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Abstract
In recent years, multi-view learning has attractedmuch attention in the fields of datamining,
knowledge discovery and machine learning, and been widely used in classification, clus-
tering and information retrieval, and so forth. A new supervised feature learningmethod for
multi-view data, called low-rank constrained weighted discriminative regression (LWDR), is
proposed. Different from previous methods handling each view separately, LWDR learns a
discriminative projection matrix by fully exploiting the complementary information among
all views from a unified perspective. Based on least squares regression model, the high-
dimensional multi-view data is mapped into a common subspace, in which different views
have different weights in projection. The weights are adaptively updated to estimate the
roles of all views. To improve the intra-class similarity of learned features, a low-rank
constraint is designed and imposed on themulti-view features of each class, which improves
the feature discrimination. An iterative optimization algorithm is designed to solve the
LWDR model efficiently. Experiments on four popular datasets, including Handwritten,
Caltech101, PIE and AwA, demonstrate the effectiveness of the proposed method.

1 | INTRODUCTION

Owing to the rapid growth of multimedia data, multi-view
learning aroused much interests of researchers from data
mining, knowledge discovery and machine learning areas in
recent years [1–8]. In real world, one object can be described
by different kinds of data or from different views. For example,
a news can be expressed by texts, audios and videos. One
person can be identified by the face, fingerprint and DNA
information. Although these features may be heterogeneous
and very different, they naturally reflect some inherent struc-
tures or characteristics of the object. Compared with single
view data, multi-view data contains more underlying informa-
tion. How to effectively and efficiently exploit the correlative
yet complementary information among diverse views is an
important research topic for multi-view learning [9].

Many researchers tried to develop effective information
fusion techniques for multi-view learning, including unsuper-
vised [9], semi-supervised [10] and supervised [11, 12]. Some
researchers proposed multi-view learning methods by co-
training [13, 14] and co-regularization [15, 16]. However, these
methods neglect the problem caused by the high dimension of

multi-view data. Canonical correlation analysis (CCA) is a
classical unsupervised multi-view subspace learning method,
which seeks a low dimensional feature space by maximizing the
correlation between different views [9]. However, CCA can
only deal with two views which limits its further application on
more complex data. Luo et al. proposed a tensor CCA method,
which extended original CCA for multiple views [17]. To make
use of the label information for better classification perfor-
mance, Kan et al. proposed a multi-view discriminant analysis
(MvDA) method by maximizing the inter-class distance and
minimizing the intra-class distance from both inter-view and
intra-view [11]. MvDA can be regarded as the extension of
linear discriminant analysis (LDA) on multi-view data. These
methods mentioned above can be categorized into subspace
learning based methods, which assume that different views can
be generated from a common latent feature subspace.

Regression-based method is one of the most popular
methods in machine learning [18–22], and it provides another
effective and efficient way for multi-view feature learning [23].
Specifically, regression-based methods seek a linear mapping by
transforming data to fit the label matrix. Zheng et al. extended
low-rank regression model for single view data to multi-view
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fully low-rank regression (FLR), in which multiple projection
matrices were learned and the final classification was performed
by majority voting [23]. However, FLR does not consider the
differences among all views. Yang et al. proposed an adaptive-
weighting discriminative regression (ADR) by learning a unified
transform matrix for multi-view classification [24]. ADR in-
troduces an adjustment matrix to enlarge the distance between
different classes which improves the model robustness to some
extent. However, the intra-class compactness is destroyed in
ADR, which is also important for pattern analysis. In [25], the
authors incorporated feature selection into linear regression
model by l2,1-norm regularization. Wen et al. adopted a graph-
regularized matrix factorization model to handle the multi-view
clustering problem with incomplete views [7].

