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Abstract
Inflammasomes are multiprotein complexes that assemble upon detection of danger signals to

activate the inflammatory enzyme caspase-1, trigger secretion of the highly proinflammatory

cytokine IL-1𝛽 , and induce an inflammatory cell death called pyroptosis. Distinctiveness of the

nucleotide-binding oligomerization (NOD), Leucine-rich repeat (LRR)-containing protein (NLRP3)

inflammasome resides in the diversity of molecules that induce its activation, indicating a cer-

tain intricacy. Furthermore, besides the canonical activation of NLRP3 in response to various

stimuli, caspase-11-dependent detection of intracellular LPS activates NLRP3 through a non-

canonical pathway. Several aspects of the NLRP3 inflammasome are not characterized or remain

unclear. In this review, we summarize the different modes of NLRP3 activation. We describe

recent insights into post-translational and cellular regulation that confer further complexity to

NLRP3 inflammasomes.
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1 INTRODUCTION

Microbes are sensed upon detection of pathogen associatedmolecular

patterns (PAMPs) by pattern recognition receptors (PRRs) expressed

by the innate immune cells.1,2 PRRs include a variety of molecules

either expressed at the cell surface, such as TLRs or C-type lectin

Abbreviations list: ASC, Apoptosis-associated speck-like protein containing a

caspase-recruitment domain; CARD, Caspase-recruitment domain; CLR, C-type lectin

receptor; DAMP, Damage-associatedmolecular pattern; ER, Endoplasmic reticulum; IFNAR,

Interferon-𝛼/𝛽 receptor; JNK, c-Jun N-terminal kinase; LRR, Leucine-rich repeats; LUBAC,

Linear ubiquitin chain assembly complex;MAVS,Mitochondrial antiviral-signaling protein;

NEK7, NIMA-related kinase 7; NLR, NOD-like receptor; NOD, Nucleotide-binding

oligomerization domain; OMV, Outer membrane vesicles; PAMP, Pathogen-associated

molecular pattern; PRR, Pattern recognition receptor; PTPN22, Protein tyrosine

phosphatase, nonreceptor type 22; PYD, Pyrin domain; RIG-I, Retinoic acid-inducible gene-I;

RLR, RIG-I-like receptor; SCAP, SREB cleavage-activating protein; SREBP2, Sterol regulatory

element-binding protein 2; SYK, Spleen tyrosine kinase; TGN, Trans Golgi network; TRIF,

TIR-domain-containing adapter-inducing interferon-𝛽 .

receptors (CLRs), or localized in the cytoplasm, such as NOD-like

receptors (NLRs) or retinoic acid-inducible gene-I (RIG-I-like recep-

tors [RLRs]). Each PRR recognizes particular microbial components

and subsequently mobilizes specific signaling cascades that modu-

late phagocytosis and degradation of the microbe, regulation of gene

expression to promote an innate immune response including produc-

tion of inflammatory cytokines, and eventually the establishment of an

adaptive immune response to fight the microbial infection at the scale

of the organism.3,4

Somemembers of the cytoplasmicNLRs are associatedwithmacro-

molecular complexes called inflammasomes, which mediate immune

responses to microbial infection.5 Inflammasomes are composed of

three different types of proteins: a sensor (most often a member

of the NLR family), an adaptor (ASC, apoptosis-associated speck-

like protein containing a caspase-recruitment domain [CARD]), and

an effector protein, the cysteine protease pro-caspase-1. To date,

five PRRs (NLRP1, NLRP3, NLRC4, pyrin, and absent-in-melanoma
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562 MORETTI AND BLANDER

