acting on qubit i. We choose our initial Hamiltonian to be the
Hamiltonian in Equation (1) in the limit of g→ ∞. Thus,
setting J ¼ 1, Hi ¼ C

P
σziσziþ1, where C is an arbitrarily

large constant. The ground state of Hi is the Néel state, given
by |ψ0〉¼ |↑↓↑…↓〉, which is simple to prepare on the
quantum computer. We choose our final Hamiltonian to have
a finite, positive value of g, so Hf ¼

P
ifσxi σ

x
iþ1 þ σyi σ

y
iþ1þ

gσziσ
z
iþ1g. Our observable of interest is the staggered mag-

netisation [40], which is related to the AF order parameter and
is defined as

msðtÞ ¼
1
N

X

i

ð−1Þi〈σzi ðtÞ〉 ð2Þ

where N is the number of spins in the system.
Figure 2 shows the sample results for N ¼ 9 spins for three

different values for g in Hf . The qualitatively different be-
haviours of the staggered magnetisation after the quench for
g < 1 and g > 1 are apparent, and agree with previous studies
[40]. We present a listing of the code expressing this imple-
mentation in Figure 3.

We developQuaSiMo on top of theQCOR infrastructure, as
shown in Figure 1; thus, any quantum simulation workflows
constructed in QuaSiMo are retargetable to a broad range of
quantum backends. The results that we have demonstrated in
Figure 2 are from a simulator backend. The same code as shown
in Figure 3 can also be recompiled with a −qpu flag to target a
cloud‐based quantum processor, such as those available in the
IBMQ network.

Currently available quantum processors, known as noisy
intermediate‐scale quantum (NISQ) computers [41], have
relatively high gate‐error rates and small qubit decoherence
times, which limit the depth of quantum circuits that can be
executed with high fidelity. As a result, long‐time dynamic
simulations are challenging for NISQ devices as current al-
gorithms produce quantum circuits that increase in depth with
increasing numbers of time‐steps [42]. To limit the circuit size,
we simulated a small AF Heisenberg model, Equation (1), with
only three spins on the IBM's Yorktown (ibmqx2) and Casa-
blanca (ibmq_casablanca) devices.

The simulation results from real quantum hardware for g
values of 0.0 and 4.0 are shown in Figure 4, where we can see
the effects of gate‐errors and qubit decoherence leading to a
significant impairment of the measured staggered magnet-
isation (circles) compared to the theoretical values (solid lines).
In particular, Figure 4 demonstrates how the quality of the
quantum hardware can affect simulation performance. The
Yorktown backend has considerably worse performance met-
rics than the Casablanca backend1. Specifically, compared to
the Casablanca backend, Yorktown has a slightly higher two‐
qubit gate‐error rate, nearly double the read‐out error rate,

1
Calibration data: IBMQ Casablanca: Avg. CNOT Error: 1.165 � 10−2, Avg. Readout
Error: 2.069 � 10−2, Avg. T1: 85.68 μs, Avg. T2: 78.5 μs. IBMQ Yorktown: Avg. CNOT
Error: 1.644 � 10−2, Avg. Readout Error: 4.440 � 10−2, Avg. T1: 50.95 μs, Avg. T2: 34.3
μs.

NGUYEN ET AL. - 163

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

and substantially lower qubit decoherence times. While iden-
tical quantum circuits were run on the two machines, we see
much better distinguishability between the results for the two
values of g in the results from Casablanca than those from
Yorktown.

The staggered magnetisation response to a quench for a
simple three‐qubit AF Heisenberg model in Figure 4, albeit
noisy, illustrates non‐trivial dynamics beyond that of deco-
herence (decaying to zero). Improvements in circuit con-
struction (Trotter decomposition) and optimisation, noise
mitigation, and, most importantly, hardware performance (gate
fidelity and qubit coherence) are required to scale up this time‐
domain simulation workflow for large quantum systems.

