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Abstract
Precise construction of isolated reactive centers on semiconductors with well-
controlled configurations affords a great opportunity to investigate the reaction
mechanisms in the photocatalytic process and realize the targeted conversion
of solar energy to steer the charge kinetics for hydrogen evolution. In the cur-
rent research, we decorated isolated Ni atoms on the surface of CdS nanowires
for efficient photocatalytic hydrogen production. X-ray absorption fine structure
investigations clearly demonstrate the atomical dispersion of Ni sites on the sur-
face of CdS nanowires. Experimental investigations reveal that the isolated Ni
atoms not only perform well as the real reactive centers but also greatly accel-
erate the electron transfer via direct Ni–S coordination. Theoretical simulation
further documents that the hydrogen adsorption process has also been enhanced
over the semi-coordinated Ni centers through electronic coupling at the atomic
scale.
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1 INTRODUCTION

The highly increased energy demand of modern society
has attracted enormous attention for developing renew-
able and clean energy sources, among which solar energy
is considered as a promising candidate.1–7 Photo-driven
water splitting has been regarded as a sustainable and
cost-efficient strategy to generate clean hydrogen (H2)
fuel to realize a stable supply of renewable energy.5,8,9
Semiconductor materials have received great research
attention due to their unique chemical, physical, and
optoelectronics characteristics. Nevertheless, the catalytic
performance over those semiconductive materials is rela-
tively low even under the participation of sacrificial agents.
Recombination of photoexcited electron–hole pairs before
the redox reaction is considered as the main reason for
the low efficiency.10–12 Cocatalysts are usually applied
in photocatalytic systems to accelerate the separation of
photogenerated electron/hole and in-fine improving the
reaction kinetics. Numerous researches have confirmed
that Pt affords the highest hydrogen evolution rates among
various cocatalysts. However, the practical utilization of
Pt-based cocatalysts is highly hindered by their high
cost and scarcity. Therefore, developing cost-efficient and
highly active alternatives to Pt is urgently expected.13,14
The development of precious metal-free cocatalysts that
can be readily used for low-cost and pilot system design
is thus significantly favored but still challenging to
date.
Generally speaking, charge separation through the cap-

ture of electrons by a cocatalyst affords the most powerful
strategy to enhance the hydrogen evolution rates in the
reaction solution.15–18 Manipulating the size of the cocat-
alyst down to a single-atom state represents the highest
utilization of metal species, which may also improve the
photogenerated electron–hole separation efficiency.19–23
Furthermore, homogeneously dispersed isolated reactive
centers offer us an ideal model to explore the precise
structure–performance correlation at the atomic level.
The electronic structure of isolated reactive centers as
cocatalysts and their interaction with light absorbers are
important factors in the comprehension of the photocat-
alytic mechanism.24–27 Single-atom catalysts, with nearly
identical catalytically reactive centers, have emerged as
excellent candidates for photocatalysts, affording us the
great chance to detect their structural evolution during
the catalytic process.6 Moreover, the decoration of iso-
lated active centers over semiconductors may also induce
the generation of discrete energy bands, which is very
effective in trapping charge carriers and boosting the
transfer of photogenerated electrons and holes.28–30 Con-
sidering these characteristics, it is reasonable to expect
greatly boosted catalytic performance for photocatalytic

water splitting over single atom-decorated semiconductor
photocatalysts.
Herein, we successfully decorated isolatedNi atoms (the

cocatalyst) onto the surface of CdS nanowires (denoted
CdS@Ni) for efficient photocatalytic H2 evolution. Syn-
chrotron radiation-based X-ray absorption spectroscopy
has been applied to determine the coordination configura-
tion of the isolated reactive centers. Photocatalytic water
splitting performance evaluation undoubtedly demon-
strates that the decorated Ni atoms work as the active
centers for proton recombination, steering the charge
kinetics and improving the photocatalytic activities dra-
matically. Density functional theory (DFT) simulations
further demonstrate that the energy band configuration of
the CdS semiconductor has been obviously changed after
Ni decoration, resulting in an obviously reduced work
function and greatly reduced Gibbs free energy for the
adsorption of H*.

