
Received: 23 September 2020 - Revised: 18 January 2021 - Accepted: 25 February 2021 - CAAI Transactions on Intelligence TechnologyDOI: 10.1049/cit2.12043

OR I G INAL RE SEARCH PA PER

Target‐driven visual navigation in indoor scenes using
reinforcement learning and imitation learning

Qiang Fang | Xin Xu | Xitong Wang | Yujun Zeng

Department of Intelligence Science and Technology,
College of Intelligence Science and Technology,
National University of Defense Technology,
Changsha, China

Correspondence

Qiang Fang, Department of Intelligence Science and
Technology, College of Intelligence Science and
Technology, National University of Defense
Technology, Changsha 410073, China.
Email: qiangfang@nudt.edu.cn

Funding information

National Natural Science Foundation of China,
Grant/Award Numbers: 61703418, 61825305

Abstract
Here, the challenges of sample efficiency and navigation performance in deep rein-
forcement learning for visual navigation are focused and a deep imitation reinforcement
learning approach is proposed. Our contributions are mainly three folds: first, a frame-
work combining imitation learning with deep reinforcement learning is presented, which
enables a robot to learn a stable navigation policy faster in the target‐driven navigation
task. Second, the surrounding images is taken as the observation instead of sequential
images, which can improve the navigation performance for more information. Moreover,
a simple yet efficient template matching method is adopted to determine the stop action,
making the system more practical. Simulation experiments in the AI‐THOR environment
show that the proposed approach outperforms previous end‐to‐end deep reinforcement
learning approaches, which demonstrate the effectiveness and efficiency of our approach.

1 | INTRODUCTION

Autonomous navigation plays an important role in the field of
robotics. In recent decades, due to the benefits of low cost,
lightweight and rich information, visual navigation has attracted
considerable attention, and many studies have been presented.
In general, most of the traditional methods for visual navigation
are rule‐based methods [1–5] that locate the robot’s position
accurately for the planning and control modules. However,
these rule‐based methods are relatively complex, involving
considerable manual design work and computational resources.

Considering human navigation, there is no need to calculate
the exact position; we only need to determine where to go ac-
cording to the scenes we have seen. Inspired by such behaviour,
there has been an increasing interest in end‐to‐end visual navi-
gation approaches that directly navigate from images to actions.
Deep learning (DL) can extract useful features directly from
pixels, which has made great progress in many fields, such as
image classification [6], object detection [7] and image segmen-
tation [8]. Reinforcement learning (RL) is similar to the learning
processes of humans, where policies are optimized through
continuous trial‐and‐error and feedback with the environment
to achieve a higher level of intelligence [9, 10]. Moreover, the

deep reinforcement learning (DRL)method combiningDLwith
RL has been proposed and achieved exciting performance in
dealing with input problems for continuous high‐dimensional
states [11], so using the DRL method to solve end‐to‐end vi-
sual navigation is a good choice. Zhu [12] proposed a target‐
driven DRL (TD‐DRL) architecture to solve end‐to‐end visual
navigation problems and achieved good navigation perfor-
mance; however, there are some limitations. Firstly, four
sequential images are considered as the observation; in fact, the
robot has access to the surrounding observations, which might
provide more information. Secondly, the stop action is not
considered, although it can be automatically determined in the
simulation environment by judging whether the ID number of
the current state is that of the target state, but such an approach is
not suitable in reality because there is no ID number but only
images. Last but most importantly, DRL requires a large number
of samples to learn a good navigation policy during training,
which leads to a long training time and low efficiency for training
processes. To improve sample efficiency during training, the
imitation learning (IL) method is an alternative that can imitate
expert experience accurately, and it requires less training time to
achieve a navigation model. However, using IL alone might
result in the problem of overfitting compared to DRL.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing
University of Technology.

CAAI Trans. Intell. Technol. 2022;7:167–176. wileyonlinelibrary.com/journal/cit2 - 167

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Inspired by the limitations of TD‐DRL and the advantages
of IL, here, we focus on the challenges of sample efficiency
and navigation performance in RL for the visual navigation
task and propose a deep imitation reinforcement approach
(DIRL), which combines IL with DRL. The main contribu-
tions are summarized as follows:

• A framework combining IL with RL is presented, which
enables a robot to learn a stable navigation policy faster in
the target‐driven navigation task.

• For the observation, the surrounding images are considered
as the observation instead of sequential images, which can
improve navigation performance and accelerate the learning
process for more information. Additionally, a simple tem-
plate matching method is adopted to determine the action,
which makes the system more practical.

• Simulation experiments are evaluated, which demonstrates
the effectiveness of our approach compared with the state‐
of‐the‐art approaches.

The remainder of the paper is organized as follows: we
introduces the related work in Section 2 and describes our
proposed approach in Section 3. Experiments in AI2‐THOR
environment are evaluated and results are discussed in Sec-
tion 4. Finally, a conclusion is drawn in Section 5.

