
Received: 16 November 2021 - Revised: 9 February 2022 - Accepted: 8 March 2022 - CAAI Transactions on Intelligence Technology
DOI: 10.1049/cit2.12082

OR I G INAL RE SEARCH

SpikeGoogle: Spiking Neural Networks with GoogLeNet‐like
inception module

Xuan Wang1 | Minghong Zhong1 | Hoiyuen Cheng1 | Junjie Xie1 |
Yingchu Zhou2 | Jun Ren3 | Mengyuan Liu1

1School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China, Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology,
Guangzhou, China
2Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, China
3Infocare Systems Limited, New Zealand

Correspondence

Mengyuan Liu, School of Intelligent Systems
Engineering, Sun Yat-sen University, Shenzhen,
China.
Email: nkliuyifang@gmail.com

Funding information

Key‐Area Research and Development Program of
Guangdong Province, Grant/Award Number:
2020B0404020005

Abstract
Spiking Neural Network is known as the third‐generation artificial neural network whose
development has great potential. With the help of Spike Layer Error Reassignment in
Time for error back‐propagation, this work presents a new network called SpikeGoogle,
which is implemented with GoogLeNet‐like inception module. In this inception module,
different convolution kernels and max‐pooling layer are included to capture deep features
across diverse scales. Experiment results on small NMNIST dataset verify the results of
the authors’ proposed SpikeGoogle, which outperforms the previous Spiking Convolu-
tional Neural Network method by a large margin.

KEYWORD S
GoogLeNet, inception, Spiking Neural Networks

1 | INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have developed
rapidly in the fields of Computer Vision (CV), audio recognition
and Natural Language Processing (NLP), with various systems
achieving many important breakthroughs and displaying
impressive performance. However, the simulation of biological
neurons by DNNs is relatively simple and does not have brain‐
like interpretability. In contrast, Spiking Neural Networks
(SNNs) fully simulate the actual situation of the biological ner-
vous system and have low computing consumption [1]. It uses
action potential coding methods to convert input stimulus signal
into spike train with a dimension of time and also uses the change
states of membrane potential to characterise spike information,
which is biologically interpretable and rich in expressing features
of neural computing. In addition, SNNs have low dependence
on high‐performance devices for its sparse event‐driven

information, simple arithmetic unit and unique calculation
module. Once a spike (0 or 1) is received, it will be multiplied with
the synapse weight, that is, the weight will be directly passed to
the adder without specific multiplier. And the neuron will only be
activated when the accumulated input spikes reach the threshold.
In particular, learning with a small number of training samples is
a potential development area for SNNs, where it is possible to
obtain better results than deep learning [2]. In addition, the
asynchronous spiking mechanism of SNNs makes it advanta-
geous in event‐based scenarios like flow estimation, spike
pattern recognition and Simultaneous Localisation and Mapping
(SLAM) [3–6].

Although the development of SNNs has great potential,
there are still quite a lot of difficulties and uncharted territories in
current research. Due to the complex dynamic characteristics of
biological neurons and the non‐differentiable problem of spike
function in the process of error back‐propagation, there is no

Xuan Wang and Minghong Zhong have equally contributed this work.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2022 The Authors. CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing
University of Technology.

492 - CAAI Trans. Intell. Technol. 2022;7:492–502. wileyonlinelibrary.com/journal/cit2

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

scalable training method in this field. At present, converting
Artificial Neural Network or Convolutional Neural Network to
Spiking Neural Network (ANN2SNN, CNN2SNN) are widely
used SNN training methods, which are mainly based on the
target SNN result, applying insights into Artificial Neural
Network (ANN) or Convolutional Neural Network (CNN) for
parameter training, and then reusing the training weight results
into the SNN [7]. This method has achieved good results on
some tasks, but it is clear that this kind of learning ignores
important information contained between adjacent spikes in the
time dimension. Therefore, our work intends to use the Spike
Layer Error Reassignment in Time (SLAYER) training method
[8], a back‐propagation algorithm that combines spatial infor-
mation with temporal domain information to update synaptic
weights and axonal delays. Furthermore, when Spiking Con-
volutional Neural Network (SCNN) structure processes, a small
amount of dataset, especially the point cloud form, is very prone
to over‐fitting. Based on this, we introduce a model structure,
SpikeGoogle, which is implemented with the GoogLeNet‐like
inception module.