In this article, we propose a multi-view low-rank weighted
discriminative regression (LWDR) method for feature learning.
LWDR learns a common feature subspace across all views.
Adaptive weights learning mechanism is adopted to automat-
ically learn different views and the important views containing
more discriminative information is enforced to contribute
more to subspace learning. To improve the intra-class simi-
larity, a class-wise low-rank constraint is imposed on the multi-
view features. Besides, a flexible error term based on l2,1-norm
is introduced to relax the label matrix. Experiments on four
datasets demonstrate that LWDR outperforms previous single
view feature learning methods and related multi-view learning
methods.

The rest of this paperarticle is organized as follows. In Sec-
tion 2, we briefly review the relatedworks about linear regression
methods for multi-view learning. Section 3 introduces the
formulation of our proposed method and the optimization al-
gorithm in detail. Section 4 reports the experimental results and
analysis. Section 5 concludes this article.

2 | RELATED WORKS

For convenience, we first present the main notations used in this
paper. matrices and vectors are written in boldface uppercase
and boldface lowercase, respectively. fXkg

v
k¼1 denotes a multi-

viewdatasetwith v views.Xk ∈ Rmk�n is the datamatrix of the k-
th view, wheremk is the feature dimensionality of view k and n is
the number of training samples. c is the number of classes.
Y ∈ {0,1}c�n is the label matrix, and Yij = 1 if the j-th training
sample belongs to class i and otherwise 0. Wk ∈ Rmk�c is the
projectionmatrix of the k-th view. For matrixA ¼ ðAijÞ ∈ Rp�q,
its l2,1-norm, Frobenius-norm, and nuclear norm are defined as

‖A‖2;1 ¼P
p

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pq

j¼1
A2

ij

r
, ‖A‖F¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pp

i¼1
Pq

j¼1
A2

ij

r
,

‖A‖* =
P

i=1δi(A), respectively, where δi(A) is the i-th singular
value of A. I is an identity matrix and 1n is an n-dimensional
vector with all elements being 1. ⊙ is the Hadamard
multiplication.

For single view data X ∈ Rm�n and Y, the basic linear
regression solves the following problem to find the optimal
projection matrix W.

min
W

1
2
‖WTX − Y‖2

F þ αϕðWÞ; ð1Þ

where α > 0 is a balance parameter and ϕ(W) is the regularizer.
l2,1-norm, Frobenius-norm and nuclear norm are usually used in
ϕ(W) for learned features with different properties. When
ϕðWÞ ¼ ‖W‖2

F , Equation (1) has a closed-form solution
W* ¼ ðXXT þ 2αIÞ−1XYT , which is very efficient in real
application.However, Equation (1) cannot be directly applied on
multi-view data. Some researchers extended it for multi-view
data by learning multiple projection matrices as follows [23]:

min
W

1
2
k
Xv

k¼1

WT
k Xk − Yk2F þ α

Xv

k¼1

ϕðWkÞ; ð2Þ

where Wk is the projection matrix of the k-th view. It can be
observed that Equation (2) is equivalent to simply concate-
nating multi-view features into one single view feature and
performing traditional linear regression on it. Such operation is
not physically meaningful and treats all views equally. However,
different views usually have different characteristics and
contribute differently to pattern analysis. For example, to
identify a person, the face appearance is more important than
voice. Thus, adaptive weights learning strategy is introduced
into multi-view linear regression model by weighting different
views, which can be generally described as follows.

min
W

1
2
k
Xv

k¼1

δkW
T
k Xk − Yk2F þ α

Xv

k¼1

ϕðWkÞ

s:t: δk > 0;
Pv

k¼1
δk ¼ 1:

ð3Þ

where δk is the weight of the k-th view. The first term and
constraints force the model to learn optimal weight for each
view automatically. However, in Equation (3), the latent multi-
view features are directly regressed to approximate the binary
label matrix Y, which may be too strict and is not appropriate
as the regression target. To improve the model robustness, in
[24], the authors relaxed the label matrix and proposed the
following auto-weighted discriminative regression model for
multi-view classification (ADR):

min
1
2
k
Xv

k¼1

ffiffiffiffiffi
δk

p
WT

k Xk − b1T
n − ðY þ Y ⊙ MÞk2F

þ α
Xv

k¼1

kWkk
2
F ;

s:t: M ≥ 0; δk > 0;
Xv

k¼1

δk ¼ 1:

ð4Þ

where b ∈ Rc is a bias vector and M is a non-negative
matrix. By introducing the adjustment matrix M, the one-zero
label vector y = [1,0,…,0]T is relaxed to
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½1þMij; 0;…; 0�TðMij ≥ 0Þ, where Mij is the corresponding
element in M. By introducing non-negative matrix M, Equa-
tion (4) uses the ϵ-draggings technique to enlarge the distances
between true and false classes and improve the model
robustness. Such label relaxation strategy is widely used in
other regression-based methods [26, 27].

3 | PROPOSED METHOD

In this section, we present our proposed LWDR method and
the optimization algorithm in detail, then we will make some
discussions on the computational complexity of LWDR.

3.1 | Formulation

From Section 2, although the ϵ-dragging technique used in
ADR [24] enlarges the distance between different classes or
inter-class separability to some extent, the same class may have
different labels after relaxation (i.e. Y + Y ⊙M) because of the
dynamic of M. Thus, the intra-class similarity cannot be
guaranteed in ADR and two samples from same class may be
projected distant from each other. Both inter-class separability
and intra-class similarity are important for good classification
performance. In low-rank representation (LRR) [28–30], a set
of instances are generally drawn from a union of multiple
subspaces, and the instances of each subspace are regarded
from the same class, which illustrates that the instances from
the same class should locate in the same subspace and the data
matrix of each class should be low-rank. Inspired by this issue,
we propose the following low-rank constrained adaptive
weighted discriminative regression (LWDR) model to improve
the intra-class similarity of learned multi-view features:

min
1
2
k
Xv

k¼1

ffiffiffi
δ
p

kWT
k Xk − Hk2F þ

1
2
kHþ E − Yk2F

þα
Pc

i¼1
kHik� þ β

Pv

k¼1
kWkk

2
F þ γkEk2;1;

s:t: δk > 0;
Pv

k¼1
δk ¼ 1:

ð5Þ

where α, β and γ are balance parameters, E is an error matrix,
H is the to-be-learned feature matrix, and Hi denotes the
features of the i-th class. The first term in Equation (5) learns
the multi-view features approximated by matrix H. The second
term utilizes the label matrix to supervise the feature learning.
The third term

Pc
i¼i‖Hi‖* forces the features of same class to

be similar, which are considered to be low-rank. The last two
terms are regularizers avoiding overfitting. Error matrix E is
constrained by l2,1-norm to compensate the regression errors
and it is flexible in learning transform matrices fWkg

v
k¼1. The

overall framework of our LWDR is shown in Figure 1.
Equation (5) involves multiple variables and cannot be solved
directly. In the next section, we will give an iterative algorithm
to solve it efficiently.

3.2 | Optimization

Tomake the variables separable in Equation (5), we introduce an
auxiliary variable T and rewrite the original problem as follows:

min
1
2
k
Xv

k¼1

eW
T
k Xk − Hk2F þ

1
2
kHþ E − Yk2F

þα
Xc

i¼1
kTik� þ β

Xv

k¼1

1
δk
k eWkk

2
F þ γkEk2;1;

s:t: T¼H; δk > 0;
Xv

k¼1

δk ¼ 1; ð6Þ

where W
˜

k ¼
ffiffiffi
δ
p

kWk. By some simple manipulation, the
above problem can be equivalently expressed as:

min
1
2
k eW

T
X − Hk2F þ

1
2
kHþ E − Yk2F

þα
Xc

i¼1

kTik� þ β
Xv

k¼1

1
δk
k eWkk

2
F þ γkEk2;1;

s:t: T¼H; δk > 0;
Xv

k¼1

δk ¼ 1: ð7Þ

F I GURE 1 The overall framework of LWDR model for multi-view feature learning. LWDR adaptively learns a projection matrix and a weight for each view.
Then the multi-view featuresH can be obtained by integrating the single-view features using learned weights. Label matrix Y is used as regression target to guide
the feature learning in a supervised way, and a sparse error matrix E is introduced to compensate the regression error. To improve the intra-class compactness of
multi-view features, a class-wise low-rank constraint on multi-view features is incorporated into LWDR
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where eW¼ ½ eW1; eW2;…; eWv�;X¼ ½X1;X2;…;Xv�. To
solve, Equation (7) is equivalent to minimize its augmented
Lagrange function Lθ defined as:

Lθ ¼
1
2
k eW

T
X − Hk2F þ

1
2
kHþ E − Yk2F

þα
Xc

i¼1

kTik� þ β
Xv

k¼1

1
δk
k eWkk

2
F þ γkEk2;1;

þ
θ
2
kT − Hþ

1
θ
Zk2F ; ð8Þ

where θ > 0 is a penalty factor and Z is the augmented
Lagrange multiplier. We adopt the iterative strategy to
minimize it, in which a sequence of sub-problems with
respect to each unknown variable are solved respectively
[31–33]. In specific, it contains following six steps in each
iteration.

(1) UpdateW
˜
: We first reorganize fδkg

v
k¼1 as δ and rewrite the

sub-problem w.r.t eW as follows:

min
eW

1
2
k eW

T
X − Hk2F þ

β
δ
k eWk2F : ð9Þ

This is a typical least squares regression problem. By
setting its derivative w.r.t. W

˜
to zero, we can obtain its optimal

solution:

eW
�
¼ ð2βI

�
δþ XXT Þ

−1XHT : ð10Þ

Since δ is a set of fδkg
v
k¼1, the final solution is:

eW
�
¼ ð2βΔþ XXT Þ

−1XHT ; ð11Þ

where Δ = diag(1/δ1, …, 1/δ1, 1/δ2, …, 1/δv).

(2) Update H by solving the following minimization problem:

min
H

1
2
k eW

T
X − Hk2F þ

1
2
kHþ E − Yk2F

þ
θ
2
kT − Hþ

1
θ
Zk2F ;

ð12Þ

With the same strategy in optimizing W
˜
and we can obtain

the solution to Equation (12):

H� ¼ ðð2þ θÞIÞ−1ð eWT
X − Eþ Y þ θT þ ZÞ: ð13Þ

(3) Update E by solving the following problem:

min
E

γkEk2;1 þ
1
2
kEþH − Yk2F : ð14Þ

Equation (14) can be solved by the following theorem.

Theorem 1 [34] Given Q ∈ Rp�q, the optimal solu-
tion A* of

min
A

λkAk2;1 þ
1
2
kA − Qk2F ;

is given by Gλ(Q), and Gλ(Q) is the following operator:

A�i;: ¼GλðQi;:Þ ¼

kQi;:k2 − λ
kQi;:k2

Qi;:; if kQi;:k2 > λ

0; otherwise:

8
><

>:

where Qi is the i-th row of matrix Q.
According to Theorem 1, we can get the solution to

Equation (14):

E� ¼GγðY − HÞ: ð15Þ

(4) Update T with other variables fixed by solving the
following optimization problem:

min
T

αXc

i¼1

kTik� þ
θ
2
kT − Hþ

1
θ
Zk2F : ð16Þ

Algorithm 1 Iterative algorithm for solving LWDR

Input: Multi-view data fXkg
v
k¼1, parameters

α, β,
γ.
Output: Projection matrix eW.
1: Initialization: H = Y, E = W = Z = 0,
θ = 10−3, θmax = 105, ϵ = 10−6.
2: t = 0.
3: while not converged do.
4: Update eW by Equation (11);
5: Update H by Equation (13);
6: Update E by Equation (15);
7: Update Ti by Equation (18) and update
T = [T1, …, Tc];
8: Update fδkg

v
k¼1 by Equation (21);

9: Update Z and θ by Equation (22);
10: Check convergence conditions:
kWtþ1 − Wtk2F þ kE

tþ1 − Et k2F þ kH
tþ1 − Ttþ1k2F < ϵ;

11: t ← t + 1;
12: end While

It can be transformedto solve each Ti respectively.

min
Ti
Xc

i¼1

α‖Ti‖* þ
θ
2
‖Ti − Hi þ

1
θ
Zi‖2

F : ð17Þ
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The optimal T*
i can be obtained by the following theorem.