2 | RELATED WORK

Robot visual navigation can be categorized into two
methods: rule‐based and learning‐based. Here, we focus on
the latter, so we will introduce the related work of
learning‐based navigation, especially the IL and DRL used
in visual navigation.

IL is the process of learning a behaviour policy from a
set of demonstrations, and a survey about IL can be found
in [13]. Some IL methods treat the task as special super-
vised learning, that is, behaviour cloning (BC). NVIDIA
[14] proposed a typical BC‐based end‐to‐end visual navi-
gation method used in unmanned driving areas, which
collects a large number of expert samples from three
cameras. Based on IL, Yang [15] proposed a multi‐task
architecture that can simultaneously predict the vehicle's
speed and steering angles using image sequences. To drive a
vehicle, Wang [16] proposed a novel angle‐branch network,
where the inputs include sequential images, the vehicle
speed and the desired angle of the subgoal. Codevilla [17]
proposed a condition‐imitation‐learning method based on
high‐level input, which might partly address the generaliza-
tion ability of the models trained using IL. To address the
limitation that most IL methods need a specifically cali-
brated actuation setup for the training dataset to be per-
formed, Xu [18] proposed a novel framework (FCN‐LSTM)
to learn the policy of driving from uncalibrated large‐scale
videos. Although those imitation‐learning‐based methods
are useful for visual navigation, the systems are easy to
overfit using IL alone.

RL has recently been applied in robot navigation tasks due to
its ability to interact with the environment, especially DRL. In
general, one typical DRL method is the deep Q‐learning algo-
rithm (DQN) proposed by DeepMind, which successfully
enabled robots to learn control policies at the human level in
Atari games [19]. Subsequently, many algorithms for improving
the DQN network model were successively presented and ach-
ieved impressive results in different fields [20–23]. Other
methods based on the policy gradient include the deep deter-
ministic policy gradient (DDPG) [24] and the A3C [25]. Based
on the DRL methods, DeepMind proposed a dual‐agent archi-
tecture [26] that trains different long short‐term memories
(LSTMs) through RL to achieve outdoor visual navigation and
improves themobility of themodel. In [27], the authors aimed to
learn a deep successor representation and proposed a feedfor-
ward architecture, which is flexible to the changing of rewards
and is tested in the MazeBase gridworld such as 3D VizDoom.
The AutoRL method [28] combining DRL with gradient‐free
hyperparametric optimization was also proposed to solve navi-
gation tasks. However, in many cases, the reward function
required by RL is difficult to design and cannot guarantee its
optimality. Zhu [12] proposed a target‐driven DRL (TD‐DRL)
architecture to solve end‐to‐end visual navigation problems and
achieved good navigation performance. Although DRL can be
used in visual navigation, the authors in [29] summarized nine
challenges in RL; one of them is the low‐sample efficiency,
meaning it needs large samples to train, which is not suitable in
real‐world systems and limits its application in many tasks. The
approaches combining DRL with IL have been proposed in
many other tasks, such as the grasping task [30], theMuJoCo task
[31, 32] and the traffic control task [33], however, such methods
utilize some sequence data of trajectory for IL, while here, we
propose an approach combining DRL with IL to address the
sample efficiency for visual navigation tasks.

3 | PROPOSED APPROACH

3.1 | Markov decision process

The process of end‐to‐end vision navigation can be modelled
as a Markov decision process (MDP) [9], where the agent
considers the current observed images and the goal as input
and obtains a new state and relevant reward from the envi-
ronment by performing an action. Then, the MDP can be
expressed as < sk, ak, sk+1, rk+1 > , where sk represents the
states at step k, ak is the corresponding action, and rk+1 is the
reward function. The main goal is to find an optimal policy π*
to obtain the maximum return during the navigation process:

π� ¼ argmax
π

EðRjπÞ ð1Þ

The next state is dependent on the current state and on the
decision/action by the involved entity/person; in other words,
once the system knows its present state, the future is condi-
tionally independent of the past.

168 - FANG ET AL.

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

3.2 | Actor‐critic algorithm

To deal with MDPs with large (continuous) state or action
spaces, here, we adopt the actor‐critic algorithm [9] to deal with
the end‐to‐end visual navigation task due to the ability to learn a
policy and a state‐value function simultaneously. The state‐value
function Vπ(s) is the expected return and can be formulated as:

VπðsÞ ¼ EðR|s;πÞ ð2Þ

Since the optimal state‐value V *(s) is related to the optimal
policy π*, the function V *(s) can be further defined as:

V*ðsÞ ¼maxVπðsÞ ð3Þ

Note that in the actor‐critic learning algorithm shown in
Figure 1, a critic network is designed to learn the value func-
tions of the MDP, and an actor network is used to learn near‐
optimal policies using the estimated value functions in the
critic to perform policy searching.