3.2 | Variational Quantum Eigensolver

As a second use case demonstration, we apply the Variational
Quantum Eigensolver (VQE) algorithm to find the ground
state energy of H2. The VQE is a quantum‐classic hybrid al-
gorithm used to find Hamiltonian's eigenvalues, where the

F I GURE 2 Simulation results of staggered magnetisation for a
Heisenberg model with nine spins after a quantum quench. The Trotter
step size (dt) is 0.05

F I GURE 3 Defining the AF Heisenberg problem model and
simulating its dynamics with QuaSiMo. In this example, g is the anisotropy
parameter, as shown in Equation (1), and n_spins is the number of spins/
qubits. initial_spins is an array of 0 or 1 values denoting the initial spin state.
initial_spins was initialised (not shown here) to a vector of alternating 0 and
1 values (Néel state). dt and n_steps are Trotter step size and number of
steps, respectively

F I GURE 4 Results of simulation an AF model (Equation 1) for a
system with three spins using the code snippet in Figure 3 targeting the
IBMQ's Yorktown (a) and Casablanca (b) devices. Each data point is an
average of five runs of 8192 measurement shots each. The circuits are
compiled and optimised using the QCOR compiler before submitting for
execution. The Trotter time‐step (dt) is 0.05

164 - NGUYEN ET AL.

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

quantum process side is represented by a parametrised quan-
tum circuit whose parameters are updated by a classical opti-
misation process [43]. The algorithm updates the quantum
circuit parameters θ to minimise Hamiltonian's expectation
value Eθ until it converges.

The performance of the VQE algorithm, as any other
quantum‐classical variational algorithms [44], depends in part
on the selection of the classical optimiser and the circuit ansatz.
The design scheme implemented in this work allows us to tune
the VQE components to pursue better performance. We
present a listing of the code expressing this implementation in
Figure 5, in which we define the different parameters of the
VQE algorithm in a custom‐tailored way. In the code snippet,
@qjit is a directive to activate the QCOR just‐in‐time compiler,
which compiles the kernel body into the intermediate repre-
sentation, and QuaSiMo.getWorkflow is a utility function of
the library to construct and initialise workflow objects of
various types. In Figure 6a, we present simulations considering
the Simultaneous Perturbation Stochastic Approximation
(SPSA) for ansatz updating. There, we show the energy as a
function of the quantum circuits used in the learning process
with a budget of 200 function evaluations with 5000 shots
(experimental repetitions) per evaluation by using the QCOR's
VQE module, QuaSiMo.getWorkflow(‘vqe’), and by using the
Qiskit class aqua.algorithms.VQE [19]. In both cases, we
consider (0.,0.,0.) as the initial set of parameters, therefore the
energy values in the first iterations are similar, due to the SPSA
hyperparameter's calibration. As it is expected, since we are
using the same optimiser in both quantum simulations, there is
not a relevant difference between the learning paths. However,
the execution time in QCOR is shorter. This feature is pre-
sented in Figure 6b, where we show the execution time rate
between QCOR and Qiskit as a function of the classical
optimisation algorithm. To evaluate the typical execution time
of each optimiser, we consider 51 runs of VQE towards the
generation of H2 quantum ground state.

3.2.1 | Symmetry reduction

The presence of symmetries, such as rotations, reflections,
number of particles etc., in the Hamiltonian model allows us to
map the model to a model with fewer qubits [45]. In H2, we
apply the QCOR's function operatorTransform(‘qubit‐
tapering’, H) to reduce the four‐qubit Hamiltonian, see
Figure 5, to a one‐qubit Hamiltonian model. We present this
implementation in Figure 7, in which we transform the
Hamiltonian introduced in Figure 5 into a one‐qubit model,
and we redefine the anzats. In the output section of Figure 7,
we present the one‐qubit model and the VQE's output that
converge to a similar value of the four‐qubit model.

