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Abstract
Due to current technology enhancement, molecular databases have exponentially grown
requesting faster efficient methods that can handle these amounts of huge data. There-
fore, Multi‐processing CPUs technology can be used including physical and logical
processors (Hyper Threading) to significantly increase the performance of computations.
Accordingly, sequence comparison and pairwise alignment were both found contributing
significantly in calculating the resemblance between sequences for constructing optimal
alignments. This research used the Hash Table‐NGram‐Hirschberg (HT‐NGH) algo-
rithm to represent this pairwise alignment utilizing hashing capabilities. The authors
propose using parallel shared memory architecture via Hyper Threading to improve the
performance of molecular dataset protein pairwise alignment. The proposed parallel
hyper threading method targeted the transformation of the HT‐NGH on the datasets
decomposition for sequence level efficient utilization within the processing units, that is,
reducing idle processing unit situations. The authors combined hyper threading within
the multicore architecture processing on shared memory utilization remarking perfor-
mance of 24.8% average speed up to 34.4% as the highest boosting rate. The benefit of
this work improvement is shown preserving acceptable accuracy, that is, reaching 2.08,
2.88, and 3.87 boost‐up as well as the efficiency of 1.04, 0.96, and 0.97, using 2, 3, and 4
cores, respectively, as attractive remarkable results.
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1 | INTRODUCTION

The Multi‐processing system is defined as the use of more than
one processing unit on a single computer including physical
and logical processors (Hyper Threading), which can drastically
increase the performance of computers. The multi‐core pro-
cessor system, which represents one of the common multi‐
processing architectures, is growing broadly in which, it is
extremely difficult to find a computational device without a
multi‐core processor in the current days. In fact, this design
can be useful in the bioinformatics domain as it provides the
ability to perform different relevant tasks in parallel by
reducing the execution time. Furthermore, the analysis of

molecular databases is a time‐consuming process since these
databases are enormous in their sizes and are still growing.
Applying the capabilities of the multi‐core architecture in
managing the molecular databases and analysis is required for
reducing the execution time.

On the other hand, the hyper threading technique is used
to increase the capability of a single processing unit that can
manage more than one thread at a time [1]. This ability allows a
single processing unit to handle more than one task concur-
rently based on an appropriate operating system. Each task is
allocated with a particular time frame of execution so that it
complies with the entire task, which gives the impression that
they are executed in parallel or at the same time.
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The molecular sequences analysis and management
research field are increasingly attracting the interest of many
researchers. With the aid of current technologies in molecular
sequencing, the size of molecular (protein, Deoxyribo Nucleic
Acid (DNA) [2], and Ribo Nucleic Acid (RNA) [3]) databases
are increasing enormously. UniProt (Universal Protein
Resource), RCSB (Research Collaboratory for Structural Bio-
informatics), and EXPASY (Expert Protein Analysis System)
[4–6] are examples of different protein database websites that
demonstrate the growth of the database size. The rapid growth
of molecular databases drives the need for efficient methods to
manage and control large amounts of molecular data sizes [7].
This growth of file sizes witnesses serious challenges and
motives for researchers to propose faster and efficient
sequence comparison methods for controlling, analysing, and
organizing these sizes of daily emerging data.

The Sequence Alignment (SA) method is used widely in
order to compare sequences as it rates the similarity and dis-
tances between various molecular sequences. The calculated
similarity may work as an indicator of structural, functional, or
evolutionary relationships that the sequences share [8]. The
pairwise sequence alignment method is a SA method that
computes the similarity/distance between two sequences based
on calculating the matched blocks of amino acids between the
two sequences.

The pairwise sequence alignment method has a significant
role in building the guide tree by filling the distance matrix
(DM), which facilitates the process of constructing the Mul-
tiple Sequence Alignment (MSA) algorithm [9]. Such an ac-
curate pairwise sequence alignment contributes directly to
improving and speeding up the process of building the MSA.
Constructing DM costs (n^2‐n)/2 pairwise sequence align-
ments [10]. In particular, a pairwise sequence alignment with
high time performance could speed up the process of building
DM more efficiently, which, in turn, speeds up the construc-
tional tree guidance leading to faster construction of the MSA
algorithm.

Developing fast and accurate sequence alignment methods
have been the main challenge for many researchers. A large
variety of methods have been proposed in order to achieve
optimal results without sacrificing the time performance.

The Smith‐Waterman [11] method is a pairwise sequence
alignment method, which attempts to reach an optimal align-
ment where it can, however, sacrifice the execution time as it
takes a time of O(mn) to build the alignment between any two
sequences. Furthermore, the N‐Gram‐Hirschberg (NGH)
method [12], which is an extension to the Hirschberg algo-
rithm, aims at reducing time and, meanwhile, producing similar
results to the results produced by the Smith‐Waterman
method. Additionally, two methods are presented as an
enhancement to the NGH called H‐NGH [13, 14] and HT‐
NGH [15]. The H‐NGH method enhances the execution
time but at the cost of accuracy. On the other hand, the HT‐
NGH method, which is an enhancement of both former
methods: NGH and H‐NGH, proposes a further execution
time improvement. This work proposes a method that allows
the usage of the current high‐performance architectures for the

purpose of improving the execution time performance of the
HT‐NGH method.