The current state value can be obtained by the value
function network in experiments, and the values of actions can
be used to evaluate the quality of actions as follows:

Q s; að Þ ¼ r þ γV s0ð Þ ð4Þ

Since the advantage function A s; að Þ ¼Q s; að Þ − V sð Þ can
eliminate the effect of the current state value and reflect values
of actions better, it is assumed that some states are inherently
better. If some states are always better, the value of each action
will be higher only by using the current state value, resulting in
exaggerated evaluations that are considered good actions.
However, we can evaluate the qualities of actions more
objectively after the state value is subtracted for the advantage
function. The value of action is positive if it is higher than the
evaluation value and negative if it is lower than the evaluation
value. The n‐step update method for the advantage function is
defined as:

V s0ð Þ ¼ r0 þ γr1 þ⋯þ γnV snð Þ ð5Þ

The multi‐steps update method can make changes in the
advantage function spread faster. If the agent earns an occa-
sional reward, the value function will only slowly move back-
wards by one step with each iteration. However, each iteration
propagates back with an n‐step iteration, so it is faster. The
estimated V(s) of the algorithm should be convergent. Then,
errors can be calculated by the following equation:

e← r0 þ γr1 þ⋯þ γn−1rn−1 þ γnV snð Þ − V s0ð Þ ð6Þ

According to the policy gradient method, the policy loss
function is:

Lπ ¼
Xn

i¼1
A si; aið Þlogπ ai|si; θ0ð Þ þ β

Xn

i¼1
H π si; θ0ð Þð Þ; ð7Þ

where H represents the entropy, and the parameter β adjusts
the step length of the entropy regularization term. The value
loss function can be calculated as follows:

LV ¼
1
2

Xn

i¼1
e2i ð8Þ

The update formula of the policy network is defined as:

dθπ ← dθπ þ ∇θ0 logπ ai|si; θð Þeþ β∇θ0H π si; θ0ð Þð Þ ð9Þ

The parameters of the value function network θv can be
updated by calculating the square of the TD error:

dθv ← dθv þ ∂
e2

∂θ0v
ð10Þ

3.3 | Imitation learning

Here, we first collect expert data (s, a) to achieve experience
with navigation [13]. The state s is the input for the expert
network, and the action a is the expected output. Note that the
output for the expert network is a four‐dimensional vector,
which is a vector obtained by the softmax regression function.
Assuming that the original output is y1, y2, …, yn, the softmax
regression is as follows:

soft max yi
� �
¼

e yi
Pn

j¼1e
yj
; ð11Þ

The cross entropy is used as the loss function for the
neural network. The cross entropy can reflect differences in the
distribution of two samples. If the difference in the sample
distribution is large, the cross entropy will also be large, and
vice versa. The cross entropy H(p, q) can be expressed as
follows:

F I GURE 1 Actor‐critic algorithm

FANG ET AL. - 169

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

H p; qð Þ ¼ −
X

p xð Þ log q xð Þ ð12Þ

q(x) are the actual output and p(x) are the desired output,
between which the cross entropy can be used to obtain the
deviation. After obtaining the loss function, we use the Adam
optimizer to optimize and train the network, which is a
specialized gradient descent algorithm that uses the computed
gradient, its statistics, and its historical values to take small
steps in its opposite direction inside the input parameter space
as a means of minimizing a function.

3.4 | Template matching

Template matching is a general approach for determining the
similarity of two feature vectors (or matrices), especially image
features. Since the features of the observation and target im-
ages are both extracted from the same networks, here, we use
the normalized cross correlation (NNC) [34] method to match
the relation of the two inputs to sequentially determine
whether the robot has arrived at the goal location. The method
is formulated as follows:

VNNC ¼
XN

i¼1

ðsi − siÞðgi − giÞ
ffi
PN

i¼1ðsi − siÞ2
q ffi

PN
i¼1ðgi − giÞ

2
q� ð13Þ

where N is the dimension of the feature vector, si and gi
represent the ith feature values of observation and target,
respectively, VNNC is the value of NNC, which is limited in
[−1,1], and the higher the value is, the better the method, and
vice versa.

3.5 | Deep imitation reinforcement learning

Our purpose is to find the best actions to move a robot
from its initial location to a goal using only an RGB camera.
We focus on learning a good visual navigation policy func-
tion π via DRL, and the action at at time t can be
formulated as [9]:

at ∼ πðst; g|θÞ; ð14Þ

where θ is the system parameter, st is the current observation,
and g is the observation of the target.

Our network, shown in Figure 2, is inspired by the TD‐
DRL method proposed in [12], which consists of two parts.
The first part is the generic Siamese layers, which are the
pretrained ResNet‐50, and the outputs are embedded into a
512‐day space. The second part is the scene‐specific layers
that capture the common representations of the same scene.
The output of the network contains four policy outputs and a
single value output. However, there are some improvements
that are marked in red. First, the initial parameters of the

network are copied from the training results of the IL. Since
the robot can capture the surrounding four views in AI‐
THOR, which is also possible in the real world for the
low‐speed robot or with a panoramic camera, the second
modification adopts the surrounding images to represent the
current observation of a robot instead of the sequential four
images. Since both use four images, the computational
complexities are the same. Moreover, we add a template
matching module to determine whether to stop just after the
feature extraction. We attempted to add the done action
directly into the policy output, but during the training pro-
cess, we found it is not a good choice. The reason might be
that the value of the done action is too sparse, which only
occurs at the end of each episode.

