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Abstract
An excellent cardinality estimation can make the query optimiser produce a good
execution plan. Although there are some studies on cardinality estimation, the prediction
results of existing cardinality estimators are inaccurate and the query efficiency cannot be
guaranteed as well. In particular, they are difficult to accurately obtain the complex re-
lationships between multiple tables in complex database systems. When dealing with
complex queries, the existing cardinality estimators cannot achieve good results. In this
study, a novel cardinality estimator is proposed. It uses the core techniques with the
BiLSTM network structure and adds the attention mechanism. First, the columns
involved in the query statements in the training set are sampled and compressed into
bitmaps. Then, the Word2vec model is used to embed the word vectors about the query
statements. Finally, the BiLSTM network and attention mechanism are employed to deal
with word vectors. The proposed model takes into consideration not only the correlation
between tables but also the processing of complex predicates. Extensive experiments and
the evaluation of BiLSTM‐Attention Cardinality Estimator (BACE) on the IMDB data-
sets are conducted. The results show that the deep learning model can significantly
improve the quality of cardinality estimation, which is a vital role in query optimisation for
complex databases.
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1 | INTRODUCTION

The performance of a query optimiser depends on cardinality
estimation. In order to select the best execution plan, the query
optimiser should have a good estimation of the cardinality with
high prediction accuracy as well as low execution time. How-
ever, the estimations of cardinality in regard to complex
traditional relational databases usually have huge errors. To the
best of our knowledge, the biggest challenge of cardinality
estimation is how to obtain the relationships between multiple
tables and how to deal with complex query statements in
complex database systems is another difficult task.

Currently, Multi‐Set Convolutional Network (MSCN) [1] is a
state‐of‐the‐art method that has a powerful query optimisation
performance. It can identify the relations between multiple ta-
bles and can accurately estimate cardinality at a faster speed.
However, the encoding method of MSCN is too simple to
encode a specific query. If the query structure is complex and
involves nesting predicates, MSCN cannot encode it. In addi-
tion, MSCN cannot process complex predicates, for example,
‘LIKE %XXX%’, when complex predicates are encountered.

In the past decades, machine learning has extensively been
studied and even widely applied in various fields [2–4].
Recently, the database community is exploring the way of
combining complex database systems with machine learning or
deep learning techniques. Therefore, the existing work based
on machine learning approaches to solve classic database
problems is initiated, for example, parameter tuning, query
optimisation, and even indexing.

Cardinality estimation is a supervision problem. The input
layer is the encoding feature of the query, while the output layer is
the estimated cardinality. There are many advanced methods that
only consider a single table or simple query predicates. These
technologies are too special and have no generalisation capability
to meet all kinds of query tasks in a big data era. The existing
cardinality estimation methods are not perfect since most of
them aim to find a better model than the common baselines.

In order to settle the problems in the existing estimation
techniques, we have made the following original contributions
in this study:

� We propose a cardinal estimator based onBiLSTM‐Attention
[5], which can obtain the relations between multiple tables,
semantic information of query and deal with complex pred-
icates. For the input query, our model has a powerful gener-
alisation ability and can handle all kinds of queries. With the
combination of BiLSTM and Attention mechanism, the
model can fully obtain the semantic information of queries.

� We use Word2wec [6] as an embedding model for complex
string predicates so that these complex predicates can be
represented by vectors.

� We propose a sampling strategy. In order to make the model
learn data distribution, we sample the data (samples) in the
database and compress the samples into bitmaps. We inte-
grate the vector obtained by BiLSTM attention with the
sample bitmap to make the final vector contain all the in-
formation of the query.