Even though pairwise sequence alignment algorithms
attain optimal results in terms of accuracy [11, 12, 16], they are
considered as time‐consuming methods due to the large vol-
ume size of data. The NGH algorithm [12] attempts at
decreasing the time and the space that is needed to construct
the alignment. To compare two protein sequences, it takes O
(mn/k), where k is term size. The highest results are obtained
when k reaches 2 [12]. As molecular databases grow rapidly,
the need for faster algorithms is becoming an urgent necessity.

This paper studies the effects of using the capabilities of
the multi‐core architecture in the HT‐NGH algorithm's time
performance. Additionally, this paper studies the effects of
using the Hyper Threading technique (applying multiple
threads to each core concurrently) on the parallel performance
of this design. Each set of experiments is assigned with
different numbers of threads in order to recognize any dif-
ferences in performance. Finally, the findings are discussed and
analysed in terms of the time enhancement between the par-
allel and original algorithms, including the effects of applying
the Hyper Threading on the overall performance.

The outlines of the rest of this paper are organized as follows.
Section 2 presents the related research that has been extensively
investigated to solve and improve the SA problem. Section 3
explains the problem domain including the newly proposed al-
gorithm. Section 4 demonstrates and discusses the experimental
results of the proposed algorithm. Finally, Section 5 gives a
conclusion about the proposed algorithm and draws the
conclusion and future research pertaining to this study.

2 | RELATED RESEARCHES

The pairwise sequence alignment method is used in order to
compare two sequences by aligning them in a way that shows
the set of similar blocks of amino acids between the sequences.
The unmatched amino acids are shifted by gaps or set to face
each other within the sequences. To reduce the number of
gaps, a penalty is added to the final score of the alignment.

A massive number of researches along with a large diversity
of methods were conducted to overcome and develop the
pairwise sequence alignment challenge. Accordingly, the related
researches section shows the main and leading pairwise
sequence alignment methods and discusses their main signifi-
cant characteristics. Additionally, this section shows and dis-
cusses the former methods pertaining to this research. In this
work, different pairwise sequence alignment methods are
classified based on the approach that is used to solve the
problem incurred in many different heuristic‐based and DP‐
based methods.

2.1 | Heuristic‐based methods

The methods that follow the heuristic approaches tend to
look for all achievable solutions and pick the best ones based

ABU‐HASHEM AND GUTUB - 279

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12070 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



on a number of criteria that is set in advance. Although the
selected solution is considered as the best solution in com-
parison with the solution pool, reaching the optimal solution
is considered a great challenge towards several heuristic ap-
proaches. Meanwhile, the methods that apply heuristic ap-
proaches are seen to be fast and give results in a reasonable
time. This section discusses the main methods that adapt the
heuristic approaches in order to solve the pairwise sequence
alignment problem.

FAST‐All (FASTA) [17] is a pairwise sequence alignment
method that utilizes different heuristic approach capabilities
for the purpose of aligning and comparing any involved se-
quences. The proposed method splits the sequences into a
number of blocks and then searches for any matched blocks.
Every block point to a K tuple, which represents the number
of matches between sequences, is used to calculate sequences'
resemblance and construct the alignment [18–20]. After that,
the BLAST (Basic Local Alignment Search Tool) method is
proposed to enhance the sensitivity in the FASTA method
including the time performance [21, 22]. Furthermore, the
Sequence Search and Alignment by Hashing Algorithm
(SSAHA) is proposed to overcome this problem by applying a
hash table technique in order to keep track of the K‐tuple
appearances [23]. In [24], an enhanced particle swarm opti-
mization (PSO) algorithm is proposed to solve the pairwise
sequence alignment problem. The gp‐ALIGNER method [25]
presents the segment‐based DNA pairwise sequence alignment
method that applies an alike score schema as DIalign‐T [26]
method. A local pairwise sequence alignment [27] is presented
in order to reach an optimal un‐gapped alignment.

2.2 | Dynamic‐Programming‐based
methods

Many researchers employ the Dynamic Programming (DP)
approach in order to build and improve the efficiency of the
pairwise sequence alignment methods. In fact, the Needleman‐
Wunsch method [28] is considered as the first algorithm that
uses the DP approach in solving the sequence alignment and
comparison problems. In particular, it computes the resem-
blance between the sequences by constructing a matrix, called
the similarity matrix, which is filled based on another matrix
called the substitution matrix [29, 30]. Constructing the matrix
reserves an O(MN) space, which is a considerable amount if
the length of sequences is applied.

As a response to Needleman‐Wunsch space issues, the
Hirschberg algorithm [16] attempts at reducing the space
requirement to O(min (m, n)) such that it decomposes the
similarity matrix into two matrices. After that, it starts filling
the matrix from top and bottom, independently.

In 1981, the Smith‐Waterman algorithm is proposed as an
improvement to the local pairwise sequence alignment method.
In fact, this algorithm is seen to be similar to the Needleman
Wunsch algorithm, but except that it has some similarities
between suffixes. To seek optimal accuracy, the Smith‐
Waterman algorithm sacrifices the issues related to time and

space [11, 17]. Additionally, an extended version of the Smith‐
Waterman algorithm, namely, the N‐Gram‐Smith‐Waterman
method [31], is proposed to tackle the time and space issues
related to the Smith‐Waterman algorithm without the need to
decrease its sensitivity.

The Hirschberg algorithm [16], which applies the DP
approach for solving the pairwise sequence alignment method,
is proposed with the aim of improving the space complexity. In
[12], further refinements are performed along with the
Hirschberg algorithm by proposing the N‐Gram‐Hirschberg
(NGH), which aims to provide further space and time en-
hancements. In fact, the NGH algorithm enhances the
Hirschberg algorithm based on three stages by starting to
reduce the alphabet of the protein amino acid to 10 alphabets,
and by cutting the sequences into terms based on the use of
the N‐Gram method and, finally, converting the terms into
integer numbers.