The Inception structure [9] is a module for small sample
learning and a multi‐scale processing rule, which realises a
sparse network structure unit. The structure gathers highly
correlated neurons, and to a certain extent, conforms to the
neuron connection mode of the biological brain. In Hebbian's
theory, it pointed out that the strength of the synaptic
connection will change with the state changes of the two
neurons, and it is only related to the state of the two [10, 39].
This theory is the important foundation of relative develop-
ment of spiking neural networks, and it is very consistent with
the implementation principles of SNN. Therefore, inspired by
the application of the sparseness of biological neuron con-
nections and the plasticity of synaptic expression in Inception
structure, we propose to transfer this model architecture to
SNN to highlight the advantage of a more complete biological
nervous system simulation. The main content of our work lies
in the following three parts. First, convert the input stimulus
signal into spike train to be suitable for the data mode pro-
cessed by SNNs. Second, construct the SpikeGoogle network
to realise the dynamic complex information processing in the
spatial–temporal domain. Finally, use the simulated spike
function to solve the non‐differentiable problem of spikes.

The innovations of this paper can be summarised in the
following two points. First of all, a new network, SpikeGoogle,
which is suitable for SNN learning is proposed. It can obtain a
small amount of NMNIST [36] data and optimise network
performance on the basis of shallow network. Second, the
advantage of SNN few‐shot learning [11], with the usage of small
amount of labelled training data, is highlighted in the paper.

2 | RELATED WORK

In this part, we mainly introduce the related work of SNN model
optimisation. There are two different goals in this part, which are
to understanding biological systems and to pursue high compu-
tational performance [12]. We also give a brief introduction to

the SNN training algorithm, which can be classified into four
categories, mainly to solve the training problems caused by the
non‐differentiability of discrete spikes. We will analyse and
summarise the advantages and disadvantages of the relevant
work and then point out the advantages of our work.

In the process of biological learning, the topological
structure of SNNs in the brain changes dynamically [13].
Research shows that the main sensory motor and visual areas
have a relatively fixed core, which changes little over time, but
they have flexible and frequently changing peripheral areas
[15]. Based on this, some scholars use dynamic topology in the
SNN model to improve the biological rationality [13, 14]. Wei
Fang et al. [16] find different effects on neuronal dynamics
caused by adjustments of the synaptic weight and the mem-
brane time constants.

In the pursuit of computing performance, some researchers
try to convert the network structure of CNN to SNN, while
others try to change the topology of SNN. Hu Yangfan et al.
[17] try to convert the residual network into deep SNN. By
saturating the firing frequency of neurons to accelerate the
response of deep neurons, so as to compensate the propagation
error of large‐scale network conversion, a spinning ResNet is
constructed. In addition, the sparse convolutional network
proposed by Loïc Cordone et al. [18] and Spiking YOLO
proposed by Seijoon Kim et al. [19] are also inspired by CNN
network structure and then converted to SNN. So far, the
related work of converting the complex network structure to
SNN losslessly, and processing time‐domain information on
the basis of solving the problem of non‐differentiability of
spike is not much, which has a lot of research space.

As far as the topology of SNN itself is concerned, SNN has
three kinds of topology: feedforward type, recursive type and
hybrid type [13]. Narayan Srinivasa and Youngkwan Cho's [20]
self‐organising spiking neural model for learning fault tolerant
spatial motor transformations is a hybrid network, which can
learn the spatial motion transformation of 2‐DOF robot. At
present, there is no great breakthrough in the dynamic topology
of SNN. In many experiments, the recursive network which
keeps high similarity with the DNN structure is still used.

The biggest difficulty of SNN is the non‐differentiable
problem of discrete spike. At present, there are four kinds of
methods. One is to make SNN approximately differentiable, so
as to use the gradient descent method. Backpropagation for
networks of spiking neurons (Spikeprop) [21] and related de-
rivatives proposed by Bohte et al. use a linear‐similar method
to solve the threshold triggering of non‐differentiable prob-
lems. However, these methods suffer from the ‘dead neuron’
problem, which means there is no learning when no neuron
spikes [22]. The gradient descent method is also considered.
Chankyu Lee et al. [23] try to employ an approximate derivative
for Leaky Integrated and Fire (LIF) [28] neuronal function,
developing a spike‐based supervised gradient descent back-
propagation (BP) algorithm. The second is to learn by prob-
abilistic reasoning. Y. Huang et al. [24] use the average spike
count of neurons to express the time‐varying posterior prob-
ability distribution for a hidden Markov model, which proves
that SNN can be used for Bayesian reasoning [17]. The third is

WANG ET AL. - 493

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

the biological neuron‐like training method based on synaptic
plasticity rules. The fourth is ANN2SNN, that is to say, after
indirectly training the conventional ANN, its parameters are
directly applied to SNN. Because ANN has no time dimension,
the transition from ANN to event‐driven SNN usually costs
information loss and performance loss. Zenke et al. [25] pro-
posed a specific function as a differential substitution term.
Lee et al. [26] used spike signal estimation at peak time etc.,
which was proposed and applied to multi‐layer SNN network
structure. But these methods ignore the dependence between
spikes and do not consider the previous spike signal input.