2 [AIM2]) have been shown to form inflammasomes.6,7 Most NLRs

contain three domains: a N-terminal pyrin domain (PYD), a cen-

trally located NACHT or nucleotide-binding domain (NBD) that medi-

ates self-oligomerization, and carboxy-terminal leucine-rich repeats

(LRRs) that are involved in the recognition of PAMPs.8 Activa-

tion of inflammasomes triggers proteolytic cleavage of pro-caspase-

1 into its catalytically active form. Caspase-1 then processes the

cytokine precursors pro-IL-1𝛽 and pro-IL-18 into mature and bio-

logically active IL-1𝛽 and IL-18.9 IL-1𝛽 is a potent proinflammatory

cytokine, which notably elicits the recruitment of innate immune

cells to the site of infection and regulates adaptive immune cells. IL-

18 promotes the activation of cytotoxic natural killer (NK) cells and

T cells.10 Caspase-1 also induces a proinflammatory form of cell death

called pyroptosis.11

The NLRP3 inflammasome has been extensively studied in the last

two decades, primarily because of its potential involvement in the

pathogenesis of several diseases. The NLRP3 inflammasome mediates

host immune defense against infectious microbes of either viral or

bacterial origin, and is therefore beneficial to the organism.12 Yet,

dysregulation or hyperactivation of the NLRP3 inflammasome results

in hyperinflammation and causation of several inherited or acquired

inflammatory diseases in sterile conditions.13,14 For instance, NLRP3

has initially been associated with the Muckle-Wells syndrome, an

autoinflammatory disease where mutations in the NALP3/Cryopyrin

gene lead to hyperactivation of inflammasome.15 Activity of the

NLRP3 inflammasome is also involved in the cryopyrin-associatedperi-

odic fever syndrome (CAPS), where mutations in the NLRP3 NACHT

domain lead to hyperactivation of theNLRP3 inflammasome.16 NLRP3

is associated with the development of gout and pseudogout where

monosodium urate and calcium pyrophosphate dihydrate crystals,

deposited within the joint and periarticular tissues, were shown to

activate the NLRP3 inflammasome.17 NLRP3 has also been asso-

ciated with the pathogenesis of Alzheimer’s disease where fibrillar

amyloid-𝛽 deposits activate the NLRP3 inflammasome and drive Tau

pathology.18 Reversely, activation of inflammasome in microglia, and

particularly formation and release of ASC specks, was shown to pro-

mote the formation of amyloid-𝛽 deposits,19 highlighting a complex

amplification relationship between the NLRP3 inflammasome and

amyloid-𝛽 plaques formation.20 Furthermore, NLRP3 inflammasome

activation underlies numerous lung inflammatory diseases such

as chronic obstructive pulmonary disease (COPD), silicosis and

asbestosis.21 Thus, the NLRP3 inflammasome appears as a central

pathway during infection or inflammatory disease. It is of particular

importance to characterize the various mechanisms that regulate the

successive stages of NLRP3 inflammasome activation, and potentially

identify molecules to target specific aspects of its function. Recent

advances on this aspect have enabled the development of NLRP3-

targeting molecules, which are being tested for treatment of inflam-

matory diseases, especially in the context of abnormal activation of

NLRP3 in sterile, chronic inflammatory disease.12 There is great inter-

est in pharmacologic targeting of “unwanted” NLRP3 activity in the

context of chronic inflammatory diseases because of their impact on

the well-being of afflicted individuals and the associated healthcare

costs to society.

In this review, we discuss the different steps for activation of the

NLRP3 inflammasome, either canonical or noncanonical. We highlight

a complex regulation at different levels of NLRP3 inflammasome acti-

vation. From the very initial stimulation of NLRP3 by a wide variety

of stimuli to the many post-translational modifications that modulate

inflammasome assembly and activation, it appears that several aspects

of NLRP3 inflammasome biology remain to be clarified andmay reflect

the context of its activation.

2 ACTIVATION OF THE CANONICAL

NLRP3 INFLAMMASOME

Assembly of the NLRP3 inflammasome relies on homotypic inter-

actions between the N-terminal PYD domain of NLRP3 and the

PYD domain of the adaptor ASC, as well as between the respec-

tive CARD domains of ASC and pro-caspase-1. The resulting macro-

molecular complexes, which contain NLRP3, ASC, and caspase-1,

are visualized as ASC specks by microscopy, and they enable cat-

alytic inflammasome activity.6 Activation of the NLRP3 inflamma-

some requires two steps: (i) a priming step, which promotes the

expression of inflammasome components, and (ii) an activation step,

which is triggered by several types of molecules that specifically

activate NLRP3.

2.1 Priming of the NLRP3 inflammasome

The hallmark response of inflammasome activation includes the acti-

vation/proteolytic cleavage of caspase-1, secretion of the biologically

active cytokines IL-1𝛽 and IL-18, as well as induction of pyroptosis.