Another method named Hashing‐N‐Gram‐Hirschberg (H‐
NGH) [13, 14] is presented in order to provide further en-
hancements to the time performance. The method improves
the NGH algorithm by enhancing the transforming stage
(converting the words into an integer) by using the capabilities
of the hash function. In fact, this function is used to convert
the words that are generated by the N‐Gram method into
integer numbers, which speed up the comparison process and
the alignment. Although the H‐NGH algorithm enhances the
time performance of the NGH algorithm, the accuracy is
decreased, which is following the Hashing philosophy [32], but
for pure security, similar to Hashing text authentication [33]
and mobile trust verification [34].

Furthermore, the HT NGH method [10, 15] is proposed as
a refinement to the NGH and H‐NGH methods with the aim
of building DM, which is used to construct several multiple
sequence alignments. The proposed method uses the capabil-
ities of the hash table in order to improve the performance of
the transformation stage in the NGH and H‐NGH methods.
In conclusion, the proposed algorithm outperforms its former
methods and demonstrates an improved accuracy and execu-
tion time. In addition, a proposed method for executing the
HT‐NGH method in parallel is discussed in [35].

Lately, many researchmethods [36–47] have been conducted
for the purpose of improving the efficiency and performance of
the pairwise sequence alignment through wide diversity. Despite
the fact that the DP‐based pairwise sequence alignment algo-
rithms have reached an optimal alignment, reaching a high time
performance remains a challenge itself. Many methods such as
the NGH, H‐NGH, and HT‐NGH methods have been pro-
duced to reduce the execution time when the time performance
can be further improved. In this research, a parallel computing
method is proposed for more improvement in the time perfor-
mance of the HT‐NGH method.

3 | PROBLEM DEFINITION

This research presents a parallel algorithm that combines
multi‐core shared memory architecture with the Hyper
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Threading technique in order to test the performance effects
of Hyper Threading on share memory modelling. The HT‐
NGH pairwise sequence alignment algorithm is used as a
case study. It is used to construct the distance matrix. The
construction of DM is accomplished in two stages. The first
stage is based on transforming the alphabet of the protein
sequences from 20 amino acids represented by 20 different
characters into 10 integer numbers. The second stage is based
on building the pairwise sequence alignment and constructing
the matrix. This research focusses on speeding the first stage
by utilizing the capabilities of the shared memory architecture
and multi‐threads technique.

Each protein sequence passes through several reforming
levels leading to sequences that are shorter and easier to be
compared. This stage consists of many phases starting with the
protein sequence alphabet reduction and passing through
further reduction of sequences by dividing them into terms
(words) and ending by converting the terms into integer
numbers based on the use of a hash table.

The alphabet of the protein sequences consists of 20
amino acids, where each amino acid is represented by a char-
acter. The protein alphabet reduction phase is done by
applying some sort of clustering to the 20 amino acids based
on the similarity of their properties such as physicochemical
properties [48, 49] where those amino acids can be grouped
together. After the completion of this phase, the 20 amino
acids are distributed along into 10 clusters represented by
numbers ranging from 0 to 9 where the protein sequences are
represented by 10 numbers such that each number refers to a
group of amino acids.

Splitting the sequences into terms is performed by applying
the N‐Gram method (see Table 1). All the terms have the same
length while the term size is set earlier. The term length ranges
from 2 to 5 amino acids. The final phase in the sequence trans-
formation stage is to convert the term into numbers in which
each term is represented byone integer value instead of havingN
integer numbers (N is the term length).

The HT‐NGH algorithm uses the hash table technique in
order to convert the involved terms from a group of numbers to
an integer value. This process is conducted by using a multi‐
dimensional array of size 10N , where N refers to the term size,
which represents the hash table. The main purpose of the array
with such a size is to give enough space to assign a unique integer
value for every term. The array containsM dimensions whereM
is equal to the word's (term) length. Every dimension in the array
is associated with a number (letter), which fastens and simplifies

the process of addressing the terms within the array. So, every
combination of letters (word) is assigned with a distinctive value.

Finally, the protein sequences are aligned by applying a
pairwise sequence alignment based on the use of the Hirsch-
berg algorithm. The main purpose of the alignment is to build
the DM by computing the values of resemblance among the
involved sequences. To align the sequences, a similarity matrix
is constructed and filled with the similarity values between the
amino acids. Equation (1) is used to calculate the similarity
values between amino acids in order to fill the similarity matrix
appropriately.

Sði; jÞ ¼Max

8
>><

>>:

Sði − 1; j − 1Þ þ S
�
Ai ;Bj

�

Sði − 1; jÞ
Sði; j − 1Þ
0

ð1Þ

A full pairwise sequence alignment is conducted, where
each sequence is aligned against all other sequences in the
dataset in order to build DM. Algorithm 1 demonstrates the
transformation phase of the HT‐NGH method.

