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Abstract

Building risk models for present-day climate requires an understanding of

recent climate trends. To estimate the climate change driven component of

recent rainfall trends in Europe, we introduce a novel methodology for com-

bining trend estimates from observed data, a climate model ensemble and a

default trend of zero. The methodology weights the different trend estimates

based on their uncertainty and consistency with observations. We find that the

methodology puts low weights on the observational estimates of recent rainfall

trends because they are so uncertain and puts higher weights on the trends

estimated using the climate model ensemble mean and the default trend of

zero. This demonstrates the value of ensemble simulations of past climate for

this application. The methodology we describe establishes a probabilistic

framework for estimating uncertain climate change trends based on combining

estimates from observed data and climate models and could be applied in

many other situations.
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1 | INTRODUCTION

Insurance companies are interested in weather and cli-
mate predictions for a range of different future time hori-
zons, in order to provide useful information for the
different parts of their business. The pricing of insurance
generally requires information about the next 0–2 years,
reflecting the time periods of most insurance contracts
being sold. Planning expansion or contraction of the dif-
ferent parts of the business generally requires informa-
tion about the next 0–10 years. Choosing how to invest
financial reserves may require information about the next

0–30 years. Of these activities, though, it is the first, the
pricing of insurance, which is the most pressing, since it
most directly influences profitability, and hence the over-
all viability of the company, in the short term.

How, then, should insurers predict weather and cli-
mate in the next 2 years? We use the word predict in a
probabilistic sense to refer to estimating the whole distri-
bution of possible outcomes. Following the work of
Friedman (1972), the standard approach used in the
insurance industry is to combine information from his-
torical weather data and statistical models blended
together in appropriate ways to construct large ensemble
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simulations. These ensemble simulations consist of tens
of thousands of simulated examples of the near-future
weather and climate. More recently, this approach has
been extended to include information from hydrological,
dynamical coastal ocean and dynamical atmosphere
models where appropriate (e.g., see the flood model
described in Kaczmarska et al., 2018 or the results from
Loridan et al., 2013). The resulting simulations of near-
future weather and climate are then converted into esti-
mates of possible future physical damage using models
for the value and vulnerabilities of buildings. This
approach to modelling the impacts of extreme weather
on property, for use in insurance risk assessment, is
known as catastrophe modelling (cat modelling). Specific
examples of catastrophe models (cat models), elements of
cat models and applications of cat models have been
described in various articles such as Friedman (1972),
Vickery et al. (2006), Hall and Jewson (2007), Kaczmarska
et al. (2018) and Sassi et al. (2019). An overview of many of
the approaches used is given in textbooks such as Grossi
and Kunreuther (2005), Mitchel-Wallace et al. (2017) and
Michel (2018).

A question that arises in the construction of weather
and climate-related cat models is whether climate change
should be accounted for in some way. The primary con-
cern is that climate change may have affected the histori-
cal weather and climate data that are being used to build
the cat models, and if it has, then that data may no longer
be relevant for the present and near-future climate with-
out some kind of adjustment. For instance, historical
average temperatures from the 1970s are colder than
today's average temperatures, and so any risk assessment
of temperature that uses the historical data from the
1970s needs to take that into account. A simple assump-
tion that is often applied is that the mean temperature
has increased since the 1970s, while the nature of the var-
iability around the mean has not changed (see, e.g., the
discussion in chapter 2 in Jewson et al., 2005). The data
from the 1970s can then be adjusted by increasing the
mean to values estimated to be relevant for the present or
near future.

Adjustments based on linear trends, either as a func-
tion of time or of global mean surface temperature, are
the most commonly used. More complex adjustment
schemes, involving non-linear trend adjustments to the
mean, and adjustments to the variance, can also be
applied. Overall, these adjustments are generally known
as detrending. For temperature, detrending is easily jus-
tified, since trends in temperature are well understood
to be influenced by climate change, and since the size of
the trends can be readily quantified. Past sea levels,
which also show well understood and readily quantified
trends, are similarly straightforward to adjust so that

they represent reasonable present or near-future sea
level values.

Variables other than temperature and sea level, how-
ever, are more challenging to detrend in this way. In this
article, we consider rainfall, and the question of whether
to, and how to, adjust past rainfall, to account for the pos-
sible effects of climate change. The emergence of rainfall
trends due to climate change in observations and models
varies by region, season and spatial scale (Maraun, 2013).
In some regions and seasons, climate change trends in
rainfall can be clearly quantified from observations
(e.g., Risbey et al., 2013). In others, quantification from
observations is much harder because of the weakness of
possible trends relative to the ‘noise’ of climate variabil-
ity. The challenges of trend quantification in observed
rainfall data have been discussed in Jewson et al. (2021).
That study compared a number of methods for estimating
rainfall trends based on the ideas of statistical testing,
model selection and model averaging, and concluded that
for insurance risk modelling, trend estimation based on
model averaging works better than trend estimation
based on statistical testing or model selection.

Jewson et al. (2021) estimated rainfall trends on the
basis of observed data alone. However, in addition to try-
ing to identify and estimate trends using observed data,
one can also consider climate model simulations as a pos-
sible source of information about past rainfall trends.
This then leads to three broad categories of methods for
estimating trends: data-based approaches, which rely
purely on observational data; climate model-based
approaches, which rely purely on dynamical climate
models; and blended data/model approaches, which com-
bine estimates from both observed data and climate
models.

These methods each have pros and cons. Data-based
approaches have the advantage that they focus directly
on the quantity of interest (actual rainfall) and implicitly
capture all the physical effects that control rainfall,
including effects that may be missed by climate models.
They have the disadvantages that the observed data are
very variable so that any long-term trends are often
heavily obscured by weather and climate variability, and
that in some regions, observations may have very limited
spatial resolution or short historical records. In regions
where there are no observations at all, data-based
methods clearly do not work.

Climate model-based approaches have the advantages
that climate models can be run as ensembles, and that
models provide information in regions where there are
few observations. The benefit of ensembles arises if the
separate ensemble members are initialized in such a way
that the weather and climate variability in the different
ensemble members is randomly out of phase. In this case,
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when the ensemble members are averaged together to
create the ensemble mean, the noise due to weather and
climate variability reduces, while any underlying trends
remain the same. The signal-to-noise ratio for estimating
trends is thus improved, and estimates of trends from cli-
mate model ensembles are therefore typically more pre-
cise (although not necessarily more accurate) than
estimates of trends from observational data. The disad-
vantage of climate model-based methods is that all
aspects of climate model simulations are only an approxi-
mate representation of reality. In particular, real precipita-
tion is contingent on processes that are smaller scale than
climate model resolution, and as a result precipitation in
climate models has to be parameterized. Any estimates of
trends from climate models should therefore be consid-
ered to be possibly biased (see, e.g., discussions about the
sensitivity of climate model results to rainfall parameteri-
zations in Knutson & Tuleya, 2004, Birch et al., 2014,
Garcia-Carreras et al., 2015, Willetts et al., 2017 and
Konduru & Takahashi, 2020, and a discussion of biases in
climate model precipitation in Maraun, 2012).