The requirement for priming prior to effective NLRP3 inflammasome

activation was revealed by the observation that phagocytes such as

macrophages do not directly activate the inflammasome in response

to treatment with NLRP3 inducers.22 However, treatment of phago-

cytes with PAMPs (such as LPS) prior to NLRP3 inducers, leads to a

robust inflammasome activation.22 Priming is triggered by different

extracellular signals such as PAMPs (TLRs ligands or NOD2 ligands

for instance) or cytokines (TNF-𝛼, IL-1𝛽 , IFN-I), and the activation of

their respective receptors that all converge on NF-𝜅B activation22,23

(Fig. 1). Furthermore, detection of damage-associated molecular pat-

terns (DAMPs)—or alarmins, such as double stranded DNA, mitochon-

drial DNA, ATP, reactive oxygen species (ROS), heme or uric acid

released by neighboring necrotic cells or damaged tissues—by var-

ious receptors also primes immune cells in noninfectious contexts,

notably via activation of NF-𝜅B pathway.24 It results in transcriptional

and translational induction of various innate immune effectors, among

which are the inflammasome sensors, including NLRP3, and the pro-

form of IL-1𝛽 , pro-IL-1𝛽 (Fig. 1). Priming by DAMPs underlies mecha-

nismsat theheart of sterile, chronic inflammatory syndromes involving

NLRP3. The levels of the adaptor ASC and the effector pro-caspase-1,
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F IGURE 1 Activation of the canonical NLRP3 inflammasome Activation of the NLRP3 inflammasome first requires the priming of NLRP3.
Activation of membrane TLR4 by LPS from Gram-negative bacteria, for instance, or detection of damage-associated molecular patterns (DAMPs)
result in downstream activation of NF-kB, which promotes the transcription of NLRP3. Specific activation of NLRP3 occurs mostly downstream
of K+ efflux, which can be generated by bacterial pore-forming toxins or ATP-induced activation of P2X7 purinergic receptor P2X7R, although
how NLRP3 is activated by reduction of intracellular K+ concentration remains unknown. Lysosomal or mitochondrial damage can also lead to
activation of NLRP3 via uncharacterized pathways. After sensing of these specific stimuli, the sensor NLRP3 assembles together with the adaptor
ASCand the effector pro-caspase-1, via homotypic interactions between theN-terminal pyrin domain (PYD) domain ofNLRP3and thePYDdomain
of ASC, as well as between the respective CARD domains of ASC and pro-caspase-1. The kinase NEK7 is required for assembly of the NLRP3
inflammasome as well. Assembly of the NLRP3 inflammasome leads to activation of caspase-1, which then cleaves the pro-forms of IL-1𝛽 and
IL-18, resulting in the secretion of biologically active cytokines, as well as Gasdermin D, resulting in pyroptosis via the formation of pores at the
plasmamembrane

common to all types of inflammasomes, are unchanged and sufficient

for efficient inflammasome activation.

2.2 Activation of the NLRP3 inflammasome: a wide

range of inducers

Once expressed in phagocytes, NLRP3 can be activated by a wide

variety of inducers, including microbes and microbial molecules (from

either bacterial, viral, or fungal origins, for instance bacterial RNA or

bacterialmuramyl dipeptide), DAMPs (for instanceATPor uric acid), as

well as pore-forming toxins, ionophores (such as Nigericin) or crystals

(e.g., Hemozoin).15,22,25-30

The diversity of thesemolecules likely excludes the ability ofNLRP3

to interact with and directly detect each of them, and rather suggests

that NLRP3would sense and respond to one—or a limited number of—

common cellular component(s) or event(s). Several mechanisms have

been proposed to activate NLRP3:

• Potassium K+ efflux: The role of K+ efflux from cytosol to the extra-

cellular medium is the most largely accepted mechanism for NLRP3

activation, and also seems to be associated with other types of

NLRP3 triggers such as lysosomal leakage or Ca2+ signaling. Sev-

eral NLRP3 inducers such as ATP and Nigericin lower the cytosolic

concentration of K+ as a trigger for NLRP3 activation.31,32 Consis-

tently, high cytoplasmic concentrations of K+ specifically inhibit the

NLRP3 inflammasome but not the other inflammasomes.33,34 The

membrane purinergic receptor P2X7R that senses extracellular ATP

was notably shown to induce aK+ efflux responsible forNLRP3 acti-

vation, which is proposed as the mechanism for ATP-induced acti-

vation ofNLRP3.33 However, howK+ efflux is sensed byNLRP3, and
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564 MORETTI AND BLANDER

allows assembly and activation of theNLRP3 inflammasome, has not

been determined (Fig. 1).