Algorithm 1 Transformation phase of the HT‐NGH
method

Input: protein sequence
Output: Array of integer term coding
//Length reduction by TERM_SIZE
array_size=(ilength/TERM_SIZE)+1;
//For Every Character in the Sequence
for (i = 0; i < 10; i++)
{
T[i]= i*10;
H[i]= i*100;
}
//For Every Character in the Sequence
for (idx = 0; idx < array_size; idx++)
(*info)->wordcount[idx] = 0;

for (idx = 0; idx < ilength; idx+ = TERM
_SIZE)
{
ivalue = 0;
k1 = 0;
if (TERM_SIZE == 2)
ivalue = T[GroupCode[idx]] + (GroupCode[idx
+1]);
else if (TERM _SIZE == 3)
ivalue = H[ GroupCode[idx]] + T[ GroupCode
[idx+1]] + (GroupCode[idx +2]);
else
break;
(*info)->wordcount[position] = ivalue;
{
position++;

TABLE 1 Examples of cutting a sequence S down into terms using
N‐Gram

N Example N‐gram terms for S = 812735964523

2 81, 27, 35, 96, 45, 23

3 812, 735, 964, 523

4 8127, 3596, 4523

5 81273, 59645, 23
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On the other hand, calculating the distances between the
two protein sequences S1 and S2 is carried out by using
Equation (2).

dðS1; S2Þ ¼ 1 −
ExactMatchingðS1; S2Þ

MaxðLengthðS1Þ; LengthðS2ÞÞ
ð2Þ

4 | METHODOLOGY

This paper proposes an algorithm that exploits the perfor-
mance capabilities of parallel designing in order to test the
performance effects of Hyper Threading on shared memory
architecture and speeds up the HT‐NGH algorithm. The
Single Instruction Multiple Data (SIMD) modelling is used to
manage the parallel process where the data is decomposed in
such a way that each core is assigned with a protein sequence at
a time when processing units are used more efficiently.
Furthermore, this approach splits the data into different sub‐
datasets. After that, it manages these datasets by using the
same piece of code.

4.1 | The parallel algorithm

In order to parallelize the HT‐NGH algorithm, the problem is
decomposed into a data level where each core is assigned with
a protein sequence at a given time. The algorithm is imple-
mented using C++ and parallelized using the Mingw32
OpenMP library. Figure 1 shows the data decomposition ar-
chitecture of the parallel algorithm where the sequences
transformation algorithm is applied by all cores through
different datasets.

4.1.1 | Architecture

The parallel architecture is basedon themulti‐cores designwhere
the quad‐core processor is used accordingly. Figure 2 highlights a

schematic diagram of the parallel modelling. On the other hand,
the SIMD architecture is used to manage different parallel pro-
cesses. SIMD architecture is applied mainly on three phases;
transform the sequence of characters to a sequence of integers
phase, cutting sequence into terms phase, and converting the
term into integers phase. This design is applied to manage the
decomposition process since the aim is to distribute the dataset
over the cores, which are executing the same code (task).

4.1.2 | The decomposition method

In this research, data decomposition is used where the dataset
is decomposed into a number of blocks and sent along to the
cores. The number and size of the blocks are determined based
on the dynamic load balancing technique.

The dynamic load balancing technique is used with chunk
size equals one to balance the loads among the cores where the
number of blocks is increased at the time the size of the blocks is
decreased. Each core receives a single protein sequence at a time.
In fact, employing such a technique would increase the
communication overhead among the cores due to the increasing
number of data blocks. Additionally, faster cores get more se-
quences to process than slower cores, which lead to providing
more effective use of processing units since there are no idle
cores during the processing time. Moreover, the size of protein
sequences varies from around 100 amino acids to thousands of
amino acids. When using a fixed size of blocks, the entire cores
obtain the same number of protein sequences that would slow
down some cores. The reason behind this is that protein se-
quences do not share the same length and implies that some
cores should handle longer sequences compared to other cores.
Figure 3 illustrates the database partitioning process and Figure 4
shows the overall flowchart of the proposed method.

5 | ANALYTICAL EXPERIMENTS AND
FINDINGS

To evaluate the proposed algorithm, a Swiss‐Prot database [6] is
used in the FASTA format. The proposed algorithm is tested
based on the use of various inputs of data. The variation of these
inputs relies on the number and length of the involved protein
sequences. The results are assessed in terms of the accuracy and

F I GURE 1 Data decomposition architecture F I GURE 2 Schematic diagram of Intel quad‐core architecture [50]
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execution time performance. In fact, the accuracy is assessed by
comparing the results of the proposedmethodwith the obtained
results of the original method. Moreover, the time performance
is evaluated by computing the speedup, efficiency, and gained
performance. Seeking for better performance, the Hyper
Threading technique is used where each core is assigned a
number of tasks that is divided into multiple threads concur-
rently. The speedup of the shared memory parallel algorithm
alone without using hyper threading is compared with the speed
up of the parallel algorithm after applying the hyper threading
technique. Consequently, this section discusses the hardware and
software specifications, results measurements, datasets, time
performance and accuracy in detail.

5.1 | Hardware and software specifications

The experiments are run on an Intel® Core™ i7‐8550U multi‐
core processor with an 8 GB RAM. The processor consists of
4 cores and the type of the system is 64 bits and supports up to
8 threads using Hyper Threading technology. The experiments
are conducted on Windows10 Pro by using the C++ on code
Blocks 17.12.

5.2 | Time performance measurements

The time performance is evaluated by computing the speedup,
efficiency, and gained performance. Accordingly, this section
discusses how the results are measured

5.2.1 | Speedup estimation

Speedup refers to the performance of the parallel algorithm by
relating the parallel algorithm results to the results pertaining to
the sequential algorithm. Equation (1) shows how the speedup
is calculated.