2 SYNTHESIS AND STRUCTURE
CHARACTERIZATION

A solvothermal approach is applied for constructing
CdS nanowires.8 The successful synthesis of CdS with a
hexagonal wurtzite crystal structure is verified by X-ray
diffraction (XRD) measurements (Figure S1). Scanning
transmission electron microscopy (STEM) investigations
verify the one-dimensional nanowires inmorphology with
a uniform dispersion in diameter (Figure S2). Isolated
Ni atoms are further loaded onto the surface of the CdS
nanowire via a facile wet-chemical method, followed
by heat treatment to enhance the interaction between
the isolated Ni atoms and CdS supports via the newly
generated Ni–S bonding (Figure 1A). It should be noted
that the crystal structure of the hexagonal wurtzite crystal
structure of CdS did not change after the decoration of
Ni species, as evidenced by the well-maintained XRD
pattern, no peak indexed to the crystallographic Ni is pre-
sented (Figure S3). As confirmed by transmission electron
microscopy (TEM) observation, no noticeable morphology
of CdS nanowires can be detected with the decoration of
isolated Ni atoms over the surface (Figure 1B,C). High-
resolution TEM images with various magnifications of
the CdS@Ni sample clearly reveal the absence of Ni or
NiOx clusters (Figure 1D–F). The interplanar distance is
confirmed as 3.4 Å, which can be ascribed to the (002)
plane of hexagonal CdS, which is also consistent with the
(002) spacing distance evaluated from the selected area
electron diffraction spots (Figure 1G).31,32 The unvaried
lattice fringes of CdS further demonstrate that the original
structure of CdS is not changed after Ni decoration.33,34 All
these results also suggest that the distribution of isolated
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468 HUANG et al.

F IGURE 1 (A) Schematic illustration of the synthetic process of CdS@Ni: (I) surface adsorption of Ni species; (II) heat-treatment for
enhancing the interaction between the isolated Ni atoms and CdS surface. (B and C) Transmission electron microscopy (TEM) images of
CdS@Ni. (D–F) High-resolution TEM (HRTEM) image of CdS@Ni. (G) Selected area electron diffraction (SAED) pattern of CdS@Ni

Ni atoms is either grafted on the CdS surface or should
follow the periodic arrangement of Cd atoms in CdS.35,36
Catalysts with various Ni loading contents have also been
synthesized. Inductively coupled plasma–optical emission
spectrometry (ICP–OES) investigations confirm that the
loading contents of Ni range from 0.29% to 1.68%. The
Raman spectra have also been investigated for CdS- and
Ni-decorated CdS@Ni, where the first-order LO Raman
peak and second LO phonon vibrational peak appear
at 297.9 and 598.1 cm–1, respectively (Figure S4).37 The
observed LO Raman peak positions agree very well with
those reported for CdS in the hexagonal wurtzite phase.
The nearly identical vibration mode of these two samples
also suggests that the Ni decoration cast limited influence
on the surface of CdS. The Brunauer–Emmett–Teller
surface areas of CdS and CdS@Ni were confirmed as

19.58 and 26.75 m2 g–1, respectively, indicating the highly
dispersed states of the nanowires (Figure S5).38
Extended X-ray absorption fine structure (EXAFS) spec-

trometry at the Ni K-edge has been explored using both
wavelet transform (WT) and Fourier transformation to
shed light on the local coordination geometry and oxi-
dation state of the decorated Ni atoms. In the Fourier-
transformed (FT)-EXAFS curve of CdS@Ni, a major peak
around 1.86 Å assigned to the Ni–S coordination is clearly
observed, while no Ni–Ni connection around 2.19 Å or Ni–
O bond at 1.59 Å is detected, validating that Ni atoms are
isolated and stabilized by the S atoms from the CdS with-
out the formation of oxide and Ni aggregation (Figure 2A).
The WT simulation has been conducted to afford radial
distance resolution in the K space. The WT intensity max-
imum at about 6.1 Å−1 arising from the Ni–S coordination
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HUANG et al. 469

F IGURE 2 (A) Fourier transform magnitudes of the experimental Ni K-edge extended X-ray absorption fine structure (EXAFS) spectra
in R space. (B and C) Fourier transform magnitudes of Co K-edge EXAFS spectra in R space (B) and K space (C). (D) Ni K-edge X-ray
absorption near-edge structure (XANES) experimental spectra. (E) Wavelet transform (WT) for the k3-weighted EXAFS signal