2 | RELATED WORK

Recently, the researchers have applied the deep learning
methods [7, 8] in query optimisation. For the selection of join
order, this kind of problem needs to constantly interact with
the intermediate results of the current query. Reinforcement
learning [9–11] is used to find the best query plan. Currently,
a lot of work uses join enumeration to find the best join
order, and these joins often have complex relationships. For
cardinality estimation, we need to use supervised learning to
estimate cardinality. Cardinality estimation is a vital role in
query optimisation, which can degrade the performance of
queries. The first work of learning‐based cardinality estima-
tion [12] is to classify queries according to join conditions,
predicates and etc. Then, the model is trained by the value of
predicates, however, the model is invalid for training un-
known structured queries. The existing cardinality estimation
method either constructs a supervised model which can map
the features of query Q to its cardinality label [1, 13], or
learns the unsupervised model of PT (PT is the joint proba-
bility distribution of table T) to support the calculation of the
probability of any query Q on table T [14–16]. The cardi-
nality estimation method based on deep learning greatly
improves the accuracy of estimation, but it usually leads to a
lot of time and computing resources consumption. Liu et al.
[17] proposed the ML method to estimate cardinality, how-
ever, they do not focus on the joins of tables, which is the
important challenge in cardinality estimation. Currently,
MSCN is the advanced cardinality estimation method, but
MSCN only pays attention to the estimation results, and the
data of training set is too simple to deal with complex
predicates.

Our method is based on the estimation of sampling results.
The cardinality or bitmap obtained from the sample is
embedded into the training signal. Most methods sample each
table and try to estimate the cardinality of multi‐table joins
[18–21]. Although these methods exhibit a good performance
in single‐table estimation, they are not good at capturing the
relationship between multiple tables so that the results are not
good. 0‐tuple problems often occur. Although, Muller et al.
[22] reduce the 0‐tuple problem of join predicates (the calcu-
lation cost is very high), but it is still unable to solve the
problem of single predicate giving zero results. Our proposed
estimation method in the case of 0‐tuple can cope with the
over‐sampling problem even including the estimation of real
correlated samples, which still cannot deal with the case of 0‐
tuple. Qiao et al. [23] propose a convolution estimation
method for vertical scanning (called VSCNN). This method
uses three different convolution kernels with different widths
to scan the condition clauses from top to bottom to obtain the
information in the query, but it is not compatible with discrete
long string predicates because it cannot recognise the sequence
of words in time well. In [24], a series of new pre‐training
techniques, such as Word2vec [6] are surveyed. Our work is
based on the BiLSTM model [25], which uses NLP tools,
vocabulary resources and LSTM units to achieve the same
results as that of the advanced techniques.
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3 | BACKGROUND KNOWLEDGE AND
PRELIMINARIES

In this section, we briefly introduce the model structure and
workflow and analyse the internal structure and principle of
these technologies. In the proposed BACE model, we will use
Word2vec and LSTM as a preparation.

3.1 | Word2vec model

The NLP team has developed two popular Word2vec [6] models,
namely Skip‐gram and CBOW, which perform unsupervised
learning on word sequences with a loss function, which is similar
to the classification cross entropy of the Softmax function. For
Word2vec, the traditional Softmax is not applicable. There are
two methods below to achieve the classification effect of
Softmax in the Word2vec task: 1) negative sampling [26] and 2)
hierarchical softmax [27]. In this study, we use negative sampling
because it obtains results quickly.

CBOW and Skip − gram have simple structures of three
layers, which are shallow neural network models. In both
methods, each pair contains two dense vector representations:
one is a center word matrix denoted by W in Figure 1, and the
other is a context word matrix represented by W0 in Figure 1.
Word2vec does not pay attention to the output result; it only
pays attention to the weight matrix generated in the interme-
diate process, and the weight matrix contains the vector rep-
resentation of the word.

Table 1 shows the five most important Word2vec hyper-
parameters: They include 1) the dimensions of vector d; 2) the
threshold of sliding window size L; 3) negative sampling index
α; 4) the number of negative samples used by each pair N; and
5) the initial learning rate β. In addition, word2vec needs a
down‐sampling threshold and a minimum pair appearance
threshold. We set the down‐sampling rate to 10−5 and the
minimum entity occurrence rate to 1.