Speedup ¼
T 1

TP
ð3Þ

Protien Sequences DB

Reducing Alphabet

Reduced Sequences DB

Splitting Sequences into Terms using 
N-GRAM

Sequences into terms File

Decompose Sequences to 
processing units

Transfer sequence’s terms into integer 
values by the processing units

EO
F?

Start

Collect the results by the master 
processing unit

Save the results into a file

End

Yes

No

F I GURE 4 Overall flowchart of the proposed method

F I GURE 3 Dataset partitioning process
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where T1 denotes the execution time for the fastest
sequential program when using a single core and T2 denotes
the execution time of the parallel algorithm when using P
cores.

5.2.2 | Efficiency estimation

Efficiency indicates whether or not the processing units are
effectively employed by splitting the speedup on the number of
processing units. Equation (2) highlights the calculation pro-
cess of the efficiency employment.

Efficiency ¼ Speedup = P ð4Þ

where P is the number of processing units.

5.2.3 | Performance gain

Performance increase refers to the percentage of the gained
enhancement during the use of the parallel algorithm.
Equation (3) shows how the gained performance is
calculated.

Performance gain¼
TAlg1 − TAlg2

TAlg1
� 100% ð5Þ

where TAlg1 denotes the execution time of the sequential al-
gorithm, and TAlg2 denotes the execution time of the parallel
algorithm.

5.3 | Testing datasets

The Swiss‐Prot database is used as a dataset for testing the
proposed algorithm while the protein sequences are repre-
sented in the FASTA format. Figure 5 illustrates an example of
the protein sequence in the FASTA format.

The proposed algorithm is tested in diverse sizes of dataset
parameters. The parameters represent the number of se-
quences, the database size in megabyte, the term length,
number of cores and number of threads. Table 2 shows the
ranges of such parameters.

5.4 | Proposed multi‐core comparison
remarks

The results demonstrate an improved time performance
without sacrificing the accuracy as compared with the original
algorithm (the HT‐NGH algorithm). This section discusses the
results in terms of time performance and accuracy, along with
the performance's gains of applying the hyper threading
technique by assigning multiple threads for each core
concurrently.

5.4.1 | Evaluation assigning each core one thread
at a time

The experiments are divided into two groups that are evaluated
based on the time performance. The first group is concerned
with the time performance that is gained by assigning one thread
for each core at a time (shared memory alone without using
hyper threading) in order to test the effectiveness of using the
multi‐core architecture. On the other hand, the second experi-
mental set is concerned with the time performance that is gained
by applying the Hyper Threading technique in order to study the
effects of assigning each core multiple threads concurrently on
the time performance of the shared memory algorithm.

>11S3_HELAN (P19084) 11S globulin seed storage protein G3 precursor 
(Helianthinin G3) [Contains: 11S globulin seed storage protein G3 acidic 
chain; 11S globulin seed storage protein G3 basic chain]
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEALEPIEVI
QAEAGVTEIWDAYD
QQFQCAWSILFDTGFNLVAFSCLPTSTPLFWPSSREGVILPGCRRTY
EYSQEQQFSGEGG
RRGGGEGTFRTVIRKLENLKEGDVVAIPTGTAHWLHNDGNTELVV
VFLDTQNHENQLDENQRRFFLAGNPQAQAQSQQQQQRQPRQQSP
QRQRQRQRQGQGQNAGNIFNGFTPELIAQSFNVDQETAQKLQGQ
NDQRGHIVNVGQDLQIVRPPQDRRSPRQQQEQATSPRQQQEQQQG
RR………
>11SB_CUCMA (P13744) 11S globulin beta subunit precursor [Contains: 
11S globulin gamma chain (11S globulin acidic chain); 11S globulin delta 
chain (11S globuln basic chain)]
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVWQQHRYQSPR
ACRLENLRAQDPVR
RAEAEAIFTEVWDQDNDEFQCAGVNMIRHTIRPKGLLLPGFSNAP
KLIFVAQGFGIRGIA
IPGCAETYQTDLRRSQSAGSAFKDQHQKIRPFREGDLLVVPAGVSH
WMYNRGQSDLVLIV
FADTRNVANQIDPYLRKFYLAGRPEQVERGVEEWERSSRKGSSGE
KSGNIFSGFADEFLE
EAFQIDGGLVRKLKGEDDERDRIVQVDEDFEVLLPEKDEEERSRG
RYIESESESENGLEE
TICTLRLKQNIGRSVRADVFNPRGGRISTANYHTLPILRQVRLSAER
GVLYSNAMVAPHY
TVNSHSVMYATRGNARVQVVDNFGQSVFDGEVREGQVLMIPQNF
VVIKRASDRGFEWIAF
KTNDNAITNLLAGRVSQMRMLPLGVLSNMYRISREEAQRLKYGQ
QEMRVLSPGRSQGRRE
>128UP_DROME (P32234) GTP-binding protein 128up
MSTILEKISAIESEMARTQKNKATSAHLGLLKAKLAKLRRELISPK
GGGGGTGEAGFEVA
KTGDARVGFVGFPSVGKSTLLSNLAGVYSEVAAYEFTTLTTVPGCI
KYKGAKIQLLDLPG
IIEGAKDGKGRGRQVIAVARTCNLIFMVLDCLKPLGHKKLLEHELE
GFGIRLNKKPPNIY
YKRKDKGGINLNSMVPQSELDTDLVKTILSEYKIHNADITLRYDAT
SDDLIDVIEGNRIY
IPCIYLLNKIDQISIEELDVIYKIPHCVPISAHHHWNFDDLLELMWEY
LRLQRIYTKPKG
QLPDYNSPVVLHNERTSIEDFCNKLHRSIAKEFKYALVWGSSVKH
QPQKVGIEHVLNDED
VVQIVKKV

F I GURE 5 Protein sequences in FASTA format

TABLE 2 Experimental parameters and ranges

Parameter

Range

IncrementFrom To

Database size (MB) 97 368 ‐

Term length 2 5 1

Number of sequences 200,000 800,000 ‐

Number of cores 1 4 1

Number of threads 4 8 4
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The experiments demonstrate that the proposed method
outperforms the HT‐NGH method. The time performance of
the proposed algorithm is evaluated by computing the speedup,
efficiency and gain performance of the obtained results.