is well resolved at 1.0–3.0 Å for CdS@Ni, whereas an inten-
sity maximum at about 6.64 Å−1 associated with the Ni–Ni
coordination is not detected (Figure 2E). These results fur-
ther demonstrate that the Ni species in CdS@Ni should
be isolated without any aggregation. The least-squares
EXAFS curve-fitting analysis clarifies the coordination
sphere of the atomically dispersed centers. The best-fitted
results clearly confirm that the Ni–S bond length of 2.26
Å, much shorter than the Ni–Ni bonding (2.48 Å) in Ni
foil (Figures 2B,C and S6). Further analysis demonstrates
that the coordination number for the Ni–S bonding is
about 4.3 in the first coordination sphere (Table S1).39,40
As shown in Figure 2D, the X-ray absorption near-edge
structure (XANES) curve of CdS@Ni at the Ni K-edge has
displayed varied near-edge absorption energy from that
of Ni foil, suggesting that the Ni species exist with posi-
tive oxidation states.41,42 The absorption edges of XANES
curves have been fitted, and the average oxidation state of
Ni species in CdS@Ni is confirmed as 0.89 (Figure S7).
Overall, the XAFS investigation clearly verifies that Ni
species are atomically dispersed over the surface of theCdS
nanowire via Ni–S coordination.
The successful decoration of Ni species over the surface

of the CdS nanowire has also been verified by X-ray pho-
toelectron spectroscopy (XPS) analysis (Figure 3A). The
high-resolution Ni 2p spectrum in CdS@Ni with peaks at
879.3, 872.2, 863.4, and 854.8 eV are assigned to Ni 2p1/2,

Ni 2p3/2 and their corresponding satellite peaks, which
may suggest the generation of directNi–S coordination and
exclude Ni–Ni bonding (Figure 3B).43–45 The dominant S
2p peaks located at 161.3 and 162.5 eV are attributed to
lattice sulfur in CdS, while the minor peaks at 160.1 and
161.2 eV correspond to Ni–S bonds (Figure 3C).46,47 The
binding energies of Cd 3d5/2 and Cd 3d3/2 are observed
at 404.1 and 411.6 eV, revealing a normal Cd2+ state,
which is ascribed to the Cd–S bonding existing in Ni–CdS
(Figure 3D).48 In addition, compared with those of bare
CdS, obvious shifts to a lower binding energy have been
observed in both theCd 3d and S 2p spectra, suggesting that
the atomically dispersed Ni causes the increased electron
density of the CdS support.49

3 PHOTOCATALYTIC HYDROGEN
EVOLUTION

After clarifying the atomic-scale structure of CdS@Ni,
we further shifted our attention to the role of isolated Ni
atoms in photocatalytic hydrogen evolution. Visible light
(λ ≥ 400 nm)-driven photocatalytic H2 evolution is evalu-
ated while lactic acid is applied as the sacrificial electron
donor. The catalytic performance is also influenced by
the volume ratio of lactic acid in the reaction system.
The optimized performance can be obtained for CdS@Ni

 26924552, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sus2.76 by C

ochraneC
hina, W

iley O
nline L

ibrary on [04/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



470 HUANG et al.

F IGURE 3 (A) Full X-ray photoelectron spectroscopy (XPS) spectrum of CdS@Ni. (B) Ni 2p spectrum of CdS@Ni. (C and D)
Comparison of S 2p (C) and Cd 3d (D) spectra between CdS and CdS@Ni. The obvious band shift clearly demonstrates the energy transfer
between Ni and CdS

when the volume ratio of lactic acid is 20% (Figure S8).
Compared with the pure CdS nanowires, the decoration
of Ni species tremendously boosted the catalytic perfor-
mance. With the increase in the loading contents of Ni
species, the H2 evolution rates also increased accordingly
(Figure 4A). Interestingly, the sample with a Ni loading
content of 1.35% reached its maximum hydrogen evolution
rate of 2.26 mmol g–1 h−1/0.452 mmol h–1, which is about
25 times higher than that of the bare CdS nanowires
(0.09 mmol g–1 h−1). This value is quite impressive
and even comparable to those of precious metal-based
single-atom photocatalysts (Table S2).25,50 We may thus be
reasonable to conclude that the isolated Ni site performs
as the real reactive centers in the hydrogen evolution
process.32 Further increasing the loading content of Ni
species has little influence on its catalytic performance,
suggesting that the latter Ni sites are not involved in
the rate-determining step above a certain surface con-
centration on CdS. Based on these facts, the optimal
CdS@Ni with a Ni loading of 1.35 wt% is chosen for further
photocatalytic studies. Control experiments were also
conducted to clarify the nature of the hydrogen evolution
process under photoirradiation (Figure S9). No H2 can be
detected in the absence of a sacrificial agent in the reaction