3.2 | LSTM model

The Long short‐term memory (LSTM ) network is an improved
version of recurrent neural network (RNN ), which has no
vanishing gradients or exploding gradients. In particular,
LSTM can get long‐term context relations of dependencies. We
use a bidirectional LSTM (BiLSTM ) to capture context
sequence information. In the embedding layer, each word
embedding vector is fed to the LSTM unit, and each LSTM
unit is composed of hidden units with the size of h. For
BiLSTM, we concatenate each output of LSTM, and we obtain
a vector representation, which has the length of 2h. LSTM
treats the input sequence as a pair (embed<i>, y<i>). For each
pair (embed<i>, y<i>) and each time step t, LSTM saves
memory vector mr<t> and hidden vector hd<t>. These vectors
are used to update the cell state and generate the target output
y<i> which is referred to the former state. The details of
processing at time slice t are shown below:

ug ¼ σðWu � hd
<t−1>

þ IuÞ ð1Þ

fg ¼ σðWf � hd
<t−1>

þ I f Þ ð2Þ

og ¼ σðWo � hd
<t−1>

þ IoÞ ð3Þ

cg ¼ tanhðWc � hd
<t−1>

þ IcÞ ð4Þ

m<t> ¼ fg ⊙ mr<t−1> þ ug ⊙ cg ð5Þ

hd<t>
¼ tanhðog ⊙ mr<t>Þ ð6Þ

where σ is the sigmoid function, Wu, Wf, Wo, Wc and Iu, If, Io,
Ic are the weight matrix and projection matrix of the cyclic unit.
The computational gates of LSTM cells ug, fg, og and cg play a
vital role in getting key properties of the computational vec-
tors. They can be saved in the memory vector mr if needed.
The forgetting gate fg decides to discard some information
from the former memory vector mr<i−1>. The updated in-
formation is saved as the new memory vector mr<i> by the
update gate cg, while the update gate uses the former memory
vector mr<i−1> and the input gate ug. Finally, the og output
gate probes the information from the new memory vector
mr<i> to the hidden vector hd<i>.

4 | BiLSTM‐ATTENTION
CARDINALITY ESTIMATOR

In this section, we will discuss the BACE model in detail. As
shown in Figure 2, this model consists of seven steps:

(1) Input layer: input the query statement into the training
model;

F I GURE 1 The architecture of Word2vec

TABLE 1 Word2vec hyperparameters

Parameter Value Description

D 100 The number of parameters

L 5 Threshold of distance between two marked words

Α 3/4 Negative sampling index

N 5 Number of negative samples

Β 0.025 Learning rate

ZHOU ET AL. - 539
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(2) Bitmap layer: input the sample bitmap corresponding to
each query statement, and average the vectors passing
through the multi‐layer perceptions (MLP);

(3) Embedding layer: mapping query statements into word
vectors;

(4) LSTM layer: transform the word vector from Step (3) into
the high‐level feature vector through bidirectional LSTM;

(5) Attention layer: generate weight matrix, while the word
embedding of each time step are multiplied by the weight
matrix. The results are the sentence level feature matrix;

(6) Output layer: combine the vectors generated by Step (2)
and Step (5) and input them into the MLPs to obtain the
final results.

(7) Loss function: measure the quality of the cardinality esti-
mator, and perform gradient descent according to the loss
value to obtain the optimal solution.

In order to show the importance of the proposed model,
we give a running example as shown in Figure 3. The optimiser
mainly includes three components: cardinality estimator, cost
model and connection order selection. The component in red
rectangle is the proposed model, which can make a more ac-
curate cardinality estimation of SQLs and then other parts use
this estimation to generate the optimal execution plan tree.

4.1 | Bitmap layer

The basic idea of the proposed model is to get the rich training
data, and the method is to obtain the information from the
real‐world‐based table samples. In this study, we sample each
table. Here, we set the number of samples to 1000. These
samples are used to measure the hitting probability of the
predicates of queries. The bitmap is used to store sample in-
formation. The sample bitmap is a <0–1> vector with a fixed
size, while each bit represents whether the sample matches the
predicate. If the record hits the predicate, the corresponding
bit is 1; otherwise, it is 0.