In this article, our goal is to derive estimates of
unknown climate change trends by drawing on informa-
tion from both observations and climate models. We will
test a novel methodology for combining estimates from
observations and climate models that attempts to produce
trend estimates that are better than can be produced from
either alone. The method we test works by considering
various factors: the observed trend, the uncertainty
around the observed trend, the climate model ensemble
mean trend, and the consistency between the climate
model trend and the observed data, taking into account
the level of variability in the data. The analysis of these
factors and the combination of models is done in a single
statistical calculation based on standard probabilistic
principles.

Our goals are similar to, but also different from, the
usual goals of the well-established practice of downscal-
ing of climate models. Downscaling is concerned with
using observations to adjust the outputs of climate
models to make them more realistic (see, e.g., Maraun &
Widmann, 2018). Cat models are very often not, however,
created directly from climate model output, but rather
from statistical simulations of weather and climate
(in order to be able to simulate many more years of real-
istic variability than is possible with climate models). Our
goal is to understand how best to derive estimates of the
climate change trend from observations and climate
models that can then be used to adjust these statistical
simulations.

This study is part of a wider effort to create principled
mathematical and statistical methods for extracting quan-
titative information from climate model output and

observed data that can then be used to improve the
modelling of a number of the variables that are used in
cat models, including various aspects of rainfall, but also
including, for example, wind speeds and hurricane num-
bers. We believe that there is great potential for this
approach to lead to better risk models. Better risk models
will help insurers price and manage risk better, leading
to a more efficient insurance industry. A more efficient
insurance industry can help society as a whole to manage
extreme weather risk more effectively, especially as the
climate changes.

In Section 2, we describe the data and climate models
that we will use. In Section 3, we discuss the question of
how observational data and output from climate models
can be combined, and introduce the model averaging
method that we will test. In Section 4, we present results
for a single rainfall index: Spanish summer mean rainfall.
In Section 5, we present results for other parts of Europe.
In Section 6, we explore the sensitivity of the results to
some of the methodological assumptions, and in Sec-
tion 7, we summarize and conclude.

2 | OBSERVED CLIMATE DATA
AND CLIMATE MODEL
SIMULATIONS

We will use both observed rainfall and climate model sim-
ulated rainfall to create trend estimates, which we then
combine in a logical way. For both the observed and simu-
lated rainfall, we aggregate the data in space and time to
create summer and winter mean rainfall indices for eight
large geographical areas in western Europe, namely: UK
(UK), Northern France (FN), Southern France (FS), Spain
(ES), Italy (IT), Northern Germany (DN), Southern
Germany (DS) and Scandinavia (Denmark, Sweden and
Norway) (DK). We will denote summer and winter indices
as, for example, UKs and UKw. Our 16 regions follow the
regions used in Jewson et al. (2021).

Ultimately, we are interested in deriving best esti-
mates of trends in rainfall at a greater level of granularity
than just seasonal mean indices on large scales and for
extreme rainfall as well as mean rainfall. However, in
this article, we will focus on seasonal mean rainfall as a
starting point for the development of concepts and the
exploration of methodologies for combining estimates
from climate models and observations.

2.1 | Observed data

The observed rainfall data we use are from the E-OBS
dataset (Cornes et al., 2018). These data consist of rainfall
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station observations interpolated onto a 25 km grid. Data
are available from 1950 to 2018, but in this study, we only
use data from 1981 onwards to match the climate model
output (which starts in 1981), giving 38 years in total.

2.2 | Climate model data

The climate model output we use was produced by the
United Kingdom Meteorological Office (UKMO) as part
of the 2018 iteration of the United Kingdom Climate Pro-
jections (UKCP18) project (Lowe et al., 2018). We use an
ensemble of 12 limited-area atmospheric model runs at
12 km horizontal resolution, produced by the UKMO
Unified Model Global Atmosphere GA7, and driven by
perturbed variants of the UKMO global climate model
HadGEM3-GC3.05. These runs cover Europe for the
period 1981–2080. We will use data from the period
1981–2018 to match the observations (which end in
2018). The boundary conditions for the climate model
simulations were observed forcings including, in particu-
lar, increasing greenhouse gases. The climate model runs
were started from different initial conditions in 1900, and
use random numbers to perturb the physical parameteri-
zations (see the explanation in Lowe et al., 2018). As a
result of the initialization, the model states of the differ-
ent ensemble members during the period 1981–2018

would be expected to be randomly out of phase with
respect to each other in terms of decadal and interdecadal
climate variability, as we require for our study.

These climate model simulations use just a single
global model and a single regional model to produce the
ensemble. This type of ensemble is known as a single
model ensemble (SME). An alternative approach is to use
a selection of different global models and/or a selection
of different regional models to produce the ensemble,
which is known as a multi-model ensemble (MME).
SMEs and MMEs have various advantages and disadvan-
tages. MMEs have the advantage that they capture more
of the model uncertainty, by not relying on individual
models, and hence the ensemble spread may be larger.
However, they have the disadvantage that the question of
what weights to put on each model has to be considered,
and although various methods have been suggested for
how to derive such weights, no general consensus has
been reached. In our application, the main algorithm we
study (see Section 3.5) only uses the ensemble mean, and
hence even if the SME we use does underestimate the
ensemble spread, that would have no impact on the
results. All of the methods we describe below could be
applied equally well to SMEs and MMEs.

Time series for Spanish summer mean rainfall for
four ensemble members are shown in Figure 1, along
with straight line trends fitted using ordinary least

FIGURE 1 Spanish summer

mean rainfall for four ensemble

members from the climate model,

with ordinary least squares (OLS)

trend
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squares (OLS). We see that the variability is indeed differ-
ent (i.e., out of phase) in the different ensemble members.
The OLS trends are also different: some are increasing,
and some are decreasing. These trends are due to a com-
bination of any climate change trend, which would be
the same in each ensemble member, plus any residual
trends due to interannual or decadal climate variability,
which would be different in each ensemble member.