• Ca2+ signaling, potentially by inducing NLRP3 complex formation

or by causing mitochondrial dysfunction and successive NLRP3

activation.35,36

• Translocation of NLRP3 to mitochondria via remodeling of micro-

tubules network, enabling interaction of NLRP3 with mitochondrial

ASC and inflammasome assembly.37-39

• Mitochondrial damage and dysfunction, which releases both mito-

chondrial DNA (mtDNA) and reactive oxygen species (mtROS) that

were shown to activate NLRP3.39-42

• Leakage of lysosomes, notably in response to large particu-

late activators, which results in the release of cathepsins that

activate NLRP3.43

However, these processes do not occur in response to all NLRP3

inducers, and contradictory findings show that their involvement is still

a matter of debate.33,36,44,45

Upon stimulation, notably in response to K+ efflux, the sen-

sor NLRP3 indeed undergoes a conformational change that enable

its oligomerization via the self-oligomerization NACHT domain. The

NLRP3oligomers then recruit the adaptorASC,which also polymerize,

and the effector caspase-1, forming the characteristic inflammasome

macromolecular complex.46,47 Assembly of the NLRP3 inflammasome

was also shown to require the kinase NEK7 (NIMA-related kinase 7).

NEK7 binds to NLRP3 upon activation, and is essential for NLRP3

and subsequent ASC oligomerization and activation of caspase-1 cat-

alytic activity.48-50 Of note, NLRP3 exhibits an ATP-binding and ATP-

hydrolysis motif within its NACHT domain, called Walker B, which is

required for NLRP3 inflammasome activity.51 Recent studies have fur-

ther characterized that MCC950, a common inhibitor of NLRP3, binds

to theWalkerBmotif, preventsATPbinding andhydrolysis, resulting in

the inability of NLRP3 to gain an active conformation.52,53 Besides its

assembly, the regulation of NLRP3 inflammasome activity remains an

intriguing question as well.

Beyond the various inducers of NLRP3, it has been recently shown

that the NLRP3 inflammasome is connected to cell death pathways.