Theorem 2 [35] Given Q ∈ Rp�q with rank r and
λ > 0, the optimal solution A* of

min
A

λ‖A‖* þ
1
2
‖A − Q‖2

F ;

is given by Sλ(Q), and Sλ(Q) is the following operator:

A* ¼ SλðQÞ ¼Up�r diagðfmaxð0; δiðQÞ − λÞg1≤i≤rÞV
T
q�r;

where the singular value decomposition (SVD) of Q is
Q = UΣVT, Σ = diag(δ1(Q), δ2(Q), …, δr(Q)).

According to Theorem 2, we have

T�i ¼ Sα=θðHi − Zi=θÞ; ð18Þ

where Sα/θ(⋅) is the soft thresholding operator. Thus we have
the optimal T* ¼ ½T*

1 ;T
*
2 ;…;T*

c �.

(5) Fix others and update fδkg
v
k¼1:

min
δk
Xv

k¼1

1
δk
k eWkk

2
F s:t: δk > 0;Xv

k¼1

δk ¼ 1: ð19Þ

According to the Cauchy inequality theory [24], it holds

Xv

k¼1

1
δk
k eWkk

2
F ≥ Xv

k¼1

k eWkkF

0

B
B
@

1

C
C
A

2

; ð20Þ

The “=” in Equation (20) is satisfied if and only if

δk ¼
k eWkkF

Pv

k¼1
k eWkkF

; ð21Þ

and Equation (19) gets minimum when δk takes the values
of Equation (21).

(6) Fix others and update Z, θ:

Z¼ Zþ θðT − HÞ;
θ ¼minðθmax; ρθÞ; ð22Þ

In this article, θmax = 106 and ρ = 1.1. By performing steps
(1)–(6) iteratively, the original loss function can be minimized
until convergence or reaching the maximum iterations. Algo-
rithm 1 summarizes the iterative algorithm for solving LWDR
model in detail.

3.3 | Computational complexity analysis

From Algorithm 1, the main computational time is consumed
on the calculation inside the iterations. We can observe that
steps (1) and (2) contain matrix inverse operation, and step (4)
contains SVD operation. The operations in other steps are
addition and multiplication of matrices, which have much
lower complexity than matrix inverse and SVD. The time
consumption for step (1) is O(n3). In step (2), (2 + θ)I is a
diagonal matrix and ðð2þ θÞIÞ−1 ¼ 1

2þθ I. Then the matrix
inverse operation can be simplified to matrix multiplication.
Step (4) needs total c SVD operations and its time complexity
is O(c min(ca2, c2a)) where a is the average number of
samples per class. Thus, the total computational complexity of
Algorithm 1 is O(t(n3 + c min(ca2, c2a))) if there are t
iterations.

3.4 | Connections to other methods

� Connections to FLR [23]: Similar to our proposed LWDR,
FLR also adopts regression model for multi-view feature
learning. FLR learns a projection matrix for each view with
low-rank constraint, which is helpful to explore the low-rank
structure of data. However, FLR treats all views equally and
ignores the fact that different views have different roles for
pattern analysis, which may degrade the classification per-
formance. Differently, our proposed LWDR adaptively
learns the weights of all views and enforces those infor-
mative views to contribute more to feature learning. Thus,
the proposed method can achieve better performance than
FLR, which will be demonstrated in experiments.