Speedup analysis
Experiments show that the parallel algorithm obtains higher
speedup. This enhancement of speed performance is coming
as a result of reducing the communication overhead among
different cores by providing the cores with the same task to
perform. Additionally, load balancing plays an important role
in increasing the speed of the parallel algorithm since it allows
the algorithm to reach the most effective use of resources (no
idle cores). Figures 6–8 show the values of speedup that are
taken for the sizes of the dataset that range from 97 to 368 MB,
the term ‘length’ ranging from 2 to 5 increments by one, and

the number of cores ranging from 2 to 4 increments by one.
The results demonstrate that the number of cores has signifi-
cant effects on the speedup that increases when the number of
cores increases. The main reason behind this refers back to the
increment in the resources when the number of processing
units is increased. Further, the length of the term (word) has a
considerable impact on the speedup. The highest speedup is
gained when the term size is equal to 2. On the other hand, the
size of datasets does not have any considerable impacts on the
speedup. The highest speedup is obtained when 4 cores are
mainly at a term length that is equal to 2.

Efficiency analysis
The experiments show that the proposed algorithm obtains a
high efficiency that is mainly gained due to the high speedup
incurred into the algorithm. As shown in Equation (2), the
speedup has a significant impact on the efficiency of the
algorithm.

Unlike the speedup results, the highest efficiency is ob-
tained when the number of cores is equal to two while the
lowest is obtained at 4 cores. The highest efficiency is 1.044
that is obtained based on the term length that is equal to 3
(3 g). Figures 9–11 illustrate the values of efficiency that are
taken for the sizes of the dataset that ranges from 97 to
368 MB, the term length ranging from 2 to 5 increments by
one, and the number of cores ranging from 2 to 4 increments
by one. It is shown to be proven from the obtained results
that the value of speedup has a great impact on the efficiency

F I GURE 6 Speedup of Parallel HT‐NGH algorithm for 97 MB
dataset size (200 k Protein Sequences)

F I GURE 7 Speedup of Parallel HT‐NGH algorithm for 234 MB
dataset size (500 k Protein Sequences)

F I GURE 8 Speedup of Parallel HT‐NGH algorithm for 339 MB
dataset size (753 k Protein Sequences)

F I GURE 9 Parallel HT‐NGH algorithm's efficiency for 97 MB dataset
size (200 k protein sequences)

F I GURE 1 0 Parallel HT‐NGH algorithm's efficiency for 234 MB
dataset size (500 k protein sequences)
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score. Additionally, the number of cores has a contrast
impact on the efficiency value in which the less cores use the
highest gained efficiency values. In fact, this is due to the
overhead latency that comes as a result of the increment in
communications such as the distribution of the data through
to the cores and the gathering of the obtained results from
the cores.

Performance analysis
The experiments show that the proposed algorithm obtains
higher gains of performance. The obtained performance gain
is mainly acquired because of the high speedup of the algo-
rithm. As noticed in Equation (3), the high speedup leads to
higher gains of performance. Figures 12–14 highlight the
values of the gained performance that are taken for the sizes of
the dataset ranging from 97 to 368 MB, the term length ranging
from 2 to 5 increments by one, and the number of cores
ranging from 2 to 4 increments by one. As can be seen from
these figures, the highest performance gain is 74.19 that is
obtained when 4 cores are used along with the term length that
is equal to 2. On the other hand, the performance is decreased
when the number of cores is also decreased; besides, the lowest
performance gain is scored when 2 cores are used. Using more
processing units for executing the algorithm leads to a more
effective performance gain.

5.4.2 | Evaluation applying hyper threading

Hyper threading is assigning each core multiple threads
concurrently. This Hyper Threading technique is useful when it
manages different required tasks and at the same time, it im-
proves the execution time [1]. To run the code in parallel and
harvest the multi‐core processor's capabilities, the code is
divided into a number of threads [51]. Furthermore, the pro-
cessor that is used through the experiment represents a quad‐
core processor, which supports the Hyper Threading technique
that can handle up to 8 threads at a time. To apply the capa-
bilities of the Hyper Threading technique and seek for further
improvements in the time performance, each core is assigned
multiple threads concurrently.

The experiments demonstrate that using the hyper
threading technique improves the performance of the cores,
which in return enhances the time performance of the algo-
rithm. In particular, the time performance is assessed by
computing the speedup of the obtained results and comparing
them with the time performance that is obtained by assigning
one thread for each core at a time.

Figures 15–20 show the speedup that is gained by applying
this technique in the parallel algorithm. The results are divided
based on the number of cores, the number of threads, dataset
size and term length. The number of cores that are used in the
experiments is 2 and 4 cores where each core is assigned 2
threads (due to hardware limitations) concurrently. Finally, the
size of the datasets ranges from 97 to 368 MB, and the terms
length ranges from 2 to 5. The experiments demonstrate that
assigning multiple threads for each core concurrently improves
the speedup of the parallel algorithm in comparison with the
assigned tasks by using one thread at a time.