Figure 2 shows the time series of the ensemble mean
rainfall (in red) and the time series of the observed rain-
fall for the same period (in black), also for Spanish sum-
mer mean rainfall. Figure 2 shows that the model
ensemble mean shows a clear bias in the mean level of
rainfall relative to the observations, with the model
around 30% higher. Across our 16 indices, this bias varies
from region to region and winter to summer. Figure 2
also shows OLS trends fitted to the ensemble mean and
observed time series. Both show decreasing trends. That
they are both decreasing may be a coincidence, but
decreasing trends in Spanish summer rainfall are also
seen in the projections for future changes in rainfall
given by EURO-CORDEX (Jacob et al., 2014). It is tempt-
ing to ask whether the trends in these time series are sta-
tistically significant. However, consideration of statistical
significance is not particularly relevant when the goals
are to create a best estimate of the trend, accurate and
low volatility predictions, and inputs for risk models. This
is discussed in detail in Jewson et al. (2021) and in Sec-
tion 3.1. Instead of focusing on statistical significance, we
will apply a model averaging methodology that considers
the size of the trend signals, their uncertainty and the

consistency of the trends with the observed data to create
a best estimate of the unknown climate change trend.

We conclude from the biases shown in Figure 2 that
the mean levels of rainfall from the model should be dis-
carded, as is usually the case in downscaling methods,
and we will determine the mean level of rainfall purely
from the observations. We note, however, that the biases
between model and observations may not only be due to
deficiencies in the climate model. The observations them-
selves also have limitations, mainly due to the finite net-
work of stations on which rainfall observations are made
(Herrera et al., 2019).

One of the challenges involved in interpreting climate
model output is understanding whether or not the biases
in the mean should be taken as indication that the model
is sufficiently unrealistic that nothing from the climate
simulations can be trusted, or whether it is possible that
even though the mean climate is incorrect, some aspects
of climate variability may still be modelled correctly. In
our case, the question is whether the rainfall trend
response to changing greenhouse gases can be considered
correct if the mean rainfall is not correct. The statistical
methods we will use for combining observed rainfall data
with climate model rainfall will address this issue, by tak-
ing account of the extent to which the climate model
trend can be considered consistent with observed data.
To the extent the climate model trend is not consistent
with observed data, the trend will be downweighted. To
the extent it is consistent, then it will be combined with
the observed trend, and the possibility of no trend, each
with an appropriate weight. This occurs automatically in
the statistical methods that we will use.

3 | COMBINING CLIMATE MODEL
OUTPUT WITH OBSERVATIONS

There are many uses that one can make of the observa-
tional and climate model data described above. The goal
of this particular study is to try and derive a reasonable
estimate of the trend in the seasonal mean rainfall over
the recent period, by combining information from
observed and climate model datasets in a way that puts
appropriate weights on the two sources of information.
How one might go about combining the two depends on
one's assumptions about climate models and their ability
to simulate observed variability and trends. In our
approach, we assume that the climate model may contain
useful information but that it also has to ‘prove’ itself by
being consistent with observations before it is used. We
now discuss in more detail why we choose not to use sta-
tistical significance testing, and then describe the model
combination methodology that we will apply.

FIGURE 2 Spanish summer mean rainfall for the climate

model ensemble mean (EM), and the observations (OBS), along

with OLS trends fitted to both (EMT and OBST, respectively)
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3.1 | Using statistical testing

We will see below that the trends in our rainfall data are
weak and mostly not statistically significant. We could
therefore, perhaps simply model the trends as zero until
they become significant at some point in the future, if
they ever do. We will not use this approach, however, for
the following two reasons.

First, statistical testing is designed as a binary test that
gives low numbers of false positives (a.k.a. type I errors)
and high numbers of false negatives (a.k.a. type II errors).
When using statistical testing on trends, the risk of
accepting a spurious trend is low, while the risk of
rejecting a real trend is high. This is an appropriate bal-
ance for the purposes of scientific discovery. We, however,
have a different goal, which is simply to make an
accurate-as-possible estimate of the trend, to enable accu-
rate estimates of current and near-future climate. Since
this is a different goal to scientific discovery, it is not sur-
prising that different tools are required. Jewson
et al. (2021) have analysed the pros and cons of statistical
testing and compared statistical testing with other
methods for estimating trends and have shown that model
averaging methods outperform statistical testing in terms
of predictive accuracy when modelling weak trends.

Second, even if the trends are not significant now,
they may become significant in the future (see, e.g., the
discussion of emerging rainfall trends in Maraun, 2013).
If one is using statistical testing, then at the point in time
at which a trend becomes significant, the estimate of the
trend changes somewhat dramatically (see the example
in Jewson et al., 2021), and this will occur at different
times for different seasons and indices. These dramatic
changes are unfortunate for risk modelling, and it is pref-
erable to establish a methodology from the start that will
detect emerging trends at an early stage, even at the risk
of modelling spurious trends. This argument is further
justified by the simulation results in Jewson et al. (2021),
which show that model averaging methods give less vola-
tile predictions than statistical testing.

3.2 | AIC model averaging

We will now describe in detail what we believe is a new
method for assessing and combining estimates of trends
from models and observations to create a best estimate.
The method is based on the information theory developed
by Akaike, as discussed in atmospheric science textbooks
such as von Storch and Zwiers (1999) and Wilks (2011),
and statistics textbooks such as Wasserman (2004), Bur-
nham and Anderson (2002), Claeskens and Hjort (2008)
or Fletcher (2019). Akaike's theory gives a score for

estimating how well a statistical model fits the data to
which it is fitted, where the score includes a penalization
factor proportional to the number of parameters in the
model, to avoid overfitting. This then gives a way of mea-
suring how close the fitted model is to the unknown truth.
This theory is most commonly used for selecting one from
a number of statistical models (i.e., model selection). How-
ever, it can also be used as a simple but principled way to
combine models (i.e., model averaging).

Akaike's theory can be applied when a number of
parametric statistical models have been used to model
the same dataset. In our case, the dataset being modelled
is the observation time series for one of our 16 indices,
and the parametric statistical models are flat-line (i.e., no
trend), a linear trend fitted to the data, and a model based
on the linear trend from the climate model ensemble
mean. These models are described in more detail below.
To apply Akaike's theory for assessing and combining
models, each model will be fitted using maximum likeli-
hood. The likelihood is a standard measure of goodness
of fit between a model and data, with higher values indi-
cating a better fit, and the log-likelihood achieved at the
maximum by each model can be used to measure how
well that model has fitted the data. However, the log-
likelihood achieved at the maximum cannot be used to
compare the appropriateness of different models when
the models have different numbers of parameters, since
models with a greater number of parameters will naturally
tend to fit the data better and hence achieve a higher value
of the log-likelihood. This affects us because our three
models do have different numbers of parameters: the flat-
line and linear trend models have two and three fitted
parameters, while the ensemble mean trend model has two
parameters. We could not, therefore, use the log-likelihood
on its own to determine which of the three models would
be likely to give the best predictions. Akaike derived a cor-
rection for the overfitting effect of having extra parameters
and introduced a simple score, which is based on the log-
likelihood but includes a penalization proportional to the
number of parameters. This score can then be used to com-
pare models, such as our three models, even though they
contain different numbers of parameters. The original score
introduced by Akaike is known as the Akaike information
criterion (AIC) and is given by:

AIC¼ 2k�2 lnL, ð1Þ

where AIC is the AIC score, L is the likelihood achieved
at the maximum, and k is the number of free parameters
that were adjusted to maximize the likelihood in that
model. The sign convention is such that lower values
indicate better models (which is the opposite sign con-
vention to likelihood).
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In our case, because we are using linear, univariate
models with normal distributions, it is appropriate to use
a version of the score known as the AICC, which
includes a small-sample correction, which is given by:

AICC¼AICþ 2k2þk
n�k�1

, ð2Þ

where n is the number of data points. The AIC and AICC
scores are most commonly used for selecting the most
appropriate model from a set of models. However, they
can also be converted into weights and used to create a
new model based on the weighted average of the individ-
ual models, with the intention that the combined model
is better than any of the individual models. Given the
AICC scores for each model, the weights for the individ-
ual models that are used to create the combined model
are calculated using the following steps:

a. Define the minimum of the AICC scores across the
models as AICCmin.

b. Calculate the deviations of each of the model scores
from this minimum, DAIC¼AICC�AICCmin.

c. Calculate the relative likelihood of each of the models
as RL¼ exp �DAIC

2

� �
:

d. Normalize the relative likelihoods so that they sum to
one, to create weights.

Further details of AIC and AICC scoring and weighting
are given in the textbooks by Burnham and Ander-
son (2002), Claeskens and Hjort (2008) and Fletcher (2019).

When we put weights on our three models using this
method, we will not assume that the trends in different
regions and seasons are related, since both observational
and model studies show rainfall trends that vary signifi-
cantly by region and season (see, e.g., the results shown
in Jacob et al., 2014). We will also not assume that the
weight to be applied to the climate model is the same for
different regions and seasons, and we will calculate it
separately for each index. This is appropriate since the
rainfall climate in the different regions and seasons is
governed by different physical processes (such as differ-
ent types of clouds, different temperature climates and so
on) and the climate model may simulate some well and
others less well.

We now describe in more detail the three models that
we will blend together using AIC theory.

3.3 | Flat-Line model (FL)

The first model in the set of models that we will combine
together to create a best estimate of the trend in mean

rainfall is a model that we call flat-line (FL), which con-
sists of simply modelling the rainfall time series as sta-
tionary. We will assume that the deviations around the
mean are normally distributed, as well as independent
and identically distributed, and so this model corre-
sponds to nothing more than fitting a normal distribution
to the data, fitted using maximum likelihood. We discuss
using alternative distributions in Section 7. This model
uses two parameters: the mean and the standard devia-
tion. We can write this model as follows:

rt ¼ μþσ ϵt, ð3Þ

where rt is the mean seasonal rainfall in year t; μ is the
mean over all the years of the mean seasonal rainfall
values; σ is the standard deviation of deviations around
the mean, and ϵt is a standard normal random variable
that represents the individual standardized fluctuations
around the mean in year t. The two parameters to be esti-
mated from the observed rainfall data are μ and σ. We
include this model because for the time series we are con-
sidering the trends are possibly sufficiently weak, relative
to the variability, that it may be better not to model them
at all.

Data do not have to be precisely stationary for this to
be the best model. They just have to be sufficiently close
to stationary that there is insufficient information to
model the non-stationary aspects well enough to improve
predictions.

3.4 | Observed trend model (OBST)

The second model in the set of models that we will com-
bine together is a model that consists of fitting a linear
trend to the observed rainfall time series, again using
maximum likelihood. This model uses three parameters:
the mean, the trend slope and the standard deviation.

In this case, fitting maximum likelihood is equivalent
to fitting the mean and slope using OLS and then calcu-
lating the standard deviation of the residuals around the
trend. We can write this model as follows:

rt ¼ μþβ t� tð Þþσ ϵt, ð4Þ

where β is the trend slope. The three parameters to be
estimated from data are μ, β and σ:

It is not clear a priori which of the FL and OBST
models will be deemed closer to the truth by the AICC
score. The OBST model will give a higher (i.e., better)
likelihood value because it has more parameters, and
hence fits the data more closely, but in the AICC score, it
will be penalized for the extra parameter. Which model

JEWSON ET AL. 7 of 17Meteorological Applications
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has the lower (i.e., better) AICC score will therefore
depend on the size of the trend relative to the variability.
If the trend is weak, then FL may achieve a lower AICC
score, indicating that better predictions would likely be
made by ignoring the trend rather than trying to
estimate it.

One could also consider non-linear models for the
trend in the rainfall data, since the trend is undoubtedly
not completely linear. However, even in the OBST model,
the slope parameter is hard to estimate because of the
low signal-to-noise ratio, and additional parameters
would be even harder to estimate.

One could also model the trends by modelling the
rainfall as a function of global mean surface temperature
(GMST) rather than time. This would be necessary if lon-
ger time series of historical rainfall were being used, but
since GMST evolution is close to linear as a function of
time over the time period that we are considering, it
would be unlikely to make much difference in this case.

3.5 | Ensemble mean trend
model (EMT)

The third model we include in our model set uses the cli-
mate model output to model the observed rainfall data.
As discussed above, the mean of the climate model out-
put is biased relative to the observations, and so we dis-
card it. We also discard the climate model variability,
since all we are interested in from the climate model out-
put in this study is the estimate it provides of the trend.
The individual ensemble members each have their own
trend. We saw in Figure 1 that these trends vary signifi-
cantly because they are strongly influenced by variability
within that particular model run. By averaging the mem-
bers together to create the ensemble mean, much of this
variability cancels out, and the ensemble mean series
therefore gives a better estimate of the climate change
trend in the rainfall in the model. In the EMT model, we
then model the observed data using the mean estimated
from the observed data, the trend estimated from the cli-
mate model ensemble mean, and the standard deviation
estimated from the observed data. The only difference
between this and the OBST model above is that the trend
estimate comes from the climate model. This model can
be written as follows:

rt ¼ μþβCM t� tð Þþσ ϵt, ð5Þ

where βCM is the trend from the climate model ensemble
mean. The parameters to be estimated from the observed
rainfall data are μ and σ, but not βCM since that is given
by the climate model ensemble mean. Crucially for our

model averaging method to work, the EMT model only
counts as having two free parameters for the AICC score.
This is because the trend is not estimated using the
observed data we are trying to model, but comes from a
separate external dataset (the climate model output).
From the point of view of maximizing the likelihood of
the observed data, the climate model trend is a given con-
stant, not an estimated parameter.