� Connections to ADR [24]: ADR learns a weighted multi-
view regression model for multi-view feature learning,
which considers the different weights of different views. To
avoid a rigid regression target, ADR utilizes the relaxed label
matrix for regression as presented in Equation (4), which is
beneficial to enlarge the margins of samples from different
classes. However, according to [34], the margins of samples
from the same class may be also enlarged, and the
discriminative power of projection matrix will be compro-
mised. To address this problem, LWDR introduces the
class-wise low-rank constraint, which enforces the trans-
formed samples of the same class to have the same struc-
ture. In this way, the margins of the transformed samples
from the same class will be reduced and the intra-class
compactness can be improved. Therefore, the proposed
method has the potential to perform better than ADR.

4 | EXPERIMENTS

In this section, we conduct the experiments on Handwritten
[36], Caltech101 [37], PIE [38] and AwA [39] datasets to
validate the effectiveness of proposed LWDR, compared with
single view and related multi-view learning methods.
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4.1 | Datasets

Handwritten dataset contains total 2000 images about 10
number (i.e. 0–9) with 200 images per subject. It contains six
feature views, including Pixel Averages (PIX), Fourier Co-
efficients (FOU), Profile Correlations (FAC), Zernike Moment
(ZER), Karhunen-Loeve Coefficients (KAR) and Morpho-
logical (MOR) features.

Caltech101 dataset contains 9146 images of 101 different
subjects. In our experiments, total 2386 images of 20 classes
are used. These images have six feature views, including Gabor,
Wavelet Moments (WM), CENTRIST, HOG, GIST and LBP
features.

The whole PIE dataset consists of over 40,000 face images
of 68 individuals, collected under different pose, illumination
and expression conditions. Total 1360 images of 68 individuals
are used in our experiments, which contains five different facial
poses. The five poses are used as five different views.

AwA dataset contains 30,475 images of 50 kinds of ani-
mals. In our experiment, 4000 images with 80 images per class
are used. AwA dataset contains six feature views, including
Global Color Histogram (GCH), Local Self-Similarity (LSS),
Pyramid HOG (PHOG), RGSIFT, SIFT and SURF features.

Figure 2 shows some samples images used in our experi-
ments. Table 1 presents the views, feature dimensions, number
of classes and samples of these datasets.

4.2 | Experimental setup

For Handwritten and Caltech101 dataset, we randomly select
10 images per subject for training and the rest for testing. For
PIE, five face images per person are randomly chosen for
training. For AwA, the training size of each class is 20.

We compare our proposed LWDR with single view and
multi-view approaches. For single view method, each view is
handled separately. LDA is performed on each view for
feature learning [40]. The reduced dimension of LDA is
c − 1. For multi-view methods, all views are simply concate-
nated and LDA is used for feature extraction, that is, LDA
(all). Also, we concatenate the top three views and then
perform LDA, that is, LDA (top three). The top three views
are selected based on the performance of single view method.

Multi-view methods FLR [23] and ADR [24] are performed
for comparison. The parameter settings of FLR and ADR are
followed the author's suggestions. Nearest neighbour with
cosine distance is used for classification. We repeat the ex-
periments 20 times by randomly sampling data partitions and
report the experimental results by the mean recognition rate
with standard deviation.

4.3 | Experimental results

4.3.1 | Classification accuracy comparison

Table 2 lists the classification accuracies of single view and
multi-view methods on Handwritten, Caltech101, PIE and
AwA datasets. As can be clearly seen, our LDWR achieves the
best performance on four datasets. SVi (i = 1, 2, …, 6) denotes
the single view method which performs LDA on the i-th view.
The performance of SV varies significantly, which indicates
that these views have different roles for classification. The
simple concatenation of all views makes effects to improve the
performance and LDA (all) is superior to all SV methods. LDA
(top three) can generally produce better performance the LDA
(all) except Caltech101 dataset. FLR learns a projection matrix
for each view and adopts majority voting for classification,
which obtain better performance than simple concatenation.
ADR uses adaptive weight learning strategy and ϵ-dragging
technique, and it performs better than FLR. However, our
proposed LWDR still outperforms ADR on multi-view feature
learning. For FLR, ADR and LWDR, the tops three views of
four datasets are also tested. We can observe that by using the
most informative top three views, these methods can generally
better performance.