The explicit deep imitation reinforcement learning
(DIRL) algorithm is summarized in Algorithm 1. The initial
weights are from IL. Here, we use the simple BC method,
where most of the network is the same as the DRL shown in
Figure 2. The difference is that the policy outputs are known
and labelled by experts. Moreover, the parameters related to
the value output are not trained and frozen during imitation
training. Note that the performed action is determined by an
additional template matching process because it can be
calculated online using Equation (13), so there is no need
to train.

Algorithm 1: Deep imitation reinforcement learning
(DIRL) algorithm framework

1: Collect expert data to obtain sample set
De.

2: Imitation learning: train the expert
network.

3: Set the weights obtained from imitation
learning as the initial weights of the
networks.

4: Set the target T, the matching coefficient
r0, the number of episodes M and the max
steps N in each episode.

5: for episode = 1 to M do
6: Initialize observation S0.
7: for t = 1 to N do
8: Obtain action at according to the DRL

algorithm;
9: Obtain reward Rt+1 and state St+1 from

the environment;
10: Train the model by data St;at;Stþ1;ð

Rtþ1Þ;
11: Update the network parameters based

on gradients for DRL.
12: CalculatetheNNCusingEquation(13),

if VNNC is larger than a threshold, go
to the new episode.

13: end for
14: end for

170 - FANG ET AL.

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 | EXPERIMENTS AND RESULTS

We evaluate our approach on visual navigation tasks based on
the AI2‐THOR [12] environment. The main purpose of visual
navigation here is to find the minimum steps from a random
initial location to the goal location. We first train and evaluate
the navigation results using our model. Then, an additional
experiment is performed to investigate the ability of our
approach to transfer knowledge across new targets. All of the
models are implemented in TensorFlow and trained on an
Nvidia GeForce RTX 2080Ti GPU.

4.1 | The AI2‐THOR framework

To efficiently train and evaluate our model, we use The House
Of InteRactions (AI2THOR) framework proposed in [19],
which is a good representation of the real world in terms of the
physics of the environment. We use four scenes of the simu-
lated environment [1]: bathroom 02, bedroom 04, kitchen 02
and living room 08. Note that the number of indoor areas is
scalable using our model. Figure 3 illustrates some sample
images from different scenes, and each scene space is repre-
sented as a grid world with a constant step size of 0.5 m. To be
more specific, the following information is listed:
State space. In our experiments, the input includes two

parts, S = < F, T > and F, which represent first‐person views
of the agent, where the resolution of one image is 224�
224� 3. In addition, T represents the goal. We use four sur-
rounding images to represent the observation. Each image is

embedded as a 2048D feature vector, which is pretrained on
ImageNet with Resnet‐50.
Action space. We consider five discrete actions: ahead,

backwards, left, right and done. The robot takes 0.5 m as a
fixed step length, and its turning angle is 90° in the environ-
ment. Note that the former four actions are trained by the
proposed network, while the done action, which is the termi-
nation action, is obtained and determined by the template
matching methods.

F I GURE 2 Network architecture of our DIRL model. The generic Siamese layers in black squares are shared by all the targets, and the feature extraction
layers (ResNet‐50) are pre‐trained on ImageNet and frozen during training. Four surrounding images are adopted as inputs instead of four sequential images, and
the initial parameters of the scene‐specific layers are from imitation learning. Moreover, a simple yet efficient method of template matching is added to determine
whether the task is finished or not. DIRL, deep imitation reinforcement learning

F I GURE 3 AI2‐THOR environment. There are four common scene
types: kitchen, living room, bathroom and bedroom, respectively

FANG ET AL. - 171

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4.2 | Implementation details

For training, the navigation performance is performed on 20
goals randomly chosen from four indoor navigation envi-
ronments in our data set. All of the learning models are
trained within 10 million frames, and it takes about 1.5 h to
pass through one million training frames across all threads.
An episode ends when either the robot arrives at the goal
location, or after it takes more than 5000 steps and for
evaluation, we perform 4000 different episodes (1000 for
each scene). In the matching process, the matching coeffi-
cient is set to 0.9. We select 5% of the total states as the
expert data for IL training. The expert data is collected and
stored automatically based on the shortest length to the target
point and is selected in a fixed interval across the ID in each
scene. The reward is set as 10.0 once the robot reaches the
goal, and to encourage shorter trajectories and collision
avoidance, the reward is set as −0.01 and −0.1 as an im-
mediate reward.