In this work, we try to build network model with inception
layer to ensure that deep SNN structure can avoid over‐fitting
problem and get high accuracy rate under the limitation of
scant data. It is proved in our experiment that SpikeGoogle
realises the conversion of inception from CNN to SNN and
achieves good results on the NMNIST dataset [36]. When
training the network, we choose to use the SLAYER frame and
back‐propagation algorithm, which can realise the SNN error
back‐propagation and allocate the error reliability in time [21].

3 | METHOD

In this section, we will mainly introduce the relative methods
used in our work. Part A briefly introduces the basic process of
SNN learning. Part B further gives the introduction of neuron
model we used, Spike Response Model (SRM) [27]. Then, we
demonstrate the error back‐propagation algorithm in part C,
which integrates spatial–temporal information and solves the
non‐differentiable problem of spike.

3.1 | SNN learning process

Spiking Neural Networks supervised learning algorithm is
mainly to achieve the training of spike train and the update of
parameters in complicated spatial–temporal domain. For each
learning process, it can be divided into the following three stages.

First, convert the sample data into a spike train by using a
frequency coding method such as Poisson encoder, or time
coding method such as Latency encoder. Take Poisson encoder
for example, it encodes the input data into a spike train with a
distribution of firing times that conforms to a Poisson process.
In the entire spike stream, the number of spikes appearing in
mutually disjoint time steps is independent of each other,
which has nothing to do with the starting point of the interval
but is related to the time step. And the probability of sending a
pulse is related to the pixel value of the input two‐dimensional
image. The Poisson distribution is suitable for describing the
number of random events occurring per unit time. Latency
encoding is an encoder that delays spiking based on input data.
When the stimulus intensity is greater, the firing time is earlier,
and there is a maximum spike firing time. Therefore, for each
input data, a spike train with a time step of the maximum spike
release time can be obtained and has only one spike. Second,
the spike sequence

S ¼ t f : f ¼ 1; 2; :::F ð1Þ

is input into the neural network which is run by applying the
strategy of biological simulation mechanism to get the actual
output spike sequence. Then, based on the target spike
sequence, use the given loss function to calculate the network
error, which is used to update synaptic weight:

wnew ← wold þ Δw ð2Þ

and axonal delay:

dnew ← dold þ Δd ð3Þ

Finally, judge whether the result reaches the set minimum
error value, or the training epoch reaches the specified number.
If not, carry out the next learning process. Figure 1 shows the
SNN learning algorithm framework that combines the three
main stages mentioned above.

3.2 | Neuron model

We use the Spike Response Model (SRM) [27], which fires
spikes with a fixed threshold in our work. The model is an
extension of the Integrated and Fire model (IF) [28], which is
expressed by the explicit mathematical model. In SRM, neu-
rons receive a bank of spike signals from all axon terminals
connected to it, and each spike generates a postsynaptic po-
tential. Under the influence of synaptic weights, the sum of
these postsynaptic potentials constitutes a part of the mem-
brane potential. Once the membrane potential exceeds the
threshold, neuron fire spikes and enters the refractory period
[38]. Figure 2 shows the detailed working process of an SRM
model.

We use an ordered sequence to represent the time set of
spikes:

Γ¼ t f : 1 <¼f <¼O
� �

¼ tjV ðtÞ ¼ VthreshV 0ðtÞ > 0f g ½27�
ð4Þ

Then, the mathematical model of SRM can be described by
the following formulas:

V ðtÞ ¼
PO

f¼1
ρ t − t f
� �

þ
PN

i¼1

PGi

g¼1
ωiϵ t − ti gð Þ

þ ∫
∞

0
 þκðrÞIðt − rÞdr ½27�

ð5Þ

ρðsÞ ¼ −V threshexp
−s
τr

� �

HðsÞ ½27� ð6Þ

ϵðsÞ ¼ exp
−s
τm

� �

− exp
−s
τs

� �� �

HðsÞ ½27� ð7Þ

494 - WANG ET AL.

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Among them, V(t) is the membrane potential of neurons at
time t, which is the sum of all postsynaptic potentials, re-
fractory period responses and external inputs. ρð•Þ is a re-
fractory period function, which is used to simulate the recovery
process of action potential in the biological neuron model. ϵð•Þ

is the spike response function; ‘N’ is the total number of input
synapses. Gi represents the total number of input spikes at the
ith synapse. ti g indicates the generation time of the gth for
neurons. H(s) is the heavyside step function; taur , taum and,
taus are time constants.