We note that we do not scale the climate model trend
to get it to match the observed trend by applying a bias
correction to the climate model trend. There would be no
point in doing this: the resulting model would be equiva-
lent to the OBST model, and the climate model data
would no longer play any role. If there is a bias in the cli-
mate model trend, that will be reflected in the weight
applied to the EMT model.

The AICC score for the EMT method may be higher
(worse) or lower (better) than that for the OBST model.
On the one hand, since EMT only uses two parameters
rather than three, we might expect it to have a lower
AICC score, and hence beat the OBST model. On the
other hand, the trend used by the EMT model will not fit
the observed data as well as the trend used by the OBST
model, since the trend used by the OBST model is by defi-
nition the best possible fit to the data. As a result of this
effect, the EMT method will tend to score a lower likeli-
hood than the OBST method, which will increase the
AICC score. Which of the OBST and EMT models has
the lower AICC score in the end, and hence which of the
models would be expected to give better predictions, then
comes down to a balance between these two effects.

3.6 | Weighted combinations

We can combine the three models described above in
four different ways, consisting of three two-way combina-
tions and one three-way combination. The first combina-
tion we consider is the two-way combination between FL
and OBST and ignores the climate model. This combina-
tion considers how well the trend can be estimated in the
observational data and, taking into account the uncer-
tainty around the estimate, combines the two models
accordingly. If the trend can be well estimated in the
observational data, then OBST will get most of the weight
in this combination. If the trend is poorly estimated, then
FL will get most of the weight. The shortcoming of this
method is that it makes no attempt to incorporate output
from the climate model as a possible source of
information.

The second model combination we consider is the
two-way combination between OBST and EMT. This
combination considers which of the two methods for
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estimating the climate change trend is the better one:
fitting the trend to the data or taking the trend from the
climate model. If the trend estimate from the climate
model is not consistent with the observed data, even
when taking into account the high level of noise in the
data, then OBST will get most of the weight. On the other
hand, if the trend estimate from the climate model is con-
sistent with the observed data, then EMT will get most of
the weight because OBST is penalized for having an extra
parameter. The shortcoming of this method is that it fails
to account for the possibility that neither trend model is
very good. It does not allow for the possibility that it
might be better to use a trend closer to zero than the
trend from either of these models.

The third combination we consider is the two-way
combination between FL and EMT. This combination
could be useful in situations in which the observed trend
is poorly estimated, because of the level of noise in the
data, and hence is perhaps better ignored. It weights both
FL and EMT according to their consistency with the data.
If EMT captures the correct sign for the observed trend, it
will beat FL.

The fourth, and most interesting, combination that
we consider is the three-way combination among FL,
OBST and EMT. This combination takes into account all
the factors discussed above and weights the three models

appropriately. It chooses automatically, and on a reason-
able basis, whether to model a trend or not, and if the
trend is modelled, how much to follow the observed
trend and how much to follow the EMT. Based on the
underlying statistical theory, one would expect that this
three-way combination would likely give better predic-
tions than any of the individual models or any of the
two-way combinations.

4 | SPANISH SUMMER RAINFALL
RESULTS

We now present results from applying the methods
described above to Spanish summer rainfall. Figure 3a,b
shows the uncertainties around the trend estimates
shown in Figure 2, using trend lines with slopes that
show 95% confidence intervals above and below the
observed and climate model trends. Panel (a) shows the
uncertainty around the observed trend: the uncertainty is
large, and the trend is not statistically significant
(although statistical significance does not affect our
model combination analysis, as discussed above). This
large uncertainty is an indication that the weight given to
the observed trend in our multi-model combinations may
not be very high. Panel (b) shows the uncertainty around

FIGURE 3 Panel (a):

Observations of Spanish summer

mean rainfall (OBS), with fitted OLS

trend (OBST) and with two

additional lines (+2SD, �2SD) with

the same mean as the OLS trend but

with the trend increased and

decreased by two standard errors, to

illustrate the uncertainty on the

trend. Panel (b): As panel (a), but for

the trend from the climate model

ensemble mean (EMT). Panel (c):

Observations of Spanish summer

mean rainfall (OBS), along with

seven methods for estimating the

trend. The individual methods are

explained in the text. Panel (d): the

seven trends as shown in panel

(c) but now with an expanded

vertical scale. The three thicker lines

correspond to the fundamental

methods (FL, OBST and EMT) and

the four thinner lines correspond to

the four model combinations
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the EMT. The line representing the EMT has been shifted
downward so that the mean matches that of the data,
reflecting that the EMT model uses the mean of the
observations. We see that the uncertainty on the EMT is
smaller than the uncertainty on the observed trend: this
is the benefit of having an ensemble average. The EMT is
also not statistically significant.

Table 1 gives various statistics for the three models,
applied to the Spanish summer rainfall time series. The
first row shows the sizes of the estimated trends. The
OBST trend is more than twice the EMT trend. The next
four rows show terms in the expression for the AICC.
The second row shows the log-likelihoods. We have mul-
tiplied the log-likelihoods by minus two, since they are
multiplied by minus two in the expression for the AICC
(Equation 2). This means that the numbers in the table
are negatively oriented, with lower values indicating a
better fit to the data. We see that OBST has the lowest
(best) value. This is to be expected, for all 16 cases, since
OBST has more parameters that can be adjusted to fit the
data. EMT has the second lowest value. This is not neces-
sarily to be expected, but occurs in this case because the
climate model trend has the same sign as the observed
trend, and hence EMT improves the fit to the data rela-
tive to the FL model, which does not use a trend. The
third row in the table gives the numbers of parameters in
the models, multiplied by two since the number of
parameters is multiplied by two in the expression for the
AICC. The fourth row gives the small-sample correction
that converts AIC to AICC (Equation 2). The fifth row
gives the AICC values, which are the sum of the second,
third and fourth rows. These are the values that can tell
us which model is likely to give the best predictions. We
see that EMT has the lowest AICC value, and is hence
chosen as the best model. FL is a close second, and OBST

is a distant third. From the contributions of the different
terms to the AICC value, we can see that the poor perfor-
mance of OBST is driven mainly by the penalty for
adding a third parameter, which greatly outweighs the
differences in likelihoods. The observed trend is being
deemed by the combination method as unreliable as an
estimate of the climate change trend, relative to the other
methods. If we were using a model selection philosophy,
rather than a model averaging philosophy, and hence
aiming to choose a single ‘best’ model, then at this point
we would choose EMT since it has the lowest AICC
value. The sixth and seventh rows of Table 1 relate to
sensitivity tests discussed in Section 6.