We represent a query as q ∈ Q, and Bq represents the
bitmap contained in a query q. If a query q contains n predicate
nodes of type ‘Seq Scan’, n bitmaps will be generated, which
are represented by B1

q, B
2
q,…, Bnq , respectively. We input the

bitmap samples corresponding to each predicate node of type
‘Seq Scan’ into n different MLPs, and then we can obtain n
different vectors denoted by MLPðBiqÞ. Finally, we compute
the weighted average of MLPðBiqÞ. The bitmap layer can be
expressed by Equation (7):

wB ¼
1
n

Xn

i¼1

MLPðBiqÞ ð7Þ

4.2 | Embedding layer

Given a query Q = (x1, x2,…, xT) which is composed of T
keywords or symbols, and each word xi is transformed into a
context relevant word vector embedi. For each word xi in Q,

we first calculate the embedding matrix WE ∈ RdwjV j. V rep-
resents a fixed word list, while dw represents the dimension of
the word vector. The weight WE is a parameter matrix based
on learning, and dw is a hyperparameter. We encode a word xi
into a word embedded embedi, which is the product of matrix
vectors as shown in Equation (8).

embedi ¼WE � vi ð8Þ

where vi is a vector of length |V|, and its value equals 1 at
index embedi, and its value is 0 at all other locations. Then, the
SQL is transformed into the query embedding layer
embs = (embed1, embed2,…, embedT).

4.3 | BiLSTM layer

Hochreiter and Schmidhuber [28] first prove that the LSTM
cell can solve gradient vanishing. Introducing an adaptive
gating mechanism is a basic idea. It determines the degree
where LSTM cells remain in the former state and stores the
retrieved features of the current input vector. In this study, we
chose the variant of the LSTM proposed by Graves et al. [29].

Generally speaking, a recurrent neural network based on
LSTM is composed of three components: an input gate it that
contains weight matrices Wxi, Whdi, Wcli and bi; a forgetting
gate ft that contains weight matrices Wxf , Whdf , Wclf and bf ;
one output gate ot that contains weight matrix Wxo, Whdo, Wclo,
and bo. We use the current input xi, the state of hdi−1 generated
in the previous step, and the current state of cell cli−1 to
determine whether to input, forget the previously stored
memory, and then output the generated state.

it ¼ σðWxi � xt þWhdi � hdt−1 þWxi � xt þWcli � ct−1 þ biÞ

ð9Þ

ft ¼ σðWxf � xt þWhdf � ht−1 þWclf � clt−1 þ bf Þ ð10Þ

gt ¼ tanhðWhdc � hdt−1 þWxcl � xt þWclcl � clt−1 þ bclÞ

ð11Þ

clt ¼ ft � clt−1 þ it � gt ð12Þ

ot ¼ σðWhdo � hdt−1 þWxo � xt þWclo � clt þ boÞ ð13Þ

hdt ¼ ot � tanhðcltÞ ð14Þ

However, it is beneficial for understanding the context
because it can model the sequence of queries. Standard LSTM
networks process sequences in the chronological order,
ignoring subsequent contexts. The bidirectional LSTM network
extends the unidirectional LSTM network by introducing a
second layer, in which the information in the hidden connec-
tions flow in a reverse chronological order. Therefore, the
model can utilise the previous and subsequent information.

In this study, we use BiLSTM. As shown in Figure 2, the
network consists of two sub‐networks which work for left
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sequence context and right sequence context, forward and
backward, respectively. The output of the ith word is depicted
by the following Equation (15).

hi ¼ ½hi
!

⊕ hi
 
� ð15Þ

4.4 | Attention layer

In this section, we propose an attention mechanism for the
cardinality estimator. Because the information of the WHERE
clauses is difficult to extract, we add an attention layer on the
basis of BiLSTM. As shown in Figure 2, the attention layer
follows the LSTM layer. As an important component, the
attention layer can perform a global analysis on the informa-
tion processed by BiLSTM and automatically find the part with
a high attention score in the WHERE clauses. Let H be a

matrix composed of output vectors [h1, h2, …, hT], where T is
the length of the query, and the representation of a query r
consists of the weighting sum of the output vectors.

M ¼ tanhðHÞ ð16Þ

α¼ softmaxðwT �MÞ ð17Þ

r ¼H � αT ð18Þ

where H ∈ Rdw � T , dw is the number of dimensions w.r.t.
the word vector, W is the training parameter vector, and wt is
the transpose. We obtain the final query representation for
estimation from Equation (19).

h� ¼ tanhðrÞ ð19Þ

4.5 | Output layer

Before inputting into this layer, as shown in Equation (20), we
need to merge the vector wB from Bitmap Layer with the
vector h* from Attention Layer to obtain a new vector Cinput.
The vector contains not only the sample information of the
query node but also the semantic information of the query. We
put the final input vector Cinput into a new MLP and obtain the
final output Cout, as shown in Equation (21).