F I GURE 1 The Spiking Neural Network (SNN) training process includes the encoding process to transfer incoming signals into spike sequence, and
forward propagation as well as error back‐propagation process to realise the parameters of weight and delay update

F I GURE 2 The working process of Spike Response Model (SRM) model is shown in the above figure, which is a schematic diagram obtained from Ref.
[41]. During 0 − ti, the neuron received spike sequences from the end of the axon connected to it and the membrane potential accumulated. At ti, the membrane
potential exceeds the threshold, the neurons send out a spike and then enter the refractory period. From the peak of spike to t0 is the absolute refractory period, and
t0 − t00 is the relative refractory period. ρð•Þ is a refractory period function, which is used to simulate the recovery process of action potential in the biological neuron
model. After a period of time, the neurons return to resting potential

WANG ET AL. - 495

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Considering the influence of axon delay on spike genera-
tion, the model should be extended to include axon delay by
introducing axon delay into spike response function:

ϵdðsÞ ¼ ϵðs − dÞ ½27� ð8Þ

3.3 | Back‐propagation

Based on the research studies on SNN back‐propagation al-
gorithms, in this section, we applied a better mechanism,
SLAYER [8], in our work. SLAYER not only overcomes the
non‐differentiable problem of spike function, but also uses the
temporal reliability allocation strategy to propagate the error
back to previous layers and update parameters—synaptic
weight and axonal delay. In the network training process, we
learn the synaptic weight and axonal delay. In the process of
back‐propagation, SLAYER mainly achieved the following two
advantages.

� The spike response nucleus introduces timing dependence,
which allocates the influence of the spike to the future time
value in the forward process, that is, the current membrane
potential signal depends on the current and past input
values.

� probability density function of the spike neuron state is used
to approximate the derivative of the spike function, and
stochastic neurons are used to approximate the error.

4 | NETWORK STRUCTURE

In this part, we give a specific explanation of the proposed new
network structure SpikeGoogle, which is suitable for spike
signal processing. By adding the innovation process of incep-
tion structure, we hope the readers can have a better under-
standing on the characteristics of SpikeGoogle.

4.1 | Important innovations in CNNs in
recent years

In order to encourage people to improve CNN in the field of
image classification, ImageNet Large‐Scale Visual Recognition
Challenge (ILSVRC competition or ImageNet competition)
appeared. We notice that some champion networks made
important innovations such as AlexNet, GoogLeNet and
ResNet. There are some non‐ignorable innovations as
follows:

� The depth of the networks was getting deeper and deeper.
After 2014, the depth of the network has exceeded 100
layers, and it has completely evolved into deep learning
networks eventually: LeNet (7 layers, 1998, it was the first
practical CNN in the history) [38], AlexNet (8 layers, 2012)

[29], GoogLeNet (22 layers, 2014) [9], and ResNet (152
layers, 2015) [30].

� Inception modules and shortcut connections help networks
perform better on the problem of vanishing or exploding
gradient and ensure sufficient features for training deeper
layers.

Before the appearance of GoogLeNet [9] in 2014, the
champion networks in ImageNet competition paid attention
on improving the method of LeNet (convolution layer, pooling
layer and activation function), but later they proved the ad-
vantages of small convolution kernels and depth benefits. After
the year of 2014, researchers' attention is shifted to CNN in-
ternal structure, which should not stack layers in the traditional
way. So, a module that provides sufficient extraction and re-
duces the amount of computational demanding exponentially
was proposed, Inception [29]. After that, a lot of other net-
works reproposed including ResNet (2015) [31], DenseNet
(2016) [32] and SENet (2017) [33], which were inspired by
inception module and shortcut connections [34].

The inception module was used for achieving better pre-
dicted performance and short training time, which can solve
the problem of over‐fitting. And our network is suitable for its
goal to be designed shallow and energy friendly.

4.2 | Inception structure

The general idea of CNN is to use stacked convolution layers
(a convolution kernel followed normalisation and max pooling
layer) and fully connected layers to extract features, that is,
making the network deeper and broader brings greater fitting
potential. But it brings inevitable side results that a large
number of increased parameters not only need more
computing resources, which is also easy to cause over‐fitting.
Meanwhile, deep network structure could cause vanishing
gradient problem easily.

Inception structure is a popular deep learning structure
proposed by Christian in 2014 [9], which reduces the degree of
vanishing gradient problem of the network and computing
resources demanding. Next, we will mainly introduce the
specific structure of this high‐performance network architec-
ture. Inspired by the idea of network in Ref. [35], they designed
a 2 hidden layer CNN‐based structure called the inception
module.

� First layer: two convolution kernels (1 � 1) and a max
pooling layer (3 � 3) reducing channel dimensions remove
computational bottlenecks.