3.2.2 | Fermion‐qubit map

An important feature included in the QCOR compiler is the
fermion‐to‐qubit mapping that facilitates the quantum state

searching in VQE. In Figure 8, we present an example of how
to use OpenFermion operators [47] in the VQE workflow. In
that implementation, we define the ansatz by using Scipy and
OpenFermion, the QCOR compiler decomposes the ansatz
into quantum gates; we follow the same structure presented in
Figure 5 for the VQE workflow.

3.3 | Quantum approximate optimisation
algorithm

To further demonstrate the utility of QCOR, we present an
implementation of the quantum approximate optimisation al-
gorithm (QAOA) [17]. QAOA translates a classical cost func-
tion into a quantum operator HC and then uses a variational
quantum‐classical optimisation loop to find quantum states
that minimise the expectation value 〈HC〉. The optimised

F I GURE 5 Code snippet to learn the ground state energy of H2 by the
VQE. For the sake of simplicity, we have omitted most of the terms in the
Hamiltonian and ansatz

NGUYEN ET AL. - 165

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

quantum states are then prepared and measured to obtain
bitstrings that correspond to classical solutions to the opti-
misation problem.

Figure 9 shows an example python code that uses QCOR
simulations to find optimised quantum states with QAOA.
Opening lines define the number of qubits n and construct the
problem Hamiltonian HC for MaxCut on a star graph Sn. The
Hamiltonian is then used to create the QuaSiMo model and
workflow to simulate p‐step QAOA and return the expectation
〈HC〉, similar to the previous VQE example of Figure 5.

Figure 10 shows optimised energies 〈HC〉 computed in
QCOR for star graphs with numbers of qubits n¼ 2;…; 9 at
various QAOA depth parameters p. Each time the program is
run it begins with random initial parameters to be , so we used
several random starts for some of the graphs, keeping the
smallest result as the 〈HC〉 shown in the figure. The QCOR

(a)

(b)

F I GURE 6 Energy ground state estimation for H2 using VQE by
using QCOR languange and Qiskit software. In panel (a), we present the
VQE's learning path using the stochastic algorithm SPSA to find a quantum
state with minimal energy. This plot shows how the energy Eθ approaches the
exact value E* ¼ −1:1456295 Ha as the optimiser defines new quantum
circuits, following the variational principle. In addition, panel (b) presents an
execution time ratio between QCOR's VQE module and Qiskit's VQE
module. The execution times ratio is below 1 (red dotted line) for different
classical optimisers. The dots represent the 50th percentile of the execution
time ratio from 51 independent runs of VQE. Optimiser labels correspond to
Simultaneous Perturbation Stochastic Approximation (SPSA), ADAptive
Moment estimation (ADAM), Nelder‐Mead, also known as downhill simplex
algorithm (N‐M), Constraint Optimisation By Linear Approximation
(COBYLA), and the Sequential Least SQuares Programming (SLSQP)

F I GURE 7 Symmetry reduction of the Hamiltonian model. In this
snippet, we transform the Hamiltonian model used in 6 to a one‐qubit
model following symmetry arguments. This feature is implemented in the
function operatorTransform(‘qubit‐tapering’, H)

F I GURE 8 Here, we depict how to use OpenFermion operators to
construct the state‐preparation kernel (ansatz) for the VQE workflow. We
use SciPy [46] and OpenFermion [47] to construct the exponential of
ðX0Y 1 − Y0X1Þ operator as a matrix. The matrix will be decomposed into
quantum gates by the QCOR compiler

166 - NGUYEN ET AL.

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

results are in perfect agreement with the optimised standards
[48] of Lotshaw et al. [49]. The results have interesting features,
for example, when n is odd, perfect ground‐state energies
〈HC〉¼ E0 are obtained at p¼ 2, whereas when n is even, the
results need p¼ 3 to approach close to E0. The simplicity of
the QCOR code and simulations make this an attractive route
to studying interesting features like these in future research on
QAOA.