Notably, the protein fas-associated proteinwith death domain (FADD),

the key adaptor for the death receptors of the TNF-receptor family,

was shown to activate the NLRP3 inflammasome in a process involv-

ing the apoptotic protein caspase-8, both at the priming and activa-

tion steps.54 Alternatively to apoptosis, caspase-8 can serve as a scaf-

fold to recruit the protein kinase RIPK3 and drive MLKL-dependent

necroptosis,55 a pathway that was also shown to activate NLRP3

inflammasome downstream of TLR.56 Importantly, in human mono-

cytes, FADD and caspase-8 were also identified as activators of a so-

called alternative K+ efflux-insensitive NLRP3 inflammasome, down-

stream of TLR4-TRIF-RIPK1 signaling axis.57 In contexts where both

necroptosis and apoptosis are impaired in intestinal epithelial cells,

recent studies have shown that caspase-8 participates in mediating

ASC oligomerization, in activation of the inflammasome, and in the

promotion of pyroptosis. Thus, caspase-8 is considered as a determi-

nant molecule that controls all three cell death pathways: apoptosis,

necroptosis and pyroptosis.58,59

3 ACTIVATION OF THE NONCANONICAL

NLRP3 INFLAMMASOME

Activation of the NLRP3 inflammasome can also be triggered by

distinct inflammatory caspases, murine caspase-11 and its human

orthologs caspase-4 and caspase-5. Caspase-11 was first identified

as an interactor of caspase-1, which promotes caspase-1 activation.60

Caspase-11 has been shown to induce pyroptosis, similarly but inde-

pendently of caspase-1, via cleavage of the pore-forming protein Gas-

dermin D.61-68 Caspase-11, caspase-4, and caspase-5 are not able to

cleave pro-IL-1𝛽 and pro-IL-18 and to release the biologically active

cytokines.69,70 Yet, caspase-11was shown tobe required for activation

of the NLRP3 inflammasome and release of IL-1𝛽 in response to sev-

eral Gram-negative bacteria, including Escherichia coli and Citrobacter

rodentium, highlighting a novel inflammasome pathway: the noncanon-

ical NLRP3 inflammasome.70

Unlike caspase-1, but similarly to the sensor NLRP3, the levels

of caspase-11 in phagocytes are low, and activation of caspase-11

requires a priming step. It depends on IFN-I signaling via its mem-

brane receptor IFNAR, which promotes expression of the pro-form

of caspase-11, pro-caspase-11. In this model, primary sensing of LPS

by TLR4 and subsequent TRIF-dependent expression and secretion of

IFN-I are required for caspase-11 priming71-73 (Fig. 2). Although com-

monly accepted, the role of IFN signaling in priming pro-caspase-11

expression has been a matter of debate since earlier work demon-

strated that levels of pro-caspase-11 after infection of macrophages

with Salmonella typhimuriumwere unaffected in the absence of IFNAR.

Yet, IFNAR signaling was still required for caspase-11 activation.69

Importantly, priming does not appear to be required in human mono-

cytes, where caspase-4 is constitutively expressed and can lead to

activation of the noncanonical NLRP3 inflammasome without fur-

ther induction.74 Besides priming of pro-caspase-11, IFN signaling

was also shown to promote the expression of an important family of

GTPases, guanylate binding proteins (GBPs), which are involved in the

destabilization of phagosomal membranes. Therefore, GBPs enable

the release of phagosomal contents, including LPS, a process required

for activation of caspase-11 and the noncanonical inflammasome by

Gram-negative bacteria.72,75

Activation of caspase-11 occurs in response to Gram-negative but

not Gram-positive bacteria, suggesting that LPS, not expressed by

Gram-positive bacteria, is important for noncanonical NLRP3 inflam-

masome activation. Several studies have indeed characterized the cru-

cial role of caspase-11 in sensing intracellular LPS that is delivered by

transfection or released during infection by virulent cytosol-invasive

Gram-negative bacteria.76,77 Pro-caspase-11 acts as a PRR for intra-

cellular LPS, of which the most conserved lipid A moiety binds to the

CARD domain of pro-caspase-11, initiates its oligomerization and pro-

motes proximity-induced activation of caspase-11 catalytic activity68
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F IGURE 2 Activation of the noncanonical NLRP3 inflammasomeActivation of the noncanonical NLRP3 inflammasome involves IFN-inducible
caspase-11. Induction of IFN-𝛽 expression by Gram-negative bacteria relies on activation of endosomal/phagosomal TLR4 and the signaling path-
way downstream of the adaptor TRIF. Secreted IFN-𝛽 then activates IFNAR, notably in an autocrine manner, which promotes expression of pro-
caspase-11 and additional IFN-inducible proteins such as GBPs. Caspase-11 is activated by direct binding of intracellular LPS, released from the
phagosomes, to the CARD domain of caspase-11. GBPs are recruited to the phagosome and participate in phagosomal lysis and release of LPS in
the cytoplasm. Active caspase-11 directly cleaves Gasdermin D to induce pyroptosis, and also leads to activation of the NLRP3 inflammasome via
uncharacterizedmechanisms

(Fig. 2). Importantly, LPS also binds to human caspase-4 and caspase-

5, but not to other inflammatory or apoptotic caspases.68 Thus, the

current paradigm stipulates that LPS is the unique and sufficient trig-

ger for caspase-11 activation, induction of pyroptosis viaGasderminD,

and subsequent activation of the noncanonical NLRP3 inflammasome

by Gram-negative bacteria (Fig. 2).

Besides LPS, several findings have identified additional bacterial

components involved in the activation of NLRP3 inflammasome.

Notably, only live but not dead Gram-negative bacteria, both of

which express LPS, can activate the NLRP3 inflammasome and

upon detection of the vita-PAMP bacterial RNA present in live and

lost from dead bacteria.30 The helicase DHX33 was later shown to

be involved in the recognition of bacterial RNA and activation of

NLRP3 inflammasome.78 Whether these molecules are involved in

the noncanonical NLRP3 inflammasome pathway remains unknown.