� Second layer: three different convolution kernels (1 � 1,
3 � 3, and 5 � 5) extract distinct features and another
dimension reduction convolution (1 � 1) keeps non‐linear
properties.

To transfer higher abstraction from the two hidden layers
to next layer, a spatial concatenation could make it possible [9].

496 - WANG ET AL.

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4.3 | SpikeGoogle

Based on the above analysis, the application of inception in
spatial–temporal sparse NMNIST dataset should have a certain
result, and the amount of network parameters should not be
too much. We call the single‐inception network after spike
conversion as SpikeGoogle. The model structure of Spike-
Google (x3) is shown in Figure 3 and Figure 4. We show the
inception structure, including convolutional kernels of
different sizes in the upper right corner of Figure 3. Struc-
turally, the SpikeGoogle (x3) model consists of the following
components: three spiking layers, one max pooling layer and
one fully connected layer. After spike conversion, three
consecutive perceptions, considered as the third part of whole
network, can properly extract the features of different receptive
fields of NMNIST. Then, it is supposed to output the results
through fully connected layer after minimising the parameters.
Since the accuracy of SCNN (x3) is higher than that of SCNN
(x2) and SCNN (x4), three‐layer depth is enough to deal with
NMNIST classification.

It is worth noting that we add the postsynaptic potential
(PSP) function behind a pooling layer (the last layer in the
SpikeGoogle network), fully connected layer (SNN based) and
every SpikeGoogle module to process the extracted features by
combining the temporal information of NMNIST's sparse
data.

Furthermore, in our work, the SRM neuron model is used
to simulate the PSP process, as detailed in the neuron model
section above.

5 | EXPERIMENTS

In this section, we will first introduce the specific character-
istics of the NMNIST dataset. Then, the results of Spike-
Google will be shown later, with SCNN as its comparison
item. This part can be divided into the following three ex-
periments: SCNN model with different layers, mixed model of
SpikeGoogle and SCNN, and SpikeGoogle model with
different numbers.

5.1 | Dataset and settings

Inspired by the biological visual processing mechanism, neuro
morphological vision sensors capture the light intensity
changes in the field of vision and generate asynchronous time
flow. Representative neuromorphological vision sensors
include Dynamic Vision Sensor (DVS) and Dynamic Active
Imaging Sensor (Davis) [36].

The NMNIST dataset [36] consists of MNIST images,
which contain 10 different hand writing digits, 0–9. These
images are converted into spike datasets by using the DVS
moving on the Pan/Tilt/Zoom (PTZ). The dataset contains
‘on’ and ‘off’ spikes with a duration of about 300 milliseconds.
When simulating motion on a computer, moving the sensor
instead of the scene or image is a biologically more realistic

method to eliminate the timing artefacts introduced by the
monitor update. By using the perfect computer vision dataset,
we save a lot of time and effort in selecting and collecting
topics. Furthermore, the size of each sample event is 34 � 34.
This kind of small size helps to reduce the processing time,
which is good for rapid testing and algorithm iteration in the
prototype design of new ideas. It can be said that the NMNIST
dataset is the most complete DVS dataset created so far.

In the training process, the event information is repre-
sented as point cloud model with four channels of ‘x y p t’ [36].
The parameters of ‘x y’ include the coordinate information of
the point cloud ‘p’ is the polarity of the event and ‘t’ represents
the time domain of event. Figure 5 gives two examples of digit
0 and 4. The dataset used in this paper is a small NMNIST
dataset (‘small’ means that we did not use the full dataset), with
10 ways * 100 shoots. The separation of training and test
samples of small data set is the same as that of standard
NMNIST 60,000 training samples and 10,000 test samples.

Our network has been tested with CUDA libraries version
9.2 and GCC 7.3.0 on Ubuntu 18.04. The SLAYER frame [8]
on which our work is based includes C++ and CUDA code
that has to be compiled and installed before it can be used
from Python.

We have made changes to the training methods based on
the original. When using the Adam optimiser, we sometimes
change hyper parameters, such as learning rate, so it is hard to
give a definitive guidance to the most effective single way to
train the networks. Our code can be found in the link https://
github.com/WangXuan2401/SpikeGoogle.

5.2 | Spiking convolutional neural network

Figure 6 shows the SCNN (x3) training results, which tend to
be over‐fitting. We propose an assumption for the undesired
result that the SCNN (x3) structure is too superior to process
NMNIST point cloud data, meaning there are a lot of extra-
neous features being extracted. In order to verify the
assumption, we choose to change the number of SCNN
structure. Based on the idea of shallow layer, delete or add the
layer of SCNN (x3), meaning to train in the network of SCNN
(x2) or SCNN (x4).