Cinput ¼ ConcatðwB; h
�
Þ ð20Þ

Cout ¼MLPoutðCinputÞ ð21Þ

F I GURE 2 The working mechanism of BiLSTM‐Attention cardinality estimator

F I GURE 3 The running example of BiLSTM‐Attention Cardinality
Estimator (BACE)

ZHOU ET AL. - 541
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All MLPs are a double layer structure of fully connected
network. The other MLPs use the double layer ReLU activation
function, except for the output layer. For the output layer MLP,
we use the Sigmoid activation function in the last layer of the
output layer, and we need a scalar, which ranges in [0,1]
because the cardinality is a scalar. We can use the inverse
process of normalisation to restore Cout to real cardinality. In
hidden layers, we use the ReLU activation function. Because
they have a strong empirical performance and quick conver-
gence speed.

4.6 | Loss function

We use q‐error as an evaluation indicator by defining in
Equation (22) and the loss function given in Equation (23). q‐
error can measure the relative gap between the estimated value
and the true value. In Equation (22) and Equation (23), Cout

represents the estimated value and Clabel represents the true
value.

q − error ¼max
�
Cout

Clabe
;
Clabel

Cout

�

ð22Þ

Loss¼ log
Xn

i¼0

max
�
Cout

Clabe
;
Clabel

Cout

�

ð23Þ

5 | EXPERIMENTS

5.1 | Experimental setup and datasets

We use two different query workloads: 1) the Synthetic
workload is generated by the same query generator as the
training data (using a different random seed), which contains
5000 unique queries (conjunctions), equality predicates and
range predicates. These predicates are on non‐key columns,
which have zero to two joins; 2) JOB‐Light, the workload
benchmark (JOB) [30] derived from JOB contains 70 of the
original 113 queries. However, JOB‐Light does not contain any
string predicates, only one to four join queries. The three data
sets and training data SQL used in our experiment are gener-
ated by using the intertable relationship graph of IMDB,
including primary/foreign key relationship and one to many or
many to one. Then, we use the SQL analysis tool of a relational
database to analyse the cardinality of each SQL. TPC‐H is an
excellent benchmark, but it is not a real dataset in the real
world and cannot reflect the specific relationship between
some data. We use IMDB‐based datasets, which can make our
model more inclined to the real environment rather than some
synthetic environment.

The most popular complex relational databases are used in
comparison experiments, that is, Oracle 10g, PostgreSQL 9.5,
MySQL 8.0 and SQL Server 2016. Industrial database systems
refer to the above four relational databases. Of course, this
model can also be applied to other relational database

optimisers, such as DB2. The complexity of database systems
lies in their query optimisers. The traditional database opti-
misers are based on statistics or sampling, combined with some
complex algorithms for query optimisation. However, the
traditional database statistical method is very effective for a
single table, but it cannot capture the relationship when mul-
tiple tables are connected. Therefore, it is necessary to apply
the learning‐based method to database systems. In this
research study, in order to show that our model is effective, we
used several advanced cardinality estimation methods for
comparison. Black‐Box Approach (BBA) [12] can make an
accurate estimate of the previously learned query. It divides the
query structure to estimate the cardinality. However, if this
method is used to identify unseen or complex structures, the
effect is very poor. IBJS [31] relies too much on the index
structure and is data‐driven. If the indexing scheme is bad or
there is no index at all and the quality of the sample data is not
good, the estimated quality will be bad. The above methods are
all traditional methods. It can be seen that they are all estimates
based on statistical data, relying too much on data, and making
independent assumptions. The learning‐based cardinality esti-
mation scheme does not need to make independent assump-
tions, and it can automatically learn the relationship between
data and queries. VSCNN [23] uses three different convolution
kernels to scan the WHERE clauses vertically. Although
VSCNN [23] can extract local semantic information, it cannot
control the time sequence. We use 90% of the query statements
in the dataset as the training set and the remaining statements
as the validation set.