Furthermore, outer membrane vesicles (OMVs) produced by live

Gram-negative bacteria were shown to contain LPS and to be endo-

cytosed by phagocytes, thus delivering cytosolic LPS and resulting in

activation of caspase-11.79 Lastly, distinct mitochondrial electron

transport chain adaptations are initiated by bacterial RNA or live

bacteria80 and mediated by innate immune receptor-mediated

endosomal ROS production during bacterial infection.81 The result

is increased mitochondrial electron transport capacity80 and poten-

tially a byproduct of electron transport chain activity, mitochondrial

ROS that has been reported to be critical for NLRP3 inflammasome

activation in some contexts.81

The details of NLRP3 inflammasome activation by caspase-11

remain poorly defined. Caspase-11 can form a heterodimer with

caspase-1 and promote its activation,60,82 although the require-

ments for NLRP3 and ASC in this process have not been assessed.

Alternatively, caspase-11-dependent cleavage of Gasdermin D is

thought to be a prerequisite for activation of the NLRP3 inflam-

masome via the K+ efflux engendered by the plasma membrane

pores it generates.12,64 We could also hypothesize that a functional

interaction between caspase-11 and the NLRP3 inflammasome, and

perhaps involving additional partners, could promote noncanoni-

cal activation of the NLRP3 inflammasome and processing of IL-1𝛽

and IL-18.
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566 MORETTI AND BLANDER

4 REGULATION OF THE NLRP3

INFLAMMASOME

4.1 Post-translational ubiquitination and

phosphorylation

Post-translational modifications of NLRP3, including phosphorylation

and ubiquitination, have emerged as essential regulators of NLRP3

inflammasome activation.

4.1.1 Ubiquitination: inhibition of the NLRP3

inflammasome?

Ubiquitination corresponds to the conjugation of ubiquitin moieties to

substrate proteins via isopeptidic linkage on internal lysine residues of

the substrate, a process catalyzed by a series of enzymes including E3

ubiquitin ligases.83 Proteins can be monoubiquitinated (a single ubiq-

uitin on a single lysine), multi-ubiquitinated (single ubiquitins on vari-

ous lysine residues scattered over the substrate), or polyubiquitinated

(ubiquitin chains on one or several lysine residues). Moreover, deu-

biquitinating enzymes (DUBs) counteract ubiquitination of proteins.

These various modifications constitute signals that can impart a large

panel of fates on a given protein including trafficking, modification of

interacting protein networks, activation/inhibition of enzymatic activ-

ity, change of subcellular localization, as well as proteasomal, lysoso-

mal, or autophagic degradation.

The first evidence for involvement of ubiquitination in NLRP3

inflammasome biology came from inhibition of deubiquitination in

macrophages with the isopeptidase inhibitor G5, where the NLPR3

inflammasome was inhibited without affecting the AIM2 and NLRC4

inflammasomes.84 The DUB BRCC3 was further shown to deubiq-

uitinate the LRR region of NLRP3 prior to NLRP3 assembly and

activation.84 These findings not only suggest that NLRP3 is ubiquiti-

nated via K63-linked polyubiquitin chains—which is the specificity of

BRCC3—but also indicate that NLRP3 ubiquitination can prevent its

activation.

Several E3 ubiquitin ligases have been identified in NLRP3 inflam-

masome inhibition. The E3 ligase TRIM31 was reported to interact

with NLRP3, promote NLRP3 polyubiquitination, and result in protea-

somal degradationofNLRP3.Of note, TRIM31expressionwas induced

by LPS priming concomitantly to NLRP3 expression, suggesting that

ubiquitination by TRIM31 could act as a fine-tuning inhibitory mech-

anism to prevent hyperactivation of the NLRP3 inflammasome, hyper-

inflammation and pyroptotic cell death.85 Additional E3 ligases, such

as MARCH7,86 F-Box L2 (FBXL2),87 or Ariadne homolog 2 (ARIH2),88

inhibit NLRP3 via a similar process of polyubiquitination and protea-

somal degradation of NLRP3. In contrast, ubiquitination of NLRP3

by the E3 ligase Pellino2, which catalyzes K63-linked polyubiquitina-

tion, promotes NLRP3 inflammasome activation,88 although the exact

mechanisms by which this ubiquitination activates the NLRP3 inflam-

masome remain unclear. Besides activation of NLRP3, ubiquitination

was also shown to be involved in the regulation of NLRP3 priming. For

instance, the DUB A20 was shown to inhibit NLRP3 by preventing its

expression, presumably via its well-characterized inhibitory effect on

the NF-𝜅B pathway89,90 (Fig. 3A).