Table 2 gives the weights assigned to the three models
when they are combined in the four different possible
combinations using the AICC weighting methodology. In
the FL-OBST two-way combination, FL gets 72% of the
weight, and OBST only 28%. This is because FL has a dis-
tinctly lower AICC value, which is mainly caused by FL
having one fewer parameter than OBST. That the OBST
model captures the trend using its extra parameter does
not increase its AICC score much because the trend is
weak relative to the variability in the data, and so captur-
ing the trend correctly does not explain much more of
the variability in the data than not capturing it. In the
OBST-EMT two-way combination, EMT achieves 75% of
the weight, to 25% for the OBST model. This is because
EMT has a distinctly lower AICC value than OBST,
driven by the fact that it uses only two parameters rela-
tive to the three parameters used by OBST, and yet
explains the data nearly as well. In the FL-EMT two-way
combination, the two models get roughly equal weights:
FL gets 47% of the weight, and EMT gets 53% of the
weight. These two models have the same number of
parameters. EMT gets a slightly higher weight because it
has a slightly lower AICC value, driven by the fact that
the EMT model captures the correct sign of the observed

TABLE 1 For Spanish summer mean rainfall, for the flat-line

(FL), observed trend (OBST), ensemble mean trend (EMT) and

ensemble mean trend relative trend (EMT-RT) models: The

estimated trend, minus two times the log-likelihood, two times the

number of fitted parameters, the small-sample correction, the AICC

score, the BIC score and the WAIC score

FL OBST EMT EMT-RT

Trend 0.000 �0.095 �0.038 �0.029

�2 log-likelihood 4.452 4.021 4.173 4.226

2*# parameters 4 6 4 4

Small sample 0.343 0.706 0.343 0.343

AICC 8.795 10.727 8.516 8.569

BIC 11.728 14.933 11.449 n/a

WAIC 9.521 10.821 9.238 n/a

Note: The AICC score in row 5 is the sum of rows 2, 3 and 4.

TABLE 2 For the FL, OBST and EMT models, the weights in

eight model combinations

FL OBST EMT Trend

FL-OBST 0.724 0.276 0.000 �0.026

OBST-EMT 0.000 0.249 0.751 �0.052

FL-EMT 0.465 0.000 0.535 �0.021

Three-way basic 0.395 0.150 0.454 �0.032

Three-way RT 0.400 0.152 0.448 �0.028

Three-way BIC 0.425 0.086 0.489 �0.027

Three-way WAIC 0.374 0.195 0.431 �0.035

Three-way prior 0.566 0.108 0.326 �0.023

Note: In the final column, the trend for each of the model combinations.
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trend, while the FL model has no trend at all and so is
slightly less consistent with the observed data. In the
three-way combination FL-OBST-EMT, EMT and FL get
the highest weights, of 45% and 40%, while OBST gets
only 15%. This can be explained using the reasons given
above for the performance of the different models in the
two-way combinations.

Figure 3c,d shows the trends estimated from the four
combinations, which could be used to predict near-future
values. The different trends are hard to distinguish in
panel (c) and so are shown with an expanded vertical axis
in panel (d). The sizes of the trends are also given in
Table 2. The bold lines in Figure 3d show the three fun-
damental trend models: FL, OBST and EMT. The fine
lines show the weighted combinations. The weighted
combinations necessarily lie within the range of the three
fundamental trend models. Three of four of the weighted
combinations lie between EMT and FL. The only combi-
nation with a larger trend than EMT is the combination
that does not include FL.

5 | EUROPE-WIDE RESULTS

We now present results for our 16 indices, covering
8 European regions, for winter and summer. Figure 4
shows the observed trends and the EMTs for all 16 indi-
ces, along with uncertainties given by 95% confidence
intervals. Both observed and modelled trends are a mix of
positive and negative values. All the values show

significant uncertainty, and none are significantly differ-
ent from zero (although the observed trend for Italy in
winter is very close). The uncertainties around the cli-
mate model EMTs are much less than those around the
observed trends because of the averaging involved in cal-
culating the ensemble mean. There is not much corre-
spondence between the trends from observations and the
climate model: in fact, for eight cases, the trends show
the same sign, and for eight cases, they show different
signs.

We can compare the signs of these trends with other
studies. Comparing with EURO-CORDEX projections for
the long-term future impact of climate change on
European seasonal rainfall (Jacob et al. 2014), we see that
the sign of the UKCP climate model agrees in almost all
cases. The only cases where there is no clear agreement
between UKCP and EURO-CORDEX are for (a) ESw,
where UKCP suggests a positive trend, while EURO-
CORDEX is ambiguous because the north and south of
Spain show different sign trends, (b) ITw, where UKCP
suggests a positive trend but again EURO-CORDEX is
ambiguous, and (c) FSw, where UKCP suggests a nega-
tive trend, but EURO-CORDEX shows a positive trend.
This comparison suggests that the lack of agreement
between the trends estimated from the observations and
the climate model is more likely to be due to uncertainty
in the observed trends than it is due to biases in the cli-
mate model.

5.1 | Combining FL and OBST

Figure 5a shows the weights that result from applying
the AICC model weighting methodology to combine the
FL and OBST models in a two-way combination, sepa-
rately for all 16 locations. We have already discussed the
results for ESs in Section 4. In all cases except Italy win-
ter, FL gets larger weights. The small weights on the
OBST model reflect the small size of the observed trends,
relative to the size of the variability, resulting in a high
level of uncertainty on the trend estimate. The weights
on OBST are in a range from 0.2 to 0.5. This means that
the model combination method is recommending that we
use the observed trend, but divided by a reduction factor
that varies from around 5 to around 2. For Italy winter,
OBST gets larger weights. This reflects the large size of
the observed trend relative to the uncertainty in this case.

5.2 | Combining OBST and EMT

Figure 5b shows the weights that result from applying
the AICC model weighting methodology to combine the

FIGURE 4 Observed and climate model ensemble mean

trends for 16 indices from 8 countries and 2 seasons, all with

uncertainty of plus and minus two standard errors illustrated by the

lines and smaller dots
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OBST and EMT models in a two-way combination. In
13 of 16 cases, EMT gets larger weights than OBST. The
low weights on OBST once again reflect the small size of
the observed trend relative to the variability. The three
cases where OBST gets larger weights than EMT (UKs,
DSw and ITw) are all cases where the size of the observed
trend is relatively larger and is of the opposite sign to the
climate model trend.

5.3 | Combining FL and EMT

Figure 6a shows the weights that result from applying
the AICC model weighting methodology to combine the
FL and EMT models in a two-way combination. Since
both models have two parameters, the combination is
based purely on the likelihood, which measures the con-
sistency of the two models with the observed data.