4.3 | Evaluation metrics

The performance of our approach is evaluated using three
metrics: the average trajectory length (ATL), success rate (SR)
and success weighted by path length (SPL). All of the metrics
are used to reflect information about navigation efficiency.
ATL represents the average steps per episode it takes for a
robot to reach a goal. SR is defined as 1

N
PN

i¼1Si and SPL is
defined as 1

N
PN

i¼1Si
Li

maxðPi;LiÞ
, where N is the number of epi-

sodes, Si is a binary indicator of success in episode i, Pi denotes
the evaluated step length and Li is the shortest length of the
trajectory.

4.4 | Baselines

Here, five baselines are chosen for comparison, which are
shown as follows:

1. Shortest path. The shortest path is from the initial location
to the goal location. Here, it is considered the ideal result.

2. Random action. The action is randomly sampled using a
uniform distribution at each step. Here, the robot randomly
selects the action from four actions during navigation.

3. IL. The output of the policy is directly determined using
the networks trained by expert data.

4. TD‐DRL. The original target‐driven method using DRL
was proposed in [12]. Targets use and update the same
Siamese parameters but different scene‐specific
parameters.

5. A3C. It is an asynchronous advantage actor‐critic approach.
It has been demonstrated that the more threads the system
uses, the higher the data efficiency during training. Here, we
use four threads to train, and the observation is the same as
TD‐DRL.

4.5 | Results

In this subsection, we focus on three results: the sample effi-
ciency during training, the navigation performance of our
approach to the trained targets and the generalization to the
new targets. Additionally, the baselines are evaluated for
comparison.

4.5.1 | Sample efficiency

One of the main purposes of our proposed approach is to
improve the sample efficiency during training. To analyse the
sample efficiency in the training process, for all learning
models, the training performances are measured by the ATL
over all targets, and the performances are reported after being
trained within 10 million frames (across all threads).

Figure 4 shows the performance of sample efficiency
during training among different approaches: DIRL, TD‐DRL
and A3C. Note that the shortest path, random action and IL
are not considered here because these approaches can be
directly evaluated in the testing process, so they are used in the
following navigation comparison. All of the approaches are
trained in 10 million frames, and the curves in the figure
represent the ATL of all training targets versus the training
frames. It can be seen that it only takes approximately 1.5
million frames (2.25 h) to achieve a stable navigation policy in
our approach. Although the ATL also decreases after some
training frames in the other two approaches, it costs nearly 9.0
million frames and 6.1 million frames to train in A3C and TD‐
DRL, respectively. The reason that TD‐DRL performs better
than A3C is the specific layers used in TD‐DRL, which was
demonstrated in [12]. Therefore, the results indicate that the
performance of our approach is the best and demonstrate the
efficient learning performance of our approach.

4.5.2 | Navigation performance on trained targets

To analyse the navigation performance of our approach, we
first analyse the performance on the trained targets. We
compare our method with five baselines: shortest path,
random action, IL, A3C and TD‐DRL. Three evaluation
metrics (ATL, SR and SPL) are used to reflect the navigation
performance. For each target, we randomly select the initial
location of the robot and evaluate 500 episodes. An episode
ends when either the robot arrives at the target or after it takes
more than 200 steps. We focus on the influence of the training
frames, so two models are used where the parameters are
trained in 5 and 10 million frames. The navigation results are
given in Tables 1 and 2.

Table 1 shows the results on trained targets after 5 million
training frames. Our approach performs best in terms of ATL,
SR and SPL metrics. For ATL, the fewer steps taken, the better
the performance is. The shortest path is approximately 12.66
steps, and our method is approximately 13.62 steps, which is
the closest to the ideal result; however, it takes more navigation

172 - FANG ET AL.

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

steps in TD‐DRL, A3C and IL, which are approximately 3.7
times, 13 times and 10.7 times those of ours, respectively. The
SR is 1 using our approach, meaning the system can arrive at
the goal in 200 steps because after 5 million training frames,
our model has learned a good navigation policy, which can also
be seen in Figure 4, while for the other methods, the SR is very
low for imperfect learned policy, so does the performance of
SPL. These results indicate that our approach can learn good
performance faster.

We further analyse the navigation performance on trained
targets after 10 million training frames, where both TD‐DRL
and A3C have learned good navigation policies. Table 2
shows the comparison results. We find that although the per-
formances of SR are 1 in T‐DRL, A3C and our approach, our
approach DIRL performs the best in SPL, which is an

approximately 6% improvement compared to TD‐DRL and
two times compared to that of A3C; the reason might be the
different observations. The results further indicate the effi-
ciency of our approach.

4.5.3 | Generalization across new targets

To analyse the ability of generalization for navigation, we
evaluate our model to new targets for the visual navigation
task. Note that these new targets are not trained in advance,
but they might share the same routes as the trained targets.
During testing, we randomly select eight new targets from a
series of locations that have a fixed distance (one, two, four or
eight steps) from the nearest trained targets. For each new
target, we randomly select the initial location of the robot and
evaluate 500 episodes. An episode ends when either the robot
arrives at the target or after it takes more than 500 steps. We
compare our method with A3C and TD‐DRL and use the SR
metric to analyse the navigation performance, as shown in
Figure 5. We find that all the approaches have the ability to
generalize new targets, but our approach performs the best
under different conditions. This indicates that our learned
model has a stronger ability to understand the surrounding
regions of the trained targets than other approaches.

