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Chimeric antigen receptor (CAR)-T-cell therapy is a promising anticancer

treatment that exploits the host’s immune system to fight cancer. CAR-T cell

therapy relies on immune cells being modified to express an artificial receptor

targeting cancer-specific markers, and infused into the patients where they

will recognize and eliminate the tumour. Although CAR-T cell therapy has

produced encouraging outcomes in patients with haematologic malignancies,

solid tumours remain challenging to treat, mainly due to the lack of cancer-

specific molecular targets and the hostile, often immunosuppressive, tumour

microenvironment. CAR-T cell therapy also depends on the quality of the

injected product, which is closely connected to CAR design. Here, we explain

the technology of CAR-Ts, focusing on the composition of CARs, their appli-

cation, and limitations in cancer therapy, as well as on the current strategies

to overcome the challenges encountered. We also address potential future tar-

gets to overcome the flaws of CAR-T cell technology in the treatment of can-

cer, emphasizing glycan antigens, the aberrant forms of which attain high

tumour-specific expression, as promising targets for CAR-T cell therapy.
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glycans; glycosylation; tumour therapy

Despite all efforts made to better understand the

molecular and cellular basis of tumour progression

and, consequently, to develop more effective treat-

ments, cancer continues to have a major impact on the

society worldwide, remaining one of the leading causes

of death. In 2020, according to the World Health

Organization (WHO) estimates, more than 19 million

cases of cancer were diagnosed, and close to 10 million

deaths were attributed to cancer [1]. The high

incidence and mortality rates associated with cancer

are mainly due to resistance of advanced disease to

conventional cancer treatments, such as chemotherapy,

radiotherapy and surgical resection.

Immunotherapy, which consists in the exploitation of

the patient’s own immune system to fight cancer, has

recently emerged as the fourth pillar of cancer treat-

ment, mainly due to the introduction of immune

check point inhibitors. However, a more sophisticated
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cell-based immunotherapy is now producing unpre-

ceded results. This strategy consists in the modification

of effector immune cells such as T or natural killer

(NK) cells, thanks to the improvements in the field of

biotechnology and immune cell manipulation over the

past decades [2–4]. The principle of cell-based

immunotherapy relies on the manipulation and subse-

quent infusion of immune cells into the patient. In most

cases, such cells are isolated from the same patient (au-

tologous), but can also come from a donor as primary

material (allogeneic) or as a cell line (e.g. NK-92). Their

tumour-targeting efficiency is increased by means of

ex vivo genetic modification.

Within the repertoire of immunotherapeutic

approaches against cancer, this review will focus on

the adoptive cell transfer (ACT) method, which con-

sists in the transfer of immune cells previously modi-

fied to express receptors that recognize specific

markers presented by cancer cells so as to trigger a

specific and effective anticancer immune response

(Fig. 1) [5]. Due to their central role in cell-mediated

immune response, T lymphocytes, also called T cells,

are the cells of choice for genetic manipulations aiming

at cancer treatment, such as the introduction of a ther-

apeutic T-cell receptor (TCR) [6] or a chimeric antigen

receptor (CAR) (Box 1). Both TCRs and CARs are

transmembrane proteins that bind their cognate targets

through their extracellular domain and bear signal

transduction capacities that trigger the cytotoxic func-

tions of host effector T cells [7–9]. Thus, these recep-

tors have to be highly specific to distinguish malignant

versus healthy cells and sensitive enough to activate

cytotoxic signalling pathways upon engagement with a

cell surface antigen displayed by a target cell. The

main difference between engineered TCRs and CARs

relates to their mode of recognition: CARs can only

recognize surface antigens, whereas TCR binding relies

on the presentation of a peptide on the major histo-

compatibility complex (MHC), which involves molecu-

lar compatibility between patient and donor. However,

Fig. 1. Principle of adoptive cell therpy (ACT). Peripheral blood lymphocytes are collected and isolated from the patient, a procedure known

as leukapheresis (1). The T cells are subsequently transduced with an expression vector, typically of viral aetiology, such as gamma

retroviruses or lentiviruses, to introduce the chimeric antigen receptor (CAR) of interest (2). After a period of in vitro expansion and

activation of the engineered cells (3), the resulting CAR-T cells are infused into the patient (4). This product is expected to recognize the

target antigens expressed at the surface of cancer cells and initiate a cascade of events that will trigger tumour cell killing (5).
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TCR-specific peptides can be derived from any cellular

protein, which greatly increases the spectrum of recog-

nition [10].

The potential of CAR-Ts as an effective cancer

therapy has been robustly demonstrated for liquid

tumours. For instance, high remission rates in acute

lymphoid leukaemia (ALL) [11] and non-Hodgkin

lymphoma (NHL) patients [12] were reported when

the B-cell marker CD19 was targeted by a specific

CAR [13]. Nevertheless, regardless of the ground-

breaking and encouraging clinical performance of the

anti-CD19 CAR in the treatment of haematological

malignancies, it has been challenging to develop such

an efficient and safe genetically modified T-cell

immunotherapy for solid tumours and other types of

liquid tumours, such as acute myeloid leukaemia

(AML) and multiple myeloma (MM). The main dif-

ficulties encountered are the lack of cancer-specific

cell surface markers and the immunosuppressive nat-

ure of the tumour microenvironment [7,14]. With

this in mind, and despite all the progress towards

the understanding of tumour immunology and of the

factors determining the safety and efficacy of these

therapies, the discovery of cancer-specific antigen cell

surface targets is imperative for the generation of

promising new immune cell therapies against cancer.