FIGURE 5 Weights from model

averaging for the 16 indices. Panel

(a) shows the weights for the

combination of the FL and OBST

models, and panel (b) shows the

weights for the combination of the

EMT and OBST models

FIGURE 6 Weights from model

averaging for the 16 indices. Panel

(a) shows the weights for the

combination of the FL and EMT

models, and panel (b) shows the

weights for the three-way

combination of the FL, EMT and

OBST models
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Overall, the models are given roughly equal weights.
Those cases in which EMT gets relatively higher weights
(e.g., DKs, FSw, ITs) correspond to cases where the sign
of the climate model trend agrees with the observed
trend. However, it is perhaps surprising the EMT still gets
weights nearly as large as FL even in cases where the cli-
mate model and observed trends disagree (e.g., DNw,
DSw). This is because the evaluation of the climate model
trend is not based on a comparison between the climate
model trend and the observed trend, but on the EMT
model as a whole, and its ability to represent the entire
distribution of observed values. For instance, in the case
of DSw, even though the climate model trend is of the
opposite sign to the observed trend, the climate model
trend is weak relative to the variability, and the EMT
model does capture the distribution of variability. As a
result, the EMT model is not too inconsistent with the
observations, even with the wrong sign of trend. The
AICC method states the following: although the climate
model trend is of the opposite sign to the trend in the
observations, we cannot say that it is incorrect, because
of the large variability in the data. Based on the statistical
evidence, from comparing the model with observations,
the climate model trend is still a plausible candidate for
what the trend might be and should be given some
weight accordingly. This illustrates how the AICC combi-
nation method considers consistency between model and
observations in an appropriate probabilistic sense, incor-
porating uncertainty.

5.4 | Combining FL, OBST and EMT

Figure 6b shows the results of using the AICC model
weighting methodology to combine the FL, OBST and
EMT models in a three-way combination. The weights in
the three-way combination arise from an interplay
between a number of factors including the size and
uncertainty of the observed trend and the extent to which
the EMT model is consistent with the observations. Over-
all, the weights on the observed trend are low: in 12 of
16 cases, the weights are below 0.2, meaning that in the
combined prediction, the observed trend slope is divided
by 5 or more. This is how the model averaging method
deals with statistically insignificant trends: rather than
setting them to zero, it assesses the level of information
about the trend and reduces the trend estimate accord-
ingly. In only one case (ITw) does the observed trend cap-
ture a weight of more than 0.5. In all 16 cases, the FL and
EMT models capture roughly equal weight. As in the FL
versus EMT comparison discussed in Section 5.3, EMT
tends to get more weight in the cases where the climate
model trend agrees with the observed trend (such as

DKs), and less when they tend to disagree (such as DSw).
Again, EMT never gets particularly small weights, even
when the trend in the climate model disagrees with the
trend in the observations, because even with the wrong
sign trend, the EMT model as a whole is still reasonably
consistent with the observations.

5.5 | Trend estimates

Trend estimates from all the model combination methods
are shown in Figure 7, along with the trends from the
three fundamental models (FL, OBST and EMT). The
trend estimates from the combination methods are
bounded by the three fundamental models, as we would
expect.

We will discuss the trend estimates from the three-
way combination in detail. In eight cases of 16, the OBST
and EMT trends agree in sign, and in all these eight
cases, the three-way combination has the same sign. In
three of these eight cases, the three-way combination lies
in-between OBST and EMT, while in five of these eight
cases, it lies outside and closer to the FL model
(i.e., closer to zero). These five cases are cases in which
significant weight has been given to the FL model, in
preference to the OBST model, because the signal-to-
noise in the observed trend is low. In eight cases of
16, OBST and EMT trends disagree in sign. In all these
cases, the three-way trend lies between the OBST and
EMT estimates, as it must. It lies on either side of the FL
model, and the trend is generally rather small.

FIGURE 7 Estimates of rainfall trends for the 16 indices based

on observations (OBST), the climate model ensemble mean (EMT)

and four model combinations. The FL model estimate of the trend

is given by the zero line
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In all 16 cases, the three-way trend is smaller than
the observed trend. This is because the observed trend is
uncertain, and our combination method downweights it
significantly as it constructs optimal blended estimates of
the size of the trend. In 10 of 16 cases, the three-way
model has the same sign as the EMT model because of
the relatively large weights on that model.

6 | SENSITIVITY TESTS

We now look at four sensitivity tests to see how much the
results from the previous section change, as we change a
number of aspects of the methodology. The results are
shown in Table 2 and Figure 8 and discussed in
Section 6.5.

6.1 | Absolute versus relative trends

In the above analysis, we have taken the trends from the
climate model as absolute values in mm/year. However,
given that the mean rainfall of the climate model is
biased, to some extent, in all locations, one might argue
that it makes more sense to take these trends as relative
values. In fact, the question of whether to use absolute or
relative values is rather subtle, and which makes most
sense depends on the source of the bias. If the bias is due
to errors in the climate model, it makes most sense to use
the relative trend. If, on the other hand, the bias is due to
the observations, it makes more sense to use the absolute
trend. It may, in fact, be reasonable to use something in-
between those two extremes, since the bias undoubtedly

comes from both data sources, to some extent, although
we do not follow that approach in this study.

To illustrate the difference between absolute and rela-
tive changes: for our Spanish summer mean rainfall
example, we find that the mean rainfall in the climate
model is on average around 30% too high. One could
interpret this to suggest that the trend from the climate
model will also be 30% too high.

The impact on the final predictions of the change
from an absolute to a relative trend approach is caused
by the changing trend slope in the EMT model, a change
in the AICC value for the EMT model, and changing
weights for all models, since the three weights must
adjust so that they still sum to one. The change in the
trend slope and the changing weights both affect the final
prediction, and analysis of individual cases from our set
of 16 shows that they may work in the same or opposite
directions.

Relative trend-based estimates are given in Table 1.

6.2 | AIC versus BIC

Our model weighting methodology is based on the use of
the AIC. However, there is a commonly used alternative
to AIC, known as the Bayesian information criterion
(BIC). We recalculate all the results using BIC rather
than AIC. In our situation, BIC tends to put more weight
on FL and EMT, and less weight on OBST. BIC values for
the Spanish summer rainfall example are given in
Table 1.

6.3 | Ensemble mean uncertainty

One characteristic of the AICC model combination
method is that it ignores the uncertainty on the climate
model trend, as if the climate model trend were gener-
ated from an infinitely sized ensemble. This is not
completely appropriate: the uncertainty on the EMT is
certainly much less than the uncertainty on the observed
trend (see Figure 3a,b), but it is not zero. Taking account
of the uncertainty on the EMT is difficult in the maxi-
mum likelihood framework. To explore the impact of this
assumption, we rebuild all three models (FL, OBST and
EMT) and repeat the three-way combination, using
Bayesian principles. The benefit of using Bayesian formu-
lations of the models is that all the estimated parameters
and the EMT are now represented by distributions, thus
capturing their uncertainty. The disadvantage is that the
calculations are much more complex.