3.4 | Quantum imaginary time evolution
algorithm

To compute the ground‐state energy of an arbitrary
Hamiltonian, in addition to VQE as we have demonstrated

in Section 3.2, there is another algorithm, so‐called quantum
imaginary time evolution (QITE) [18, 50], which neither re-
quires the use of an ansatz nor an optimiser. In QITE, we
evolve the state through imaginary time it ≡ β by applying
the time‐evolution operator U ¼ e−βH , which minimises the
system energy exponentially. To do so, for each imaginary
time‐step Δβ, we approximate the imaginary time evolution
based on the results of the previous steps.

As shown in Figure 1, the QITE workflow is integrated
into the QuaSiMo library. In this example, we demonstrate the
use of QITE to find the ground‐state energy of a three‐qubit
transverse field Ising model (TFIM),

H ¼ Jz
XN−1

i¼1

σziσ
z
iþ1 þ hx

XN

i¼1

σxi ð3Þ

where Jz ¼ hx ¼ −1:0 and N ¼ 3 is the number of spins
(qubits).

Figure 11 is the code snippet to set up the QuaSiMo
problem description and workflow for this problem.

The problem model is captured by a single Hamiltonian
operator constructed by direct Pauli operator algebra. We also
want to note that the Pauli operator algebra of QuaSiMo allows
for hierarchical construction of the Hamiltonian, for example,
via for loops, suitable for generic Hamiltonians similar to the
one described in Equation (3).

For QITE workflow configurations, we set the step‐size to
0.45 and steps to 20, for a total imaginary time of β¼ 9:0
(ℏ¼ 1). The system begins in different initial states by using a
state‐preparation circuit, as shown in Figure 11. Similar to the
Python API, users can also use the utility function getWork-
flow to retrieve an instance of the QITE workflow from the
QCOR service registry with the name key ‘qite’ as shown in
Figure 11.

The main drawback of QITE algorithm is that the prop-
agating circuit size increases during the imaginary time‐
stepping procedure. To alleviate this constraint, especially for
execution on NISQ hardware, QuaSiMo's QITE workflow
implementation supports custom, externally provided circuit
optimisers that will be invoked during the algorithm execution
to minimise the circuit depth. In this demonstration, we take
advantage of the QSearch [51] optimiser from BQSKit library,
which is capable of synthesising constant‐depth circuits for a
variety of common use cases including the TFIM model in (3).
For instance, in this example, the final QITE circuit (step = 20)
has approximately 8000 gates (3000 CNOT gates), which is
clearly beyond the capability of current NISQ devices. Thanks
to QSearch, we can always re‐synthesise a constant depth
circuit with only 14 CNOT gates (87 gates in total) for any of
the time steps, which is the theoretical lower bound [52],
1
4 ð4

n − 3n − 1Þ ¼ 13:5, for CNOT gate count in three‐qubit
circuits.

The results of the QITE workflow execution are shown in
Figure 12, where we can see the energy value exponentially
decays to the analytically computed ground‐state energy
of −3.49396 for all initial states.

F I GURE 9 Code to find the expectation value of the cost Hamiltonian
with QAOA, for a star‐graph instance of the unweighted MaxCut problem

F I GURE 1 0 Optimised expectation values of the cost Hamiltonian
HC for star‐graph instances of unweighted MaxCut with QAOA

NGUYEN ET AL. - 167

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 | CONCLUSIONS

We have presented and demonstrated a programming work-
flow for applications of quantum simulation that promotes
common, reusable methods and data structures for scientific
applications.

We note that while the framework presented here is readily
applicable to use cases in the NISQ era – with the Quan-
tumSimulationWorkflow in particular being extendable to
NISQ simulation algorithms such as VQE – the workflow is
also extendable to universal algorithms. Code portability is
ensured through intermediate representation that is then
implemented for each backend according to specific APIs,
which are accessible in the QuaSiMo library. This enables rapid
porting of a simulation algorithm to multiple machines (write
once, run everywhere paradigm). This is an ideal environment
to construct both benchmarks and validation protocols, along
with short depth quantum simulations that can quickly be run
on multiple processors and directly compared.