We use PyTorch [32] as the basic framework for deep
learning, and the model is trained on CUDA [33]. All experi-
ments are conducted on a machine with AMD CPU R7‐
5800X, 32GB Memory, 64G SSD, GeForce RTX 3090 with
24GB and CentOS 6.5 operating system.

5.2 | Regularisation

The dropout technology was proposed by Hinton et al. [34]. It
can reduce the probability of over‐fitting, mainly because it
allows neurons to not be overly dependent on a certain data.
The target is achieved by discarding some neurons immediately
during forward propagation. We use the dropout technology in
the embedding layer, BiLSTM layer and output layer. For the
update of new data, L1‐norm is greatly affected, while L2‐norm
is slightly affected. L1‐norm tends to make coefficients sparse,
but L2‐norm is the opposite. In a word, L2‐norm is more
steady than L1‐norm, and this is the reason why we choose L2‐
norm.

5.3 | Experimental results

Table 2 shows the q‐error of our model and traditional
relational databases on the Synthetic workload, and we also
compare the q‐error of BBA [12] and IBJS [31] with the
proposed method. In order to show the importance of the
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techniques of sampling and attention, we also take these two
factors as variables in experiments. According to Table 2,
IBJS [31] has the best median estimation. BACE completely
defeats relational databases. BACE wins other methods in the
other percentile of q‐error. Although IBJS performs well on
the median q‐error, it relies too much on the index structure
and is data‐driven. If the indexing scheme is bad or there is
no index at all and the quality of the sample data is not good
(0‐tuple problem), the estimated quality will be bad. If there is
no proper index or even no index, its performance will
become very poor. The mean q‐error of our model is 42.2
times smaller than that of IBJS [31]. All q‐error measure-
ments of BACE are better than that of VSCNN [23] on the
Synthetic workload. Because the Synthetic workload is simple
and BACE has an attention mechanism that can consider
abstract information more efficiently, which consider the
words in the whole WHERE clauses all at once. From the
mean value in the table, we can see that sampling and
attention have a profound impact on the model, in which the
sampling method is more important than attention. The me-
dian, 90th, 95th and 99th in the experimental part are
percentiles. Referring to the definition of box plot, there
are several data that are sorted from small to large. These
four numbers represent the data in the corresponding
percentile, respectively. Comparing these four numbers, we
can observe the distribution of cardinality.

In order to test the generalisation of the model, we use
the JOB‐Light workload with more joins. Table 3 shows the
q‐error of our model compared with that of other competi-
tors on the JOB‐Light workload. IBJS [31] has the best me-
dian estimation. BACE beat other models on other q‐errors.
The mean q‐error of BACE is 14.1 times smaller than that of
IBJS. Because our model has memory structure, it can deal
with multiple joins of tables and complex predicates of the
workload. All q‐error measurements of BACE are better than
that of VSCNN [23] on the JOB‐Light workload. VSCNN
[23] uses three different convolution kernels to extract in-
formation from the WHERE clauses, but it is difficult to

handle the order information of the words in the WHERE
clauses. However, BACE uses the BiLSTM network structure,
which can take the order of words from two directions into
consideration.

Table 4 shows the performance of our model on the JOB
workload. The experimental results show that the q‐error of
the traditional database system is very large, even hundreds of
thousands. MSCN [1] cannot handle string type of values and
complex predicates because it has no related natural language
processing structure. We use ‘NAN’ in the table to represent
the q‐error of MSCN [1]. We extend MSCN [1] by using a skip‐
gram model to embed string type of values, which improves its
generalisation ability. BACE works well to have good estima-
tions in all experiments but except for the median and 95th.
MSCN (string) represent that MSCN [1] can handle strings by
improving, but the q‐error is higher than that of proposed
model. BACE can handle strings well because it can represent
sparse strings in the vector form and capture the complex
semantic information in SQL statements. In addition to mid
and 90th, other q‐errors of BACE are better than those of
VSCNN. Because the JOB workload with strings is very
complex, BACE's powerful ability to extract information may