Figure 7 shows the result of modified network SCNN (x2)
and SCNN (x4), which are not as good as that of the original
SCNN (x3) in terms of convergence speed and accuracy.
However, it is worth noting that after 80 epochs, the accuracy
of the SCNN (x2) training is higher than that of original SCNN
(x3), which is still on the rise. Then, we continue to analyse the
training result of SCNN (x4) structure, whose accuracy has
been difficult to break through 0.5 though the overall upward
trend is similar to SCNN (x3). It is shown that the process of
NMNIST data on deep network become subsided, that is,
most of sparse data features are discarded.

Based on the above experiments, we draw some conclusion
that the SCNN structure can extract the sparse features of
NMNIST data well and the training result of 4 layers and deep
network is not as good as that of shallow network.

WANG ET AL. - 497

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

F I GURE 3 As shown in the figure, our SpikeGoogle (x3) model consists of three parts: three inceptions, one layer of max‐pooling and a full connected
layer. Three inceptions can extract the features of different receptive fields of NMNIST. The PSP function is added behind every module. The input signals are
encoded first. Processed by inceptions, they will then be output by fully connected layer after minimising parameters

F I GURE 4 The input spikes are described as point cloud chart. After being processed, the spikes become sparse in the hidden layer. At last, what the fully
connected layer outputs are linear spikes

F I GURE 5 This figure shows the result of the dataset we used. A single event contains four channels of x y p t information, x y determines the coordinates
of the point cloud in the graph, and two different colours represent the positive and negative polarity of the event. For time domain variable t, we capture
different images of an event at five time points and arrange them into a column in time order to present the time domain information in the NMNIST dataset
[36]. The first row is the number ’0’, and the second row is the number ‘4’

498 - WANG ET AL.

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

5.3 | Mixed model of SpikeGoogle and
SCNN

Figure 8 shows the result of SCNN (x1)‐SpikeGoogle (x1) and
SpikeGoogle (x1)‐SCNN (x1) structure in test accuracy and
loss. We combine SpikeGoogle with SCNN structure by the
following two kinds of modes. One is the structure of Spike-
Google lying in front of SCNN. And the other one is the
upside‐down mode, meaning SpikeGoogle lies after SCNN.
From the figure, we can see that about 40 epochs, the accuracy
rate of these two kinds of structures have exceeded that of
SCNN (x3). The highest accuracy rate of SCNN (x1) + Spike-
Google (x1) is 78%, and the convergence speed of it is not
slower than that of SCNN (x3). It is worth noting that the
training speed of the structure is greatly increased (in the same
GPU environment), and the number of parameters has been
greatly reduced.

Therefore, we draw a conclusion that SpikeGoogle struc-
ture has higher utilisation of NMNIST's sparse features than
that of SCNN, which is verified in its improvement of per-
formance in network training speed and accuracy.

5.4 | SpikeGoogle

Figure 9 demonstrates the test accuracy and loss of different
numbers of SpikeGoogle structure, including SpikeGoogle
(x2), SpikeGoogle (x3), and SpikeGoogle (x4). The compres-
sion and extraction of NMNIST data features are both realised
in SpikeGoogle.

By analysing the data in Table 1, we find that the training
result of SpikeGoogle (x4) is greatly reduced, which is similar
to the training result of SCNN (x4). At this point, our pre-
vious analysis of the reasons for the performance degradation

F I GURE 6 Performances of spiking convolutional neural network (SCNN) (x3), where ‘x3’ denotes three layers

F I GURE 7 Performances of Spiking Convolutional Neural Network (SCNN) with different layers

WANG ET AL. - 499

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

of deep network is further confirmed that deep network
process NMNIST data has subsided. And also, it still has
other problems, which are not found in research studies to
date.

In addition, we can find that the convergence speed and
accuracy of SpikeGoogle, including SpikeGoogle (x2) and
SpikeGoogle (x3), have been improved to a certain extent on
the basis of shallow layer. In particular, the performance of
SpikeGoogle (x3) has been improved significantly, which
realises 85%.

And test accuracy is almost maintained at more than 80%
in epoch. So, this further verifies our idea that the SpikeGoogle
network can not only perform better with the use of
NMNIST's sparse features but also be competent for the
classification task of NMNIST.

Daniel Neil and Shih‐Chii Liu [37] used to do the similar
things. They converted the framed‐based networks to spiking
neural networks [37] as described in Ref. [40]. It is described

that the experiment is based on spiking inputs, which are 1k
events of N‐MINST. Frame‐based networks are trained by
three different data processing methods before conversion.