Although we anticipate that our composable design
approach can serve the majority of applications and domains,
we acknowledge that the problem model‐simulation workflow‐
validation partitioning might not be suitable for certain spe-
cialised use cases. For instance, quantum simulation algorithms
or applications having a monolithic structure, for example,

interrelated solving and validation procedures, may not be
readily represented by QuaSiMo. Nevertheless, by open‐
sourcing the library, we encourage new contributions, either
at the design or implementation level, to best capture emerging
use cases in this modular and composable design scheme.

While we maintain focus on rapid prototyping of quantum
simulation on today's NISQ devices, we note that the nature of
the intermediate representation and the modular backend
structure enables targeting fault‐tolerant devices as well. A
fault‐tolerant (FT) architecture may be represented as an
additional backend with encoding transpiler pre‐processing.
While this configuration is ideal for QuaSiMo's unencoded
qubit targets, we also note that the parent language QCOR is
capable of expressing fully quantum‐error‐correction‐encoded
algorithms as well. Therefore, we expect the framework to be
extendable and to find use in workflows involving universal or
FT applications in the future.

ACKNOWLEDGEMENTS
This work was supported by the U.S. Department of Energy
(DOE) Office of Science Advanced Scientific Computing
Research program office Accelerated Research for Quantum
Computing program. This research used resources of the Oak
Ridge Leadership Computing Facility, which is a DOE Office
of Science User Facility supported under Contract DE‐AC05‐
00OR22725.

CONFLICT OF INTEREST
None.

PERMISSION TO REPRODUCE MATERIALS
FROM OTHER SOURCES
Part of the content has been published in the IEEE 18th In-
ternational Conference on Software Architecture Companion
(ICSA‐C) proceeding. We have requested reuse permission

F I GURE 1 1 Code snippet (in C++) to find the ground‐state energy
of a three‐qubit TFIM Hamiltonian using the QITE workflow. In this
example, we run the QITE algorithm for a total imaginary time β of 9.0
(dβ ¼ 0:45, 20 steps). Additionally, we use the QSearch algorithm from
BQSKit to optimise QITE circuits during workflow execution. The state_prep
kernel is used to initialise the qubits into the desired initial state, for
example, |100〉 in this particular case

F I GURE 1 2 QITE results for 3‐qubit TFIM with different initial
states, step size = 0.45. The red dashed line represents the true ground‐state
energy of −3.49396

168 - NGUYEN ET AL.

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

from the IEEE and submitted it to the IET Quantum
Communication editorial office (Sophie Robinson) for the
record.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in
the QCOR repository at https://github.com/ORNL‐QCI/
qcor.

ORCID
Thien Nguyen https://orcid.org/0000-0002-5319-1213

REFERENCES
1. Aspuru‐Guzik, A., et al.: Simulated quantum computation of molecular

energies. Science. 309(5741), 1704–1707 (2005)
2. Whitfield, J.D., Biamonte, J., Aspuru‐Guzik, A.: Simulation of electronic

structure Hamiltonians using quantum computers. Mol. Phys. 109(5),
735–750 (2011)

3. Cao, Y., et al.: Quantum chemistry in the age of quantum computing.
Chem. Rev. 119(19), 10856–10915 (2019)

4. McArdle, S., et al.: Quantum computational chemistry. Rev. Mod. Phys.
92(1), 015003 (2020)

5. Yeter‐Aydeniz, K., Siopsis, G., Pooser, R.C.: Scattering in the ising model
using quantum lanczos algorithm. arXiv preprint arXiv:200808763.
(2020)

6. O’Malley, P.J., et al.: Scalable quantum simulation of molecular energies.
Phys. Rev. X. 6(3), 031007 (2016)

7. Lidar, D.A., Wang, H.: Calculating the thermal rate constant with
exponential speedup on a quantum computer. Phys. Rev. 59(2),
2429–2438 (1999)