F I GURE 1 2 Parallel HT‐NGH algorithm's performance gain for
97 MB dataset size (200 k protein sequences)

F I GURE 1 3 Parallel HT‐NGH algorithm's performance gain for
234 MB dataset size (500 k protein sequences)

F I GURE 1 4 Parallel HT‐NGH algorithm's performance gain for
339 MB dataset size (753 k Protein Sequences)

F I GURE 1 1 Parallel HT‐NGH algorithm's efficiency for 339 MB
dataset size (753 k protein sequences)
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The results demonstrate that applying the hyper threading
technique increases the speedup up to 34.4% where the highest
speedup reaches 4.76 with an increment of 1.77 when using 8
threads on 4 cores at the term length that is equal to 3. On the
other hand, the lowest speedup is 2.03 with an increment of
0.17 (8.8%) when using 4 threads on 2 cores at the term length
that is equal to 4.

In general, the speedup enhancement ranges from 8% to
34% with an average of 24.8%. This enhancement emerges due
to utilizing Hyper Threading technique ability to create mul-
tiple logical processors by using a single processing unit that is
able to increase the performance gains for up to 30%, which
are tested on the Intel Xeon processor [1]. Furthermore,
OpenMP has the ability to avoid most of the overhead issues
that are relevant to threads' management [51].

Even though the speedup is increased, the enhancements
are degrading at some points due to the encountered over-
heads latency such as the per‐threads (loop scheduling) and
lock management. In fact, these kinds of overheads cannot be
avoided when using OpenMP [51]. Furthermore, the size of
datasets does not have any considerable impact on speedup.

5.4.3 | Accuracy remarks

To validate the accuracy consistency of the proposed
method, we assessed remarks by comparing the results of the
proposed method with the results of the HT‐NGH tech-
nique. The proposed process produced the same results as

F I GURE 1 5 Comparison between speedup gained by applying hyper
threading on 2 cores and speedup gained by assigning each core one thread
at a time for the 97 MB dataset size (200 k Protein Sequences)

F I GURE 1 6 Comparison between the speedup gained by applying
Hyper Threading on 2 cores and speedup gained by assigning each core one
thread at a time for the 234 MB dataset size (500 k Protein Sequences)

F I GURE 1 7 Comparison between the speedup gained by applying
Hyper Threading on 2 cores and speedup gained by assigning each core one
thread at a time for the 339 MB dataset size (753 k Protein Sequences)

F I GURE 1 9 Comparison between the speedup gained by applying
Hyper Threading on 4 cores and speedup gained by assigning each core one
thread at a time for the 234 MB dataset size (500 k Protein Sequences)

F I GURE 2 0 Comparison between the speedup gained by applying
Hyper Threading on 2 cores and speedup gained by assigning each core one
thread at a time for the 339 MB dataset size (753 k Protein Sequences)

F I GURE 1 8 Comparison between the speedup gained by applying
Hyper Threading on 4 cores and speedup gained by assigning each core one
thread at a time for the 97 MB dataset size (200 k Protein Sequences)
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the ones of the original HT‐NGH algorithm, as found fully
matched. It is to be noted that this accuracy was not inter-
fered via the decomposing technique that is used, benefiting
from the adopted dynamic balancing load affecting data
decomposition within sequence level. This parallelization
precision is in line with multiplication architecture arrange-
ments presented for Jacobian elliptic curve computation [52]
and GF(p) multiple multipliers [53] as well as scalable mul-
tipliers parallelization [54].

6 | POSSIBLE EXTENSION TO
GENOMIC SEQUENCES

It is important to discuss the possibilities of extending and
generalizing the applicability of the proposed method to cover
other genomic sequences. This section discusses the applica-
bility of generalizing the proposed method to cover all
genomic sequences and its effects on performance. Genomic
sequences, computational wise, share similar representation as
they are represented by a sequence of letters.

The main difference between them is the alphabet where
DNA and RNA sequences are represented by four letters while
protein sequences are represented by 20 letters [55]. This
memory sharing strategy can benefit boost‐up parallel sharing
via counting‐based secret‐sharing [56] and its enhancement in
matrices [57] as well as increasing shares [58], trustfulness hiding
[59], and sharing regularity optimization [60]. The proposed
method can be extended and generalized to cover genomic se-
quences since, computer‐wise, all of them are represented as a
string of letters. Furthermore, the proposed method should give
the same performance on other genomic sequences as on pro-
tein sequences because of the fact that the proposed method
applies a dynamic load balancing technique in which each core
receives a single sequence at a time leading to the fact that the
type of genomic sequence would not be an issue.

Unfortunately, the proposed method cannot be extended or
generalized to cover further genomic sequences other than
protein testing of this paperwork, since the HT‐NGH method
has been applied on protein only, similar to pairwise sequence
alignment based on transition probability between two consec-
utive pairs of residues [61] as well as rigid region pairwise
sequence alignments [62]. The work can further involve engi-
neering Hash functions [63] combined with partitioning of
watermarking via counting‐based secret sharing [64] as for semi‐
complete text reliability [65] aiming innovative researches.
Accordingly, the proposed computational protein alignment
utilizing hyper threading multi‐core sharing technology method
needs to be extended precisely for other genomic sequences,
which are still open research applicable to give independent
supplementary remarks.