F I GURE 8 Performances of mixed model of Spiking Convolutional Neural Network (SCNN) and SpikeGoogle

F I GURE 9 Performances of SpikeGoogle with different layers

TABLE 1 Comparison between Spiking Convolutional Neural
Network (SCNN) and SpikeGoogle

Network Accuracy (%) Time (s/epoch)

SCNN (x2) 0.73 38.5

SCNN (x3) 0.7 48.3

SCNN (x4) 0.5 35.6

SCNN (x1) + SpikeGoogle (x1) 0.77 29.5

SpikeGoogle (x1) + SCNN (x1) 0.73 49.2

SpikeGoogle (x2) 0.79 18.8

SpikeGoogle (x3) 0.85 15.2

SpikeGoogle (x4) 0.47 17.3

500 - WANG ET AL.

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The names of networks in the first column in Table 2 are
datasets used when training the unconverted networks. In-
tensity refers to the dataset obtained by extracting the spikes
from the image with a probability proportional to the intensity
of the pixel. Canny refers to NMNIST where the Canny edge
filter is applied to the static image before training. NMNIST
refers to the original NMNIST dataset. Table 2 shows the
performance of different networks on centred and uncentred
NMNIST data. It can be seen that SpikeGoogle (x3) achieve
better performance.

6 | CONCLUSION

In this paper, we have presented SpikeGoogle based on the
GoogLeNet‐like inception module by using the SLAYER
framework and stacking multiple inception structures.
Compared with the traditional SCNN, which only involves
common convolution operation, SpikeGoogle is able to ach-
ieve the highest accuracy of 85% on a small NMNIST dataset
and can also improve the training speed. However, as the
number of network layers increases, the training results will
deteriorate, which is due to the sparsity of the data that is easy
to diverge in the training process. Therefore, this reminds us
that we need to balance the gap between training speed and
accuracy while improving the network.

ACKNOWLEDGEMENT
This project is sponsored by Key‐Area Research and Develop-
ment Program of Guangdong Province, No. 2020B0404020005.

CONFLICT OF INTEREST
The authors declared that they have no conflicts of interest to
this work.

DATA AVAILABILITY STATEMENT
The dataset NMINST that this work used are openly available
in Dropbox at https://www.dropbox.com/sh/tg2ljlbmtzy-
grag/AABrCc6FewNZSNsoObWJqY74a?dl=0.

ORCID
Xuan Wang https://orcid.org/0000-0002-1144-1587

REFERENCES
1. Perez‐Carrasco, J.A., et al.: Mapping from frame‐driven to frame‐free

event‐driven vision systems by low‐rate rate coding and coincidence
processing—application to feedforward ConvNets, IEEE Trans. Pattern
Anal. Mach. Intell. 35, 2706–2719 (2013)

2. Roy, K., Jaiswal, A., Panda, P.: Towards spike‐based machine intelligence
with neuromorphic computing. Nature 575, 607–617 (2019)

3. Deng, L, et al.: Rethinking the performance comparison between SNNS
and ANNS, Neural Network 121, 294–307 (2020)

4. Haessig, G., et al.: Spiking optical flow for event‐based sensors using
IBM’s TrueNorth neurosynaptic system. arXiv:1710.09820v1 (2017)

5. Lam, M.W.Y., et al.: Gaussian process Lstm recurrent neural network
language models for speech recognition. In: International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE (2019)

6. Vidal, A.R., et al.: Ultimate SLAM? Combining events, images, and IMU
for robust visual SLAM in HDR and high‐speed scenarios. IEEE Robot.
Autom. Lett. 3(2), 994–1001 (2018)

7. Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural net-
works for energy‐efficient object recognition. Int. J. Comput. Vis. 113,
54–66 (2015)

8. Shrestha, S.B., Orchard, G.: Slayer: Spike layer error reassignment in time.
arXiv:1810.08646 (2018)

9. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1–9 (2015)

10. Paugam‐Moisy, H., Bohte, S.M.: Computing with Spiking Neuron Net-
works. Springer Berlin Heidelberg (2012)

11. Wang, Y., et al.: Generalizing from a few examples: a survey on few‐shot
learning. ACM Comput. Surv. 53(3) (2020)

12. Tie‐Lin, Z., Bo, X.: Research advances and perspectives on spiking neural
networks. Chin. J. Comput. 0–21 (2020)

13. Taherkhani, A., et al.: A review of learning in biologically plausible
spiking neural networks. Neural Network. 122, 253–272 (2020)

14. Belatreche, A., Paul, R.: Dynamic cluster formation using populations of
spiking neurons. In: The 2012 International Joint Conference on the
Neural Networks, pp. 1–6 (2012)

15. Wysoski, S.G., Benuskova, L., Kasabov, N.: Evolving spiking neural
networks for audiovisual information processing. Neural Network.
23(Sept), 819–835 (2010)