8. Bassman Oftelie, L., et al.: Towards simulation of the dynamics of
materials on quantum computers. Phys. Rev. B. 101(18), 184305 (2020)

9. Kosugi, T., Matsushita, Y.i.: Linear‐response functions of molecules on a
quantum computer: charge and spin responses and optical absorption.
Phy. Rev. Research. 2(3), 033043 (2020)

10. Lysne, N.K., et al.: Small, highly accurate quantum processor for
intermediate‐depth quantum simulations. Phys. Rev. Lett. 124, 230501
(2020). https://link.aps.org/doi/10.1103/PhysRevLett.124.230501

11. Cirstoiu, C., et al.: Variational fast forwarding for quantum simulation
beyond the coherence time. NPJ Quantum Inf. 6(1), 1–10 (2020)

12. Quantum, G.A., et al.: Hartree‐Fock on a superconducting qubit quan-
tum computer. Science. 369(6507), 1084–1089 (2020)

13. McClean, J.R., et al.: The theory of variational hybrid quantum‐classical
algorithms. New J. Phys. 18(2), 023023 (2016)

14. Romero, J., et al.: Strategies for quantum computing molecular energies
using the unitary coupled cluster ansatz. Quantum Sci. Technol. 4(1),
014008 (2018)

15. Grimsley, H.R., et al.: An adaptive variational algorithm for exact mo-
lecular simulations on a quantum computer. Nat. Commun. 10(1), 1–6
(2019)

16. Tang, H.L., et al.: qubit‐adapt‐vqe: an adaptive algorithm for constructing
hardware‐efficient ansatze on a quantum processor. arXiv preprint
arXiv:191110205. (2019)

17. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimi-
zation algorithm. arXiv:14114028. (2014)

18. Motta, M., et al.: Determining eigenstates and thermal states on a
quantum computer using quantum imaginary time evolution. Nat. Phys.
16(2), 1–6 (2019)

19. Qiskit: Qiskit aqua. Qiskit (2021). https://github.com/Qiskit/qiskit‐aqua
20. Qiskit: Qiskit terra. Qiskit (2021). https://github.com/Qiskit/qiskit‐terra
21. Kottmann, J.S., et al.: Tequila: a platform for rapid development of

quantum algorithms. arXiv preprint arXiv:201103057. (2020)

22. Zapata. Orquestra. Zapata. (2021). https://www.zapatacomputing.com/
orquestra

23. Kandala, A., et al.: Hardware‐efficient variational quantum eigensolver
for small molecules and quantum magnets. Nature. 549(7671), 242–246
(2017)

24. Hempel, C., et al.: Quantum chemistry calculations on a trapped‐ion
quantum simulator. Phys. Rev. X. 8(3), 031022 (2018)

25. McCaskey, A.J., et al.: Quantum chemistry as a benchmark for near‐term
quantum computers. NPJ Quantum Inf. 5(1), 1–8 (2019)

26. Yeter‐Aydeniz, K., Pooser, R.C., Siopsis, G.: Practical quantum compu-
tation of chemical and nuclear energy levels using quantum imaginary
time evolution and lanczos algorithms. NPJ Quantum Inf. 6(1), 1–8
(2020)

27. Qiskit: Introducing qiskit nature. Qiskit (2021). https://medium.com/
qiskit/introducing‐qiskit‐nature‐cb9e588bb004

28. Nguyen, T., et al.: Extending c++ for heterogeneous quantum‐classical
computing. arXiv preprint arXiv:201003935. (2020)

29. Marples, D., Kriens, P.: The open services gateway initiative: an
introductory overview. IEEE Commun. Mag. 39(12), 110–114
(2002)

30. Britt, K.A., Humble, T.S.: High‐performance computing with quantum
processing units. ACM J. Emerg. Technol. Comput. Syst. 13(3), 1–13
(2017)