NLRP3 is not the only component of the inflammasome targeted by

ubiquitination. TheadaptorASCcanalsobepolyubiquitinatedviaK63-

linked ubiquitin chains. This K63 polyubiquitination can be induced

by NLRP3 or AIM2 inducers, and was initially shown to target ASC

for autophagic degradation resulting in inflammasome inhibition.91 It

also highlighted the reverse correlation between inflammasome activ-

ity and autophagy induction.91 In contrast, K63 polyubiquitination of

ASC can be catalyzed by the E3 ubiquitin ligase TRAF3 in response

to vesicular stomatitis virus (VSV) infection—known to induce NLRP3

inflammasome—and promotes inflammasome activation and produc-

tion of IL-1𝛽 .92 ASC is also subjected to linear polyubiquitination by

the linear ubiquitin chain assembly complex, LUBAC, which enhances

NLRP3 inflammasome activity93 (Fig. 3A).

Furthermore, pro-IL-1𝛽 was also shown to be ubiquitinated on

lysine K133, and deubiquitination of pro-IL-1𝛽 by A20 was shown to

repress activity of the NLRP3 inflammasome.94 Thus, ubiquitination

of pro-IL-1𝛽 supports NLRP3 inflammasome assembly and activity,

whereas its deubiquitination by A20 prevents excessive activation of

the inflammasome.Notably,mature IL-1𝛽 is notubiquitinated, suggest-

ing that an additional deubiquitination step is also involved during the

processing of pro-IL-1𝛽 by the inflammasome.

4.1.2 Phosphorylation in regulation of the NLRP3

inflammasome

Comparable to ubiquitination and deubiquitination, phosphorylation,

and dephosphorylation of proteins can havemultiple consequences on

the fate of proteins, and the two types of post-translational modifica-

tions are often linked.95 NLRP3 is a substrate for the kinase protein

kinase A, which binds and phosphorylates NLRP3 within the NACHT

domain,more precisely on Serine 291 (or Serine 295 in humanNLRP3).

This phosphorylation was shown to promote ubiquitination of NLRP3,

via both K48 and K63-linked ubiquitin chains, subsequent degrada-

tion of NLRP3 by the proteasome, and therefore inhibition of the

NLRP3 inflammasome.96-98 Interestingly, the same residue of NLRP3

can also be phosphorylated by the Golgi-associated kinase protein

kinase D. In this case, phosphorylation promotes NLRP3 assembly and

activation,99 showing the complexity of NLRP3 regulation by phos-

phorylation, which may depend on interacting partners or subcellular

localization of NLRP3. Similarly, phosphorylation of NLRP3 on another

Serine residue, Serine 194, also promotes activation of the NLRP3

inflammasome. This phosphorylation is catalyzed by the kinase JUN

N-terminal kinase (JNK) and occurs during the priming step prior to

inflammasome assembly and activation.100

Another Serine residue of NLRP3, Serine 5 within the PYD domain,

is modified by phosphorylation and dephosphorylation. Whereas

the phosphatase 2A dephosphorylates Serine 5 of NLRP3, a phos-

phomimetic residue abrogates NLPR3 inflammasome activation by

impairing NLRP3—ASC interaction,101 demonstrating a critical bal-

ance betweenNLRP3 phosphorylation and dephosphorylation.
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Besides Serine phosphorylation, NLRP3 can undergo Tyrosine

phosphorylation and dephosphorylation as evidenced by the interac-

tion of NLRP3 with the phosphatase protein tyrosine phosphatase

nonreceptor 22 (PTPN22), which dephosphorylates Tyrosine 861

of NLRP3 and promotes activation of the NLRP3 inflammasome102

(Fig. 3A).