TABLE 2 q‐error of cardinality estimators on synthetic workloads

Synthetic Mid 90th 95th 99th Max Mean

PostgreSQL 1.68 9.61 24.0 453 369 911 149

MySQL 2.17 21.7 49.6 623 460 095 349

Oracle 1.98 12.3 41.9 463 544 995 369

SQL server 2.16 16.9 51.9 291 513 011 369

BBA 2.33 20.01 48.3 544 484 266 303

IBJS 1.11 10.26 37.1 289 294 920 128

VSCNN 1.32 4.21 7.49 33.95 1372 3.12

BACE (NoSample) 1.31 5.96 15.2 111.4 2740 11.9

BACE (NoAtt) 1.23 4.52 9.2 35.4 540 5.09

BACE 1.22 4.16 7.41 27.1 340 3.01

TABLE 3 q‐error of cardinality estimators on job‐light workloads

JOB‐light Mid 90th 95th 99th Max Mean

PostgreSQL 7.83 165 1112 1912 3507 169

MySQL 9.65 313 685 2256 2498 149

Oracle 8.32 374 966 2761 3361 157

SQL server 9.13 354 703 2550 3391 151

BBA 8.03 157.2 621.1 2311 3006 151

IBJS 1.59 157 3188 14 309 15 715 590

VSCNN 3.82 79.4 362.5 965.1 1118.2 60.1

BACE (NoSample) 5.82 99.56 709.2 1103 1726 84.9

BACE (NoAtt) 4.23 61.52 351.2 991.4 1024 51.3

BACE 3.35 53.16 342.41 961 973 42.02

TABLE 4 q‐error of cardinality estimators on JOB workloads with
strings

JOB‐String Mid 90th 95th 99th Max Mean

PostgreSQL 183 8313 34 213 106 010 670 010 10 426

MySQL 104 28 147 213 471 1630 619 2487 611 60 229

Oracle 119 55 446 179 106 697 790 927 648 34 493

SQL server 174 60 432 231 045 552 190 432 609 52 700

MSCN NAN NAN NAN NAN NAN NAN

MSCN
(String)

16.6 87.4 207.3 792.7 851.1 73.5

VSCNN 15.2 89.1 199.5 760.2 803.7 69.6

BACE 17.2 92.1 191.5 732.2 783.7 59.1
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cause the over‐fitting problem. In most cases, BiLSTM and the
attention mechanism bring benefits to BACE, which can
extract the information of the WHERE clause more
accurately.

Figure 4 shows the loss of training the models. We compare
the proposed models without sampling and without attention
mechanism. We can see that the curve of the model without only
sampling (NoSample) declines slowly, accompanied by big
fluctuations. The model without only attention mechanism
(NoAtt) has faster convergence speed and less fluctuation. The
model with both sampling and attention has the fastest curve
decline and the fastest convergence speed.

Figure 5 shows the prediction time of different models.
Our model predicts that the average time required for cardi-
nality estimations is 0.41 ms. We show the comparison of
prediction time of each model in the training set and valida-
tion set. Our model takes more time than MSCN [1] and
traditional databases but less time than tree structure estimator
(i.e. TLSTM [35] and TPOOL [35]). The tree structure model

can deal with complex predicates easily. The prediction time
of the validation set of TLSTM is 1.52 times higher than that
of BACE, and the prediction time of the validation set of
TPOOL is similar to that of BACE. This is because the
memory unit is used in our model, and the prediction time
will be higher. Similarly, the more complex tree memory units
used by TLSTM and TPOOL will bring more time con-
sumption. We found that the evaluation time of BACE is
shorter than the training time and verification time, but the
evaluation time decreases little compared with that of MSCN
[1], PostgreSQL and TLSTM.

6 | CONCLUSION

In this study, we propose a cardinality estimator based on
BiLSTM‐Attention. We first use Word2vec technology to
transform the query into word vectors, then use BiLSTM to
model the word vector sequence, input the result at each time
slice into the attention network, and combine it with the sam-
ple bitmap to obtain a new vector and finally estimate the
cardinality according to the word vector. We solve the problem
that it is difficult to obtain the relations of multiple table joins,
and our model can cope with the complex string type of
predicates. In summary, we believe that machine learning has a
bright future in handling all kinds of query optimisation tasks.
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