31. McCaskey, A.J., et al.: A language and hardware independent approach to
quantum–classical computing. Software. 7, 245–254 (2018). http://www.
sciencedirect.com/science/article/pii/S2352711018300700

32. Source code repository. GitLab. (2020). https://code.ornl.gov/elwasif/
qsa‐workflow

33. Mintz, T.M., et al.: Qcor: a language extension specification for the
heterogeneous quantum‐classical model of computation. ACM J. Emerg.
Technol. Comput. Syst. 16(2), 1–17 (2020)

34. Trotter, H.F.: On the product of semi‐groups of operators. Proc. Am.
Math. Soc. 10(4), 545–545 (1959)

35. Suzuki, M.: Generalized trotter’s formula and systematic approx-
imants of exponential operators and inner derivations with applica-
tions to many‐body problems. Commun. Math. Phys. 51(2), 183–190
(1976)

36. Barkoutsos, P.K., et al.: Quantum algorithms for electronic structure
calculations: particle‐hole Hamiltonian and optimized wave‐function
expansions. Phys. Rev. 98(2), 022322 (2018)

37. O’Brien, T.E., et al.: Error mitigation via verified phase estimation. arXiv
preprint arXiv:201002538. (2020)

38. Qcor – c++ compiler for heterogeneous quantum‐classical computing
built on clang and xacc. GitHub. (2020). https://github.com/ORNL‐
QCI/qcor

39. Nguyen, T., et al.: Composable programming of hybrid workflows for
quantum simulation. In: 2021 IEEE 18th International Conference on
Software Architecture Companion (ICSA‐C), pp. 110–116. (2021)

40. Barmettler, P., et al.: Quantum quenches in the anisotropic spin‐
heisenberg chain: different approaches to many‐body dynamics far
from equilibrium. New J. Phys. 12(5), 055017 (2010)

41. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum.
2, 79 (2018)

42. Wiebe, N., et al.: Simulating quantum dynamics on a quantum computer.
J. Phys. Math. Theor. 44(44), 445308 (2011)

43. Peruzzo, A., et al.: A variational eigenvalue solver on a photonic quantum
processor. Nat. Commun. 5(1), 4213 (2014). https://doi.org/10.1038/
ncomms5213

44. Benedetti, M., et al.: A generative modeling approach for benchmarking
and training shallow quantum circuits. NPJ Quantum Inf. 5(1), 45 (2019).
https://doi.org/10.1038/s41534‐019‐0157‐8

45. Bravyi, S., et al.: Tappering off qubits to simulate fermionic Hamiltonian.
arXiv preprint arXiv:170108213. (2017)

46. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods. 17, 261–272 (2020)

NGUYEN ET AL. - 169

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

47. McClean, J.R., et al.: Openfermion: the electronic structure package for
quantum computers (2019)

48. Lotshaw, P.C., Humble, T.: QAOA dataset. (2021). https://code.ornl.
gov/qci/qaoa‐dataset‐version1

49. Lotshaw, P.C., et al.: Empirical performance bounds for quantum
approximate optimization. arXiv:2102:06813. (2021)

50. Yeter‐Aydeniz, K., Siopsis, G., Pooser, R.C.: Scattering in the ising model
with the quantum lanczos algorithm. New J. Phys. 23(4), 043033 (2021).
https://doi.org/10.1088/1367‐2630/abe63d

51. Davis, M.G., et al.: Towards optimal topology aware quantum circuit
synthesis. In: 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), pp. 223–234. (2020)

52. Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two‐qubit
controlled‐not‐based circuits. Phys. Rev. A. 69, 062321 (2004). https://
link.aps.org/doi/10.1103/PhysRevA.69.062321

How to cite this article: Nguyen, T., et al.: QuaSiMo: a
composable library to program hybrid workflows for
quantum simulation. IET Quant. Comm. 2(4), 160–170
(2021). https://doi.org/10.1049/qtc2.12024

170 - NGUYEN ET AL.

 26328925, 2021, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/qtc2.12024 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