We can also intuitively analyse what systems have learned
by the navigation policies using different approaches from
Figure 6, which shows the explicit control state at three
different steps. Note that the initial location and the goal are
set the same among all of the approaches during testing. We
take visual navigation in the bathroom as an example. It takes
just 55 steps to arrive at the goal location using our approach;
however, it is 151 steps and 432 steps in TD‐DRL and A3C,
respectively. Moreover, we can further investigate the policy of
the system among different approaches. In TD‐DRL, the
robot rotates frequently, shown in three consecutive steps
(t = 18, 19, 20). For A3C, the robot moves in the wrong di-
rection frequently, which is also shown in three consecutive
steps (t = 46, 47, 48). It can be seen that the control policy is
good using our approach, which further indicates the gener-
alizability of the system learned by our proposed approach.

0 2 4 6 8 10

training frames(in millions)

0

500

1000

1500

2000

2500

3000

3500
av

er
ag

e
tr

aj
ec

to
ry

 le
ng

th
(A

T
L)

TD-DRL
A3C
Ours

F I GURE 4 Comparison results of sample efficiency with the baselines:
DIRL (blue), TD‐DRL (red) and A3C (black). All of the approaches are
trained in 10 million frames and the ATL of all targets is adopted to reflect
the performance. In DIRL, it needs about 1.5 million frames to learn a
stable navigation policy, however, it costs nearly 6.1 million frames and 9.0
million frames to train in TD‐DRL and A3C, respectively, which indicates
that our approach learns fastest to obtain a good navigation policy. ATL,
average trajectory length; DIRL, deep imitation reinforcement learning
approach; TD‐DRL, target‐driven deep reinforcement learning

TABLE 1 Quantitative results on trained targets after 5 million
training frames

Algorithm metrics ATL SR SPL

Shortest path 12.66 1.00 1.00

Random action 200 0.00 0.00

IL 146.19 0.19 0.01

A3C 179.55 0.32 0.10

TD‐DRL 50.84 0.71 0.33

DIRL (ours) 13.62 1.00 0.62

Abbreviations: ATL, average trajectory length; DIRL, deep imitation reinforcement
learning approach; IL, imitation learning; SPL, success weighted by path length; SR,
success rate; TD‐DRL, target‐driven deep reinforcement learning.

TABLE 2 Quantitative results on trained targets after 10 million
training frames

Algorithm metrics ATL SR SPL

Shortest path 12.66 1.00 1.00

Random action 200 0.00 0.00

IL 146.19 0.19 0.01

A3C 15.44 1.00 0.57

TD‐DRL 14.56 1.00 0.70

DIRL (ours) 13.51 1.00 0.76

Abbreviations: ATL, average trajectory length; DIRL, deep imitation reinforcement
learning approach; IL, imitation learning; SPL, success weighted by path length; SR,
success rate; TD‐DRL, target‐driven deep reinforcement learning.

FANG ET AL. - 173

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4.5.4 | Ablation study

In this subsection, we perform ablations from different views
on our approach to obtain further insight into the results.

To perform the action, we introduce an additional module
using the template matching method to determine whether it is
finished; however, in TD‐DRL and A3C, the done action is
automatically determined by the environment, there is no
problem in the simulation environment, and we find that
during the simulation environment, the matching coefficient is
always equal to 1 once the robot arrives at the goal location
because the actions are discrete and the scenes are stations in
AI‐THOR. However, in real‐world navigation tasks, the
matching coefficient is below 1 due to image noise or the
dynamic environment; moreover, the navigation system should
determine the done action. Therefore, our approach is more
practical.

For the observation, Figure 7 shows the ablation results
using two observations: sequential (red) and surrounding

(black). Note that the former is the method proposed in TD‐
DRL, where four sequential images are considered as the input,
and the latter is our proposed approach using four surrounding
images. We still compare the sample efficiency, and both ap-
proaches are trained in 10 million frames, and the ATL of all
targets is adopted to reflect the performance. The former
needs nearly 6.1 million frames to learn a stable navigation
policy, but it costs only approximately 2.3 million frames for
our approach, which indicates that our proposed approach
learns faster.