system, confirming that lactic acid is indispensable in the
hydrogen evolution process. The whole reaction was also
immediately terminated without light irradiation. These
results reveal that hydrogen evolution is indeed driven by
photoirradiation.
The stability of the catalyst was further investigated via

recycle testing and structural characterization after catal-
ysis (Figure 4B). No obvious degradation of the catalytic
performance is observed after five runs. XRD character-
ization of the sample after catalysis was conducted, and
no change was monitored after the reaction, suggesting
the high stability of CdS@Ni (Figure S10). The EXAFS
and XANES spectra for the sample CdS@Ni after catalysis
were also explored, and no obvious change was observed,
suggesting that there is no Ni aggregation in the catalytic
process and that the coordination configuration of iso-
latedNi atoms is wellmaintained after the reaction (Figure
S11). The H2 generation rates of CdS@Ni at different light
wavelengths were also explored, in which the catalytic per-
formance qualitatively tracks the visible light absorption
spectra (Figure 4C). This result further demonstrates that
hydrogen evolution is driven by photoexcitation, while
the isolated Ni sites should be the active center for the
outstanding photocatalytic activities of CdS@Ni.
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HUANG et al. 471

F IGURE 4 (A) H2 evolution over photocatalysts with different loading contents. (B) Cycling test for H2 evolution over CdS@Ni. (C)
Wavelength-dependent H2 evolution rates and light absorption spectrum of CdS@Ni. (D) Steady-state photoluminescence (PL) spectra. (E)
Time-resolved PL spectra. (F) Transient photocurrent responses of CdS@Ni and CdS

4 MECHANISM EXPLORATION

The photogenerated electron/hole separation and transfer
dynamics have also been conducted to clarify the origin
of the greatly boosted photocatalytic performance (Figure
S12). As observed, the intrinsic carrier recombination is
quite obvious, as evidenced by the strong photolumines-
cence (PL) intensity (Figure 4D). After Ni decoration, the
emission intensity of CdS@Ni is significantly damped, sug-
gesting that the isolated Ni sites can improve the charge
carrier separation with impressive trapping ability. To
further verify this tentative conclusion, the fluorescence
decay times for CdS@Ni and CdS were also explored as
1.158 and 8.175 ns, respectively (Table S3). The signifi-
cantly quenched fluorescence intensity and the reduced
exciton lifetime clearly suggest a significantly accelerated
migration of photoexcited electrons to the catalytic active
Ni centers of CdS@Ni (Figure 4E).51,52 The energy trans-
fer (ET) processes have also been quantitatively described
via the measurement of the ET efficiency (ΦET) based
on the time-resolved fluorescence decay lifetimes (Equa-
tion S1). The ΦET of CdS@Ni (86.7%) was confirmed based
on donor lifetimes in the presence and absence of acceptor
molecules, indicating that highly efficient electron transfer
was realized after the decoration of Ni. Transient pho-
tocurrent responses have been investigated to account for
the charge-transfer process (Figure 4F). As expected, the

photocurrent density of CdS@Ni is much higher than
that of CdS, indicating that the Ni decoration exhibits
a better capability to capture electrons and suppress the
recombination of photoexcited electron–hole. Therefore,
the isolated Ni atom could accelerate the surface reac-
tion kinetics in the catalytic process. This viewpoint is
further demonstrated by electrochemical impedance spec-
troscopy (Figure S13). Lower charge-transfer resistance
for CdS@Ni has been confirmed by the evidence that a
smaller arch is detected.53–56 Photo-irradiation can further
decrease the arc diameter, suggesting that the isolated Ni
atoms act as electron collectors to facilitate the separa-
tion of photogenerated electron–hole pairs on the CdS@Ni
interface. Thus, an adequate supply of electrons is realized
by isolated Ni atoms, optimizing the elementary process of
photocatalytic hydrogen evolution.
DFT simulations are also performed to understand

the mechanism of the greatly enhanced performance of
CdS@Ni. The electron rearrangement between the Ni
atoms and S atoms from the CdS supports has been
observed, as evidenced by the significantly modified dif-
ferential electron densities (Figures 5A and S14).57,58 Com-
pared with pure CdS, the Ni decoration also induces
electron transfer fromNi atoms to S atoms and the genera-
tion of a new band in the vicinity of the Fermi level. These
occupied states of Ni are evolved into the electron trap state
for CdS and lift the Fermi level to a position close to the
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F IGURE 5 (A) Calculated differential charge density for CdS@Ni. (B and C) Band structures of CdS (B) and Ni-decorated CdS (C). (D
and E) Calculated work function of CdS (D) and CdS@Ni (E). (F) Gibbs free energy of H* for CdS and CdS@Ni (Cd site and Ni site)