A crucial aspect of any Bayesian model is the choice
of the prior. For the Bayesian versions of the FL and

FIGURE 8 Changes in estimates of rainfall trends relative to

the basic three-way model for four sensitivity tests
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OBST models, we use the standard objective prior formu-
lations for these models. FL and OBST are two of a small
number of statistical models that have a unique and more
or less uncontroversial objective Bayesian formulation
that avoids the need to introduce subjective priors (see,
e.g., the discussion in Lee, 1997).

For the Bayesian version of the EMT model, we use
the same Bayesian model as for OBST, but now for a
given trend. The given trend is sampled from a distribu-
tion of trend estimates implied by the spread of the
trends from the climate model ensemble, thus capturing
the uncertainty on the climate model trend.

For the model comparison between these Bayesian
models, AIC theory can no longer be used since it relies
on the assumption that models are fitted using maximum
likelihood. Instead, we use the widely accepted informa-
tion criterion theory (WAIC) developed by
Watanabe (2010). In this theory, AICC scores are rep-
laced by WAIC scores. WAIC scores are then converted
to weights, exactly as in the AIC theory.

In the results from this test, less weight is always
placed on the climate model, as would be expected since
we are introducing uncertainty around the climate model
trend. For smaller ensembles, this effect would become
more important.

WAIC values for the Spanish summer rainfall exam-
ple are given in Table 1.

6.4 | Equal versus unequal prior weights

In the two- and three-way combinations considered
above, we implicitly put equal prior weights on the differ-
ent models. This means that the relative weights on the
models are determined solely by their AICC score. How-
ever, these implicit prior weights can be seen as a subjec-
tive choice. For instance, in the three-way combination,
one can argue that because two of the models involve
modelling trends, and only one not, we implicitly put
twice as much prior weight on the idea that there is a
trend than the idea that there is no trend. It could then
be argued that this is inappropriate and biases the results
towards favouring using a trend.

The question of what prior weights to put on the
models can never be resolved completely satisfactorily. It
is an example of a general feature of all mathematical
modelling, which is that the modelling decisions made by
the mathematical modeller inevitably have an impact on
the final results. This problem is made worse when the
data are insufficient to distinguish completely clearly
between the models, as is the case here.

As a sensitivity test, we have put prior weights on the
trend models that are half the prior weight put on the FL

model, so that the total prior weights are equal on trend
and no-trend models.

6.5 | Discussion of sensitivity test results

Of the four sensitivity tests, all had some impact on the
results, and the impact varied by index across our 16 indi-
ces. The impact of using a relative trend, and switching
to a Bayesian formulation in order to include uncertainty
on the climate model trend, was relatively small. The
impact of using a different prior was larger, and the
impact of using BIC, instead of AIC, was largest.

7 | SUMMARY AND
CONCLUSIONS

We have studied how to make estimates, or predictions,
of current and near-future mean rainfall in Europe, based
on estimating the climate change trend in the recent past.
This trend can be estimated either from observations or
from climate models, or it can be assumed to be so close
to zero and so hard to estimate that it is better set to zero.

We have investigated a method that constructs an
optimal combination of three separate trend estimates.
The three estimates are the flat-line (FL) model, which
uses no trend, an observed trend (OBST) model that fits
an ordinary least squares (OLS) trend to the data, and the
ensemble mean trend (EMT) model that fits an OLS
trend to the climate model ensemble mean and uses that
trend to model the observed data. The method draws on
standard model averaging theory involving the Akaike
information criterion (AIC) score. The method takes into
account how well the trend can be estimated in the
observational data, and to what extent the climate model
trend is consistent with the observations. It puts weights
on the three models based on how close each model is
estimated to be from the unknown truth.

We find that overall the OBST gets the lowest
weights, because the observed trends are relatively weak
and the estimates of the trends are uncertain. In many
cases, the three-way combination reduces the observed
trend estimate to less than 20% of its OLS value.

The FL and EMT methods are given higher weights
than the OBST method in most cases. That EMT often
gets higher weights than OBST demonstrates the value of
climate model ensembles for this application. The FL and
EMT weights are roughly the same overall, although this
varies from case to case. This suggests that overall the
EMT method does not fit the data significantly better
than the FL method. In particular cases, the EMT
method is given slightly higher weights, when the climate
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model trend agrees with the observed trend. In cases
where FL and EMT are given roughly the same weight,
we can see them as different points of view on how to
model the trend, based on different assumptions. They
cannot be separated by the statistical analysis since they
are equally consistent with the data.

Sensitivity tests indicate that the results are somewhat
sensitive to the details of the methodology, which indi-
cates that careful thought needs to be given to the various
methodological choices.

One of the modelling decisions made in our study
was to use the normal distribution to model the residuals
around the rainfall trends. We chose to use the normal
distribution since this makes the analysis particularly
simple, and the residuals are indeed close to normally
distributed. However, there might be advantages in using
other distributions. For instance, since rainfall residuals
are generally positively skewed, and cannot go below
zero, there would possibly be advantages to using the log-
normal distribution, which can be implemented by tak-
ing the log of all the rainfall values before the analysis.
The disadvantages of this approach are that it would
make the mathematical expressions more complex, and
there is no longer a single easily-interpreted value for the
trend being estimated.

In this particular application of the model averaging
methodology that we have described, most of the indices
that we have studied are close to one corner of parameter
space where the observational trend gets relatively little
weight and the climate model trend and no-trend
methods get roughly equal weight. Other data sets for
other variables, including other rainfall indices such as
extreme rainfall, may well lie in different parts of param-
eter space. This may lead to different weighting behav-
iour, depending on the sizes of the trends in the
observations and the climate model, the uncertainty on
the observed trends and the level of consistency between
the climate model and the observations.

The method we have described is a general method
for extracting information from observations and climate
model simulations of recent climate. The method avoids
having to decide whether to model a trend or not, and
avoids having to decide whether to believe observed
trends or climate model trends. Instead, it uses an objec-
tive analysis of the evidence to create a single best com-
bined estimate of the climate change trend. We believe
that there is great potential to improve estimates of cur-
rent climate by including information from climate
models in this way.

In the precise form presented here, the combination
method only applies to linear trends and normally dis-
tributed residuals. However, with modifications, it could
equally well be applied to other shapes of trend and

other shapes of distribution. Applying similar methods
to trends in extremes would also be useful, but would
require enhancements to the statistical methodology
that would need to go beyond the current literature on
model averaging, and hence would require significant
research.
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