F I GURE 5 Generalization across new targets. Each histogram group
represents the SR of navigation to new targets with fixed steps from the
trained targets. It indicates that our learned model has a stronger ability to
understand the surrounding regions of the trained targets than other
approaches. SR, success rate

F I GURE 6 Visualization of the control processes. It takes just 55 steps to arrive at the goal location using our approach, however, it is 151 steps and 432
steps in TD‐DRL and A3C, respectively. Moreover, the robot frequently rotates around in TD‐DRL and moves to wrong direction in A3C. It can be seen that
the control policy is almost good using our approach, which further indicates the ability of generalization of the system learned by our proposed approach TD‐
DRL, target‐driven deep reinforcement learning

0 2 4 6 8 10

training frames(in millions)

0

500

1000

1500

2000

2500

3000

3500

av
er

ag
e

tr
aj

ec
to

ry
 le

ng
th

(A
T

L)

Sequential observation
surrounding observation

F I GURE 7 Observation ablation. Sample efficiency using different
observation: surrounding observation(black) and sequential observation
(red). We compare the sample efficiency and both approaches are trained in
10 million frames and the ATL of all targets is adopted to reflect the
performance. To the former, it needs about 2.3 million frames to learn a
stable navigation policy, however, it costs nearly 6.1 million frames for the
latter, which indicates that the observation affect the navigation
performance and our proposed approach learns faster. ATL, average
trajectory length

174 - FANG ET AL.

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

According to our intuition, the more expert samples we
select from the state distribution, the better performance we
might achieve during training. We report the performances
among different numbers of expert data: none, 5%, 10% and
50% of the total states. Figure 8 shows the ablation results. It
can be seen that the sample efficiency improves according to
the increasing number of expert data for IL, which needs
approximately 2.3 million frames, 1.5 million frames, 0.7
million frames and 0.2 million frames to learn a stable navi-
gation policy. The different ATLs at the beginning are caused
by the random initial locations and different navigation pol-
icies, but in the end, all approaches achieve nearly the same
ATL. The results further indicate that it is useful to combine
DRL with IL to deal with visual navigation tasks.

5 | CONCLUSIONS AND FUTURE
WORK

Here, we proposed an approach for indoor visual navigation
combining IL and DRL. The proposed navigation system
improved not only the data efficiency during the training
process but also the navigation performance. Unlike traditional
visual navigation methods, which require calculating the ro-
bot’s position accurately, our approach is an end‐to‐end
method, so it might provide an alternative method for visual
navigation. Moreover, simulation results demonstrate that the
proposed DIRL approach is general and efficient compared
with previous DRL methods, such as TD‐DRL and A3C.
Generally, the proposed approach can adapt to other DRL
networks, such as DDPG and PPO. Our future work includes

using the meta‐learning method in our framework to improve
the generalization to new scenes and evaluating our model in
real‐world navigation environments.

ACKNOWLEDGEMENT
The authors would like to thank Yichuan Zhang and Pinghai
Gao for their helpful discussion and feedback. This study was
supported by the National Natural Science Foundation of
China (Grant nos. 61703418 and 61825305).

ORCID
Qiang Fang https://orcid.org/0000-0002-5063-6889

REFERENCES
1. Bonin‐Font, F., et al.: Visual navigation for mobile robots: a survey, J.

Intell. Robot. Syst. 53(3), 263–296 (2008)
2. Vakhitov, A., Lempitsky, V.: Learnable line segment descriptor for visual

slam, IEEE Access, 7, 39923–39 934 (2019)
3. Davison, A.J., et al.: MonoSLAM: real‐time single camera slam, IEEE

Trans. Pattern Anal. Mach. Intell. 29(3), 1052–1067 (2007)
4. Klein, G., Murray, D.: Parallel tracking and mapping for small AR

workspaces, In: Proceedings of the IEEE and ACM international Sym-
posium on Mixed and Augmented Reality (ISMAR), pp. 225–234, Nara,
13–16 November 2007

5. Lupton, T., Sukkarieh S.: Visual‐inertial‐aided navigation for high‐
dynamic motion in built environments without initial conditions, IEEE
Trans. Robot. 28(1), 61–76 (2012)

6. Tang, P., et al.: Deep fishernet for image classification, IEEE Trans.
Neural Netw. Learn. Syst. 30(7), 2244–2250 (2019)

7. Liu, L., et al.: Deep learning for generic object detection: a survey, Int. J.
Comput. Vis. 128, 261–318 (2020)

8. Liu, Z., et al.: Deep learning Markov random field for semantic seg-
mentation, IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1814–1828
(2017)

9. Sutton, R.S., Barto, A.G.: Introduction to reinforcement learning. MIT
Press, Cambridge, (2018)

10. Xu, X., et al.: Manifold‐based reinforcement learning via locally linear
reconstruction, IEEE Trans. Neural Netw. Learn. Syst. 28(4), 934–947
(2017)

11. Mnih, V., et al.: Playing Atari with deep reinforcement learning, arXiv
preprint arXiv:1312.5602 (2013)

12. Zhu, Y., et al.: Target‐driven visual navigation in indoor scenes using
deep reinforcement learning, In: Proceedings of the 2017 IEEE
International Conference on Robotics and Automation (ICRA),
pp. 3357–3364 (2017)