4.3.2 | Adaptive weights analysis

LWDR can automatically learn the weights of different views.
The large weight means its corresponding view makes more
contribution in feature learning. Table 3 lists the adaptive
weights learned by LWDR on all views of Handwritten, Cal-
tech101, PIE and AwA datasets. V1, V4, V3 and V6 have the

F I GURE 2 Some typical images from Handwritten, PIE and
Caltech101 datasets from top to bottom (images of AwA dataset are
unavailable due to the copyright problem)

TABLE 1 Descriptions of four datasets used in our experiments

View Handwritten Caltech101 PIE AwA

V1 PIX(240) Gabor(48) P5(1024) GCH(2688)

V1 FOU(76) WM(40) P7(1024) LSS(2000)

V3 FAC(216) CENTRIST(254) P9(1024) PHOG(252)

V4 ZER(47) HOG(1984) P27(1024) RGSIFT(2000)

V5 KAR(64) GIST(512) P29(1024) SIFT(2000)

V6 MOR(6) LBP(928) / SURF(2000)

#classes 10 20 68 50

#samples 2000 2386 1360 4000
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largest weight for the four datasets, respectively. From Table 2,
these views also have good performance among all SVmethods.
These experimental results demonstrate that our LWDR can
automatically pay more attention to those views which contain
more discriminative information and make full use of them to
learn discriminative features.

4.3.3 | Ablation study

In our proposed LWDR model (Equation 5), each view is
assigned with an adaptively learned weight and a low-rank
constraint is imposed on class-wise multi-view features to
improve the intra-class compactness. To evaluate the effect of
them separately, we conduct ablation experiments in this sec-
tion. Two variations are derived from LWDR, that is, LWDR-s
and LWDR-t. LWDR-s discards the weights learning in LWDR,
that is, δk = 1. LWDR-t discards the low-rank constraint and
directly uses the label matrix to guide the feature learning. The
experimental results of LWDR and its two variations on four
datasets are reported in Table 4. We can observe that LWDR
outperforms LWDR-s and LWDR-t, which demonstrates that

the adaptive weights and class-wise low-rank constraint are
effective to boost the performance.

4.3.4 | Convergence analysis

In Section 3.2, we propose an iterative algorithm for solving
our LWDR model. Here we illustrate its good convergence
property by experiments. Figure 4 shows the convergence
curves of proposed algorithm versus iterations on Hand-
written, Caltech101, PIE and AwA datasets. It is obvious that
the objective function value gradually decreases to a stable
value with the increase of iterations. In particular, the proposed
algorithm can generally converge within 20 iterations. The
experimental results demonstrate that our algorithm is effective
and efficient for solving LWDR model.

4.3.5 | Parameter analysis

There are three parameters, that is, α, β, γ, in LWDR which
influence the performance of proposed method. To analyse the
parameter sensitivity, we first define a candidate set {10−3,
10−2, 10−1, 1, 10, 102, 103} for α and γ, and {10−3, 10−2, 10−1,
1, 10, 102} for parameter β. Then LWDR is conducted on four
datasets with different combinations of the three parameters.