7 | CONCLUSIONS

This paper presents time performance enhancement to pair-
wise sequence alignment method called HT‐NGH to study the

performance effects of Hyper Threading over shared memory
architecture on the molecular dataset. HT‐NGH procedure is
an enhancement combination to the H‐NGH and NGH al-
gorithms in which the execution time performance has
improved preserving acceptable accuracy. The SIMD archi-
tecture is used to distribute the data among different pro-
cessing units where the data is decomposed into a level of
sequences. The load balancing method is applied in order to
avoid any idle processing units during the execution aiming for
fair CPU utilization.

Experiments demonstrate the superiority of the proposed
parallel algorithm to gain performance running the HT‐NGH
algorithm without leaving integrity validation apart. The
speedup of using shared memory alone without hyper
threading reaches its highest results by using 4 cores while the
highest efficiency is gained by using 2 cores. On the other side,
for further time performance improvement, Hyper Threading
technology is applied. Using Hyper Threading by assigning
multiple threads concurrently to each core increases the speed
up of the parallel algorithm by 24.8% on average.

This research focusses on the performance effects of
Hyper Threading on multi‐core architecture as parallel archi-
tecture while other parallel designs, for instance, multi‐
processors and graphics processing units (GPU), could be
tested as well. Furthermore, a suitable combination/hybridi-
zation between several different parallel models could have a
high impact on the obtained results. In addition, the proposed
method could be extended and generalized to cover different
genomic sequences other than protein sequences providing
expected new research remarks.
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folders/1hJaNW7BMZIBjBeUdErhigdI7K8gPFUog?usp=sh
aring

Below is a detailed description of the code and datasets
files.

File name
File
format

Title of
data Description

Additional
File 1

FASTA Dataset Dataset in a Fasta file format. It
contains the protein sequences
in a fasta format. The file consists
of 222447 protein sequences.
File size is around 97 MB.

Additional
File 2

Text file
(TXT)

Dataset Dataset in a TXT file format. It
contains the protein sequences in a
fasta format. The file consists
of 524501 protein sequences. File
size is around 238 MB.

Additional
File 3

Text file
(TXT)

Dataset Dataset in a TXT file format. It
contains the protein sequences in a
fasta format. The file consists
of 753599 protein sequences. File
size is around 339 MB.

Additional
File 4

C++
code
file
(CPP)

C++
Code

C++ code file that contains the
sequential code of the process of
reducing and dividing
the amino acids into terms of 2
grams. To run the code file, use
CodeBlocks software.

Additional
File 5

C++ code
file
(CPP)

C++
Code

C++ code file that contains the
sequential code of the process of
reducing and dividing the amino
acids into terms of 3 g. To run the
code file, use CodeBlocks
software.

Additional
File 6

C++ code
file
(CPP)

C++
Code

C++ code file that contains the
sequential code of the process of
reducing and dividing the amino
acids into terms of 4 g. To run the
code file, use CodeBlocks
software.

Additional
File 7

C++ code
file
(CPP)

C++
Code

C++ code file that contains the
sequential code of the process of
reducing and dividing the amino
acids into terms of 5 g. To run the
code file, use CodeBlocks
software.

Additional
File 8

C++ code
file
(CPP)

C++
Code

C++ code file that contains the
parallel code of the process of
reducing and dividing the amino
acids into terms of 2 grams. To run
the code file use CodeBlocks
software. Also, you need to install
MinGW library to be able to use
OpenMP library in CodeBlocks.

Additional
File 9

C++ code
file
(CPP)

C++
Code

C++ code file that contains the
parallel code of the process of
reducing and dividing the amino
acids into terms of 3 g. To run the

(Continues)

(Continued)

File name
File
format

Title of
data Description

code file, use CodeBlocks
software. Also, you need to install
MinGW library to be able to use
OpenMP library in CodeBlocks.

Additional
File 10

C++ code
file
(CPP)

C++
Code

C++ code file that contains the
parallel code of the process of
reducing and dividing the amino
acids into terms of 4 g. To run the
code file, use CodeBlocks
software. Also, you need to install
MinGW library to be able to use
OpenMP library in CodeBlocks.

Additional
File 11

C++ code
file
(CPP)

C++
Code

C++ code file that contains the
parallel code of the process of
reducing and dividing the amino
acids into terms of 5 grams. To run
the code file, use CodeBlocks
software. Also, you need to install
MinGW library to be able to use
OpenMP library in CodeBlocks.

Note:

1. The code is built using Code:Blocks a free open‐source
cross‐platform IDE (https://www.codeblocks.org/down-
loads/26).

2. To run the parallel code, you need to install MinGW library
to be able to use OpenMP library in CodeBlocks. MinGW
library is added to the Google Drive folder that contains the
code under the folder name 'MinGW'. A detailed descrip-
tion on how to install the library can be found on: https://
www.youtube.com/watch?v=IQdZwIM8r_c&ab_channel=
AbhijeetChougule

3. Also, to use the parallel code for a certain number of cores
(2, 3, or 4), you need to set the number of threads to the
desired number by using the code (omp_set_num_threads
(N)), then put the number of cores instead of N.

4. To change the dataset file, you need to set the path of the
desired dataset file using (InputFile.open (‘Dataset File path
\\Additional File 1.fasta’)).

5. To force running the sequential code on one core, you need
to set it manually using the steps on the URL: https://www.
windowscentral.com/assign‐specific‐processor‐cores‐apps‐
windows‐10
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