conduction bandminimum of CdS, indicating that Ni dec-
oration can act as a mediator to promote electron transfer
from CdS to isolated reactive centers (Figure 5B,C).59–61
Strong electronic coupling between the support and iso-
lated Ni species is thus observed, which also reveals that
Ni decoration can boost electron transfer with a narrower
bandgap.
The variation in the electrostatic potential of CdS has

also been explored (Figure 5D). As documented, the dif-
ference between the vacuum level and the Fermi level
should numerically equal the work function (Φ). Thus,
the work function of the pure CdS (111) facet is confirmed
as 2.4 eV.62 The variation in the electrostatic potential
of CdS@Ni has also been investigated, while its work
function has been verified as 2.08 eV (Figure 5E). All
these results undoubtedly reveal that the work function of
CdS@Ni is slightly reduced after Ni decoration, resulting
in highly promoted photogenerated electron transfer from
CdS to isolated Ni sites.63 The Gibbs free energy of hydro-
gen adsorption (ΔGH*) has also been explored in current
research (Figure 5F). The calculated ΔGH* for pure CdS
is confirmed as 2.34 eV, suggesting that hydrogen is not
favorably bound to the pure CdS surface. The hydrogen
adsorptions are more favorably supported after Ni decora-
tion, as evidenced by the greatly reduced ΔGH* (0.47 eV)
over the Ni sites, which is essential for high catalytic
performance.64,65

5 CONCLUSION

In summary, isolated Ni atoms are decorated onto the
surface of CdS nanowires via the newly generated Ni–S
bonding. Experimental investigation and theoretical stud-
ies confirm that strongly stabilized Ni single atoms trigger
a continuous and reversible photocatalytic hydrogen evo-
lution process. The photocatalytic hydrogen evolution
activity of the optimal CdS@Ni is about 25 times higher
than that of the bare CdS nanowires, affording direct evi-
dence that the isolated Ni atoms perform as the real active
sites for hydrogen evolution.DFT simulation demonstrates
that new electronic states are generated after Ni deco-
ration, which is beneficial for hydrogen adsorption in
the hydrogen evolution process, resulting in significantly
enhanced catalytic hydrogen evolution capability. Current
research will be attractive for the development of earth-
abundant reactive centers and inspire the exploration
of other semiconductor-based catalysts for photocatalytic
energy conversion.

6 CHARACTERIZATION PROCEDURE

XRD patterns were characterized by X-ray diffractometer
with graphite monochromatized Cu-Kα radiation (Bruker,
D2 Phaser). UV–vis absorption was characterized by
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HUANG et al. 473

UV–vis spectroscopy (Shimadzu, UV-2450). PL spectra
and fluorescence decay curves were measured using a
fluorescent spectrophotometer (Edinburgh, FLSλ80). Flu-
orescence decay curves were measured using a fluorescent
spectrophotometer (Edinburgh, FLSλ80). TEM of the sam-
ples was performed with a Titan Themis-Z microscope
fromThermo Fisher Scientific by operating it at an acceler-
ating voltage of 300 kV and with a beam current of 0.1–0.4
nA. Dark field imaging was performed by STEM coupled
to a high-angle annular dark-field (HAADF) detector. The
STEM–HAADF data were acquired with a convergence
angle of 20.9 mrad and a HAADF inner angle of 49 mrad.
Furthermore, an X-ray energy dispersive spectrometer
(FEI SuperX, ≈0.7 sR collection angle, 10 eV dispersion)
was also utilized in conjunction with DF-STEM imaging
to acquire STEM–EDS spectrum-imaging datasets (image
size: 512 × 512 pixels, dwell time 6 μs). Surface chem-
ical analysis was performed by XPS (ULVAC-PHI Inc.,
PHI Quantera SXM). The molecular weight of the clus-
ter was identified by ESI-MS (Thermo Scientific, Exactive
Plus). TheNi contentswere detected by ICP–OES (Thermo
IRIS Intrepid II XSP spectrometer) after dissolving the
samples in a mixture of HCl and HNO3 (3/1 in volume
ratio).
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