TABLE 2 Classification accuracies of
single view and multi-view feature learning
methods on Handwritten, Caltech101, PIE
and AwA datasets with nearest neighbour
classifier. The best results are in bold

Methods Handwritten Caltech101 PIE AwA

SV1 0.8247 ± 0.0296 0.5259 ± 0.0461 0.8840 ± 0.0162 0.0429 ± 0.0033

SV2 0.4082 ± 0.0459 0.4468 ± 0.0462 0.8875 ± 0.0127 0.0522 ± 0.0039

SV3 0.8749 ± 0.0242 0.3345 ± 0.0342 0.8820 ± 0.0138 0.0387 ± 0.0038

SV4 0.6013 ± 0.0407 0.7974 ± 0.0226 0.8745 ± 0.0121 0.0747 ± 0.0049

SV5 0.7341 ± 0.0362 0.7630 ± 0.0183 0.8631 ± 0.0141 0.0429 ± 0.0046

SV6 0.6199 ± 0.0184 0.8149 ± 0.0186 / 0.0799 ± 0.0042

LDA (all) 0.9122 ± 0.0087 0.9016 ± 0.0069 0.9188 ± 0.0077 0.1459 ± 0.0066

LDA (top 3) 0.9130 ± 0.0147 0.8979 ± 0.0177 0.9217 ± 0.0107 0.1493 ± 0.0053

FLR 0.9344 ± 0.0086 0.9188 ± 0.0096 0.9203 ± 0.0089 0.1607 ± 0.0073

FLR (top 3) 0.9395 ± 0.0065 0.9223 ± 0.0106 0.9314 ± 0.0145 0.1647 ± 0.0082

ADR 0.9393 ± 0.0070 0.9242 ± 0.0077 0.9258 ± 0.0086 0.1733 ± 0.0037

ADR (top 3) 0.9442 ± 0.0055 0.9398 ± 0.0162 0.9343 ± 0.0097 0.1809 ± 0.0065

LWDR 0.9415 ± 0.0088 0.9479 ± 0.0068 0.9335 ± 0.0054 0.1797 ± 0.0089

LWDR (top 3) 0.9517 ± 0.0052 0.9498 ± 0.0061 0.9402 ± 0.0074 0.1833 ± 0.0063

TABLE 3 Adaptive weights learned by LWDR on four datasets

View Handwritten Caltech101 PIE AwA

V1 0.3516 0.0324 0.1946 0.2140

V1 0.2207 0.0476 0.1990 0.2014

V3 0.0843 0.0707 0.2118 0.0612

V4 0.1007 0.4613 0.1965 0.1896

V5 0.2378 0.2085 0.1981 0.1075

V6 0.0050 0.1795 / 0.2263

TA B LE 4 Classification accuracies of LWDR and two variations

Method Handwritten Caltech101 PIE AwA

LWDR-s 0.9285 0.9312 0.9216 0.1543

LWDR-t 0.9312 0.9387 0.9294 0.1704

LWDR 0.9415 0.9479 0.9335 0.1797
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Figure 3 shows the experimental results of LDWR versus α, γ
and β on Handwritten, Caltech101, PIE and AwA datasets. It
can be observed that, although all three parameters impact the
performance of LWDR, LWDR can generally achieve satis-
factory classification accuracy when α, γ and β locate in the
range of [10−2, 10−1], [10−3, 10−2] and [10−2, 1] respectively.
For example, when α, β, γ are selected from [10−2, 10−1], [10−3,
10−2] and [10−3, 10−1] respectively, the classification accuracy
of LWDR is satisfactory.

However, it is still difficult for optimal parameter selection
on different datasets. In this article, we use the simple grid
search for parameter selection [34]. We first fix β as a value in
[10−3, 10−1] like 0.01, then find the optimal α and β by
different combinations of the two parameters. After obtaining
the optimal α and β, we can find the optimal β by searching in
its candidate set.

5 | CONCLUSION

We propose a low-rank constrained weighted discriminative
regression method for multi-view feature learning (LWDR).
LWDR learns a common space across all views from a
unified perspective. Each view is assigned with an adaptive
weight, which enables the model to focus on the important
views automatically. A low-rank constraint is imposed on the
features of each class, which improves the intra-class simi-
larity and enhances the model robustness. The strict sparse
label matrix is relaxed by an l2,1-norm based regularization
term. It is more flexible to deal with the errors in learning
process. Experimental results on several popular datasets
demonstrate the effectiveness of proposed method compared
with some other single view and multi-view learning
methods.
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