13. Hussein, E.E.A., et al.: Imitation learning: a survey of learning methods,
ACM Comput. Surv. 50(2), 934–947 (2017)

14. Bojarski, M., et al.: End to end learning for self‐driving cars, arXiv
preprint arXiv:1604.07316 (2016)

15. Yang, Z., et al.: End‐to‐end multi‐modal multi‐task vehicle control for
self‐driving cars with visual perception, In: Proceedings of the 24th
International Conference on Pattern Recognition (ICPR), pp. 2289–
2294 (2018). https://doi.org/10.1109/ICPR.2018.8546189

16. Wang Q., et al.: End‐to‐end autonomous driving: an angle branched
network approach, IEEE Trans. Veh. Technol. 68(12), 11599–11610
(2019)

17. Codevilla, F., Mãijller, M.: End‐to‐end driving via conditional imitation
learning, In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 4693–4700, Brisbane, 21–25 May
2018

18. Xu, H., et al.: End‐to‐end learning of driving models from large‐scale
video datasets, In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3530–3538, Honolulu,
21–26 July 2017

0 0.5 1 1.5 2 2.5 3 3.5 4

training frames(in millions)

0

500

1000

1500

2000

2500

3000
av

er
ag

e
tr

aj
ec

to
ry

 le
ng

th
(A

T
L)

no IL
IL-5%
IL-10%
IL-50%

F I GURE 8 Number of expert samples ablation. We report the
performances among different number of expert data: none, 5%, 10% and
50% of the total states. It can be seen that the sample efficiency improves
according to the increasing number of expert data for IL, which needs
about 2.3 million frames, 1.5 million frames, 0.7 million frames and 0.2
million frames to learn a stable navigation policy, respectively. It further
indicates that it is useful to combine DRL with IL to deal with visual
navigation tasks. DRL, deep reinforcement learning; IL, imitation learning

FANG ET AL. - 175

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

19. Mnih, V., et al.: Human‐level control through deep reinforcement
learning, Nature. 518(7540), 529 (2015)

20. Van Hasselt, H., et al.: Deep reinforcement learning with double q‐
learning, In: Proceedings of the 30th AAAI conference on artificial in-
telligence, pp. 2094–2100 (2016)

21. Schaul, T., et al.: Prioritized experience replay, arXiv preprint arXiv:
1511.05952 In: International Conference on Learning Representations,
(2016)

22. Wang, Z., et al.: Dueling network architectures for deep reinforcement
learning. In: Proceedings of The 33rd International Conference on
Machine Learning, arXiv preprint arXiv:1511.06581 pp. 1995–2003
(2016)

23. Gu, S., et al.: Continuous deep q‐learning with model‐based acceleration,
In: Proceedings of the International Conference on Machine learning, pp.
2829–2838 (2016)

24. Lillicrap, T.P., et al.: Continuous control with deep reinforcement
learning, Computer Science, (2015)

25. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning,
In: Proceedings of the International Conference on Machine Learning,
pp. 1928–1937 (2016)

26. Mirowski, P., et al.: Learning to navigate in cities without a map, In:
Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems (NIPS), pp. 2419–2430 (2018)

27. Zhang, J., et al.: Deep reinforcement learning with successor features for
navigation across similar environments, In: Proceedings of the IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2371–2378 (2017)

28. Chiang, H.‐T.L., et al.: Learning navigation behaviors end‐to‐end with
AutoRL, IEEE Robot. Autom. Lett. 4(2), 2007–2014 (2019)

29. Dulac‐Arnold, G., Mankowitz, D., Hester, T.: Challenges of real‐world
reinforcement learning, arXiv preprint arXiv:1904.12901 (2019)

30. Zhu, Y., Wang, Z.: Reinforcement and imitation learning for diverse
visuomotor skills, In: Proceedings of the Robotics: Science and Systems,
Pittsburgh (2018)

31. Chen, X., et al.: Bail: best‐action imitation learning for batch deep
reinforcement learning, In: Proceedings of the 34th Conference on
Neural Information Processing Systems (NeurIPS 2020), vol. 33,
Vancouver, (2019)

32. Reddy, S., Dragan, A.D., Levine, S.: SQIL: imitation learning via
reinforcement learning with sparse rewards, In: Proceedings of the
2020 International Conference on Learning Representations(ICLR),
(2020)

33. Huo, Y., et al.: Cooperative control for multi‐intersection traffic signal
based on deep reinforcement learning and imitation learning, IEEE
Access. 28(1), 199 573–199 585 (2020)

34. Tsai, D.‐M., Lin, C.‐T.: Fast normalized cross correlation for defect
detection, Pattern Recogn. Lett. 24(15), 2625–2631 (2003)

How to cite this article: Fang, Q., et al.: Target‐driven
visual navigation in indoor scenes using reinforcement
learning and imitation learning. CAAI Trans. Intell.
Technol. 7(2), 167–176 (2022). https://doi.org/10.
1049/cit2.12043

176 - FANG ET AL.

 24682322, 2022, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12043 by C

ochraneC
hina, W

iley O
nline L

ibrary on [03/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