16. Fang, W., et al.: Incorporating learnable membrane time constant to
enhance learning of spiking neural networks. In: International Confer-
ence on Computer Vision (ICCV), pp. 2661–2671 (2021)

17. Yangfan, H., Huajin, T., Gang, P.: Spiking deep residual network.
arXiv:1805.01352v2 (2020)

18. Cordone, L., Miramond, B., Ferrante, S.: Learning from event cameras
with sparse spiking convolutional neural networks. arXiv:2104.12579v1
(2021)

19. Kim, S., et al.: Spiking‐YOLO: Spiking neural network for energy‐
efficient object detection. arXiv:1903.06530v2 (2019)

20. Srinivasa, N., Cho, Y.: Self‐organizing spiking neural model for learning
fault‐tolerant spatio‐motor transformations. IEEE Transact. Neural
Networks Learn. Syst. 23, 1526–1538 (2012)

21. Xianghong, L., Zuzheng, G.: Review of modeling methods for single
chamber pulsed neurons. Comput. Eng. Appl. J. 41–44 (2011)

22. Xiao, M., et al.: Training feedback spiking neural networks by implicit
differentiation on the equilibrium state. arXiv:2109.14247 (2021)

23. Lee, C., et al.: Enabling spike‐based backpropagation for training deep
neural network architectures. Front. Neurosci. 14, 119 (2020)

24. Huang, Y., Rao, R.P.: Bayesian inference and online learning in Poisson
neuronal networks. Neural Comput. 1503–1526 (2016)

25. Zenke, F., Ganguli, S.: Superspike: Supervised learning in multilayer
spiking neural networks. arXiv preprint arXiv:1705.11146 (2017)

26. Lee, J.H., Delbruck, T., Pfeiffer, M.: Training deep spiking neural net-
works using backpropagation. Front. Neurosci. 10, 508 (2016)

27. Javed, A., et al.: Predicting networks‐on‐chip traffic congestion with
spiking neural networks. J. Parallel Distr. Comput. 154, 6 (2021)

TABLE 2 Comparison with other work

Network Dateset Accuracy (%)

Intensity N‐MNIST (uncentred, 1k) 0.2288

N‐MNIST (centred, 1k) 0.4274

Canny N‐MNIST (uncentred, 1k) 0.2317

N‐MNIST (centred, 1k) 0.4351

N‐MNIST N‐MNIST (uncentred, 1k) 0.4750

N‐MNIST (centred, 1k) 0.6450

SpikeGoogle (x3) (ours) Small N‐MNIST (1k) 0.85

WANG ET AL. - 501

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

28. Ganguly, C., et al.: First level approximation of measured neuronal
response using a leaky integrate and fire model. In: IEEE 16th India
Council International Conference (INDICON). IEEE (2020)

29. Krizhevsky, A., Ilya, S., Geoffrey, E.: Imagenet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 1097–1105
(2012)

30. He, K., et al.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and pattern
Recognition, pp. 770–778 (2016)

31. Hu, J., Shen, L., Sun, G.: Squeeze‐and‐excitation networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7132–7141 (2018)

32. Huang, G., et al.: Densely connected convolutional networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4700–4708 (2017)

33. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network
training by reducing internal covariate shift. In: International Conference
on Machine Learning, pp. 448–456 (2015)

34. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434 (2015)

35. Min, L., Qiang, C., Shuicheng, Y.: Network in network. arXiv preprint
arXiv:1312.4400 (2013)

36. Orchard, G., et al.: Converting static image datasets to spiking neuro-
morphic datasets using saccades. Front. Neurosci. 9(Oct), 437 (2015)

37. Neil, D., Liu, S.: Effective sensor fusion with event‐based sensors and
deep network architectures. In: International Symposium on Circuits and
Systems (ISCAS). IEEE (2016)

38. Wulfram, G.: Time structure of the activity in neural network models.
Phys. Rev. 738–758 (1995)

39. Brown, R.E., Bligh, T.W., Garden, J.F.: The Hebb synapse before Hebb:
Theories of synaptic function in learning and memory before, with a
discussion of the long‐lost synaptic theory of William McDougall. Front
Behav. Neurosci. (2021)

40. Diehl, P.U., et al.: Fast‐classifying, high‐accuracy spiking deep networks
through weight and threshold balancing. In: International Joint Confer-
ence on Neural Networks (IJCNN) (2015)

41. Gerstner, W.: Spike‐response model. Scholarpedia 3(12), 1343 (2008)

How to cite this article: Wang, X., et al.: SpikeGoogle:
Spiking Neural Networks with GoogLeNet‐like
inception module. CAAI Trans. Intell. Technol. 7(3),
492–502 (2022). https://doi.org/10.1049/cit2.12082

502 - WANG ET AL.

 24682322, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12082 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