Phosphorylation also targets the adaptor ASC in response to sev-

eral stimuli including NLRP3 inducers. The kinases spleen tyrosine

kinase (SYK) and JNKphosphorylate several residueswithin theCARD

domain of ASC, events which are required for the processing of

caspase-1103,104 (Fig. 3A).

Studies have revealed many ubiquitination and phosphorylation

related processes that target NLRP3 and ASC, and therefore mod-

ulate activation of the NLRP3 inflammasome. Such a diversity may

result from the different contexts in which experimentation was

performed, and may depend on the type of immune cells studied,

the stimulus used, or the stage of NLRP3 activation considered. As

such, the abundance of post-translational modifications highlights

the importance of the NLRP3 inflammasome pathway, which must

be fine-tuned to ensure proper and efficient function and avoid

deleterious dysfunction.

4.2 Regulation by subcellular localization

Activation of inflammasomes relies on the assembly of three differ-

ent proteins via homodomain interactions, and presumes that all three

molecules colocalize at least momentarily during the process of acti-

vation. Recent studies have highlighted the regulation of subcellular

localization of these molecules as an important parameter that facili-

tates inflammasome assembly and activation.

In the absence of activation, NLRP3 was shown to be cyto-

plasmic but also associated with the endoplasmic reticulum (ER).39

After stimulation, NLRP3 was proposed to relocalize to mitochondria,

where it may functionally interact with the mitochondria-associated

PRR mitochondrial antiviral-signaling protein (MAVS). In that case,

both MAVS and subcellular relocalization were required for NLRP3

inflammasome activation.37-39 Changes in subcellular localization

may depend on microtubule-mediated transport of mitochondria to

the ER, a process that specifically regulates the NLRP3 but not

AIM2 or NLRC4 inflammasomes.37 Yet, whether NLRP3 is recruited

specifically to mitochondria via protein-protein interaction has not

been characterized.

Besides translocation to the mitochondria, NLRP3 has been shown

to relocate to the Golgi apparatus where it interacts with two pro-

teins involved in cholesterol biosynthesis: SREBP2 (sterol regula-

tory element-binding protein 2) and SCAP (SREB cleavage-activating

protein).105 This localized tripartite interaction is required for both

activation of NLRP3 inflammasome and cholesterol synthesis via mat-

uration of SREBP2.

Stimulation of NLRP3 has also been shown to disrupt the trans-

Golgi network (TGN) and result in the relocalization of NLRP3

to the dispersed TGN.106 Recruitment of NLRP3 to the dispersed

TGNdepends on ionic bonding with phosphatidylinositol-4-phosphate

(PtdIns4P), and is required for assembly and activation of the NLRP3

inflammasome. Thus, subcellular localization of NLRP3 has emerged

as a crucial parameter to regulate activation of the NLRP3 inflamma-

some. Several different subcellular sitesmay be involved depending on

the stimulus that engagesNLRP3 (Fig. 3B). Subcellular localization as a

mode of regulation may also be involved in noncanonical NLRP3 acti-

vation by caspase-11.

Localization of the adaptor ASC may also be of importance. ASC is

localized to the cytosol but also to the nucleus at steady state, and can

be associated with the ER.107 Upon inflammasome activation, ASC is

observed in characteristic cytosolic ASC specks, which correspond to

the oligomerized and assembled inflammasomes.108 It is presently not

knownwhether ASC colocalizeswith inflammasome sensors, including

NLRP3, in various subcellular sites andhowthis relates to theassembly

and localization of ASC specks.

5 CONCLUSION

Although the outcomes of NLRP3 inflammasome activation are well

characterized, the processes involved in its activation and regula-

tion provoke debate and are under intense study. Many regula-

tory mechanisms of the NLRP3 inflammasome have recently been

identified including post-translational modifications and subcellular

relocalization of inflammasome components. Such a variety and lay-

ering of regulators demonstrate the requirement for precise con-

trol of the NLRP3 inflammasome. The NLRP3 inflammasome must

be efficiently activated to cope with the microbial threat and pre-

vent propagation of the infection, but activation must be controlled

to prevent hyperinflammation and deleterious consequences for the

host organism.
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