Glycoconjugates, a complex and abundant group of

carbohydrate-based biomolecules displayed by all liv-

ing organisms, constitute major and promising molecu-

lar targets in cancer therapy. The biosynthesis of

glycan chains and their attachment to target molecules,

known as glycosylation, constitutes a tightly regulated

cellular process. Glycans can be attached to different

types of macromolecules, such as proteins and lipids,

giving rise to the glycoconjugates that densely decorate

every cellular surface [15]. In cancer context, genetic

and epigenetic mechanisms can lead to major alter-

ations in the cellular glycosylation profile, or glycome,

originating the so-called cancer-associated carbohy-

drate antigens. Common modifications include the

expression of short-truncated O-glycans and the

increased expression of sialylated and fucosylated ter-

minal glycan structures that are frequently associated

with tumour development and progression [16]. The

aberrant tumour cell surface glycan repertoire (gly-

come) constitutes a promising source of molecular can-

didates for the development of novel CAR

formulations, as illustrated by the development of sev-

eral highly specific glycan-directed monoclonal anti-

bodies (mAbs). However, the pre-clinical and clinical

application of glycan-directed CAR-T cells remains

largely unexplored.

The present review will thoroughly discuss the CAR

structure, design and application in cancer therapy.

We will also discuss underexplored yet promising

molecular targets, with particular emphasis on glycan-

based antigens, which might help overcoming the tech-

nical and clinical shortcomings of CAR technology in

the cancer treatment.

CAR basic concepts

A CAR construct was first described 30 years ago

when Kuwana and colleagues associated the antigen

recognition domain of an antibody to the constant

regions of a TCR while exploring the signalling

machinery required for T-cell activation [17]. Since

then, although the structure and composition of a

CAR’s cytoplasmic domain has evolved, the overall

configuration has remained largely the same.

Briefly, CARs are synthetic receptors with pre-

specified properties resulting from the combination of

different functional subdomains. These receptors are

typically composed of four regions: an extracellular

antigen-binding domain, an extracellular hinge region,

a transmembrane domain (TMD), and an intracellular

signalling module (Fig. 2). Due to their design, CARs

provide the ability to detect pre-defined antigens with

a high degree of specificity and trigger the effector

functions found in natural immune cells [7–9].
Each of the regions that make up a CAR construct

confers different capabilities to the receptor, influenc-

ing not only its expression and stability, but also the

avidity of ligand–receptor interactions and, conse-

quently, the downstream cell signalling and effector

cell’s response [9]. Below, we explore the composition

of these receptors and illustrate how subtle alterations

in their composition deeply impact the function and

clinical efficacy of the CAR-T cells.

Extracellular antigen-binding domain of CARs

In a classical design, the ectodomain of a CAR is the

region that dictates its specificity. Most of CAR’s ecto-

domain compositions tested nowadays have been

designed from mAbs’ single-chain variable fragments

(scFvs), although peptides, nanobodies and ectodo-

mains of specific proteins have also been exploited

[18]. scFvs are ideal targeting tools in the sense that

they are small, single-chained and are supposed to

conserve the affinity and the specificity of the antibody

they were built from (Fig. 2). These variable regions

consist of two chains – heavy (VH) and light (VL) –
connected via a flexible linker sequence [8,9,19].
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The orientation (VL or VH first) and the size of the lin-

ker have also been shown to impact the CAR potency

[20]. Importantly, not all scFvs retain their ability to

bind their cognate epitopes as seen in the original anti-

body, which can be explained by an ineffective cell sur-

face expression, loss of binding specificity or even due

to protein aggregation via Fv fragments [9,21].

The extracellular antigen-binding domain of these

engineered receptors has already been vastly studied

and, thus, several studies have reported its contribu-

tion to overall CAR performance. In 2011, Chmie-

lewski and colleagues showed that the amount of

antigen and the CAR’s target binding affinity are deci-

sive elements for the successful activation of CAR-T

cells, and further demonstrated that the cytolytic effi-

cacy was not considerably affected by the addition of

co-stimulatory modules to the receptor’s intracytoplas-

mic domain [22]. Later, Liu et al. have developed dif-

ferent CAR constructs with scFvs with variable

affinities against ErbB2, revealing that a CAR’s scFv

depicting greater affinity does not necessarily reflect

improved therapeutic efficacy, and could even be more

harmful to the patients compared to a CAR with a

binding domain bearing reduced target affinity [23].

These two examples reflect the enormous importance

of an appropriate choice of the antigen-binding

domain when performing rational CAR design.

Hinge region of CARs

In addition to the antigen-binding region that defines

a CAR’s specificity, these receptors also display in

Fig. 2. Schematic diagram of the five different generations of CAR-T cells. A CAR construct is typically composed of four regions – an

extracellular antigen-binding domain, commonly a single-chain variable fragment (scFv) fragment composed of variable light (VL) and heavy

(VH) chains connected via a flexible linker sequence, an extracellular hinge region, a transmembrane domain (TMD) that anchors the CAR to

the cell membrane and an intracellular signalling module. CARs can be classified according to the complexity of their endodomain, being

grouped into five different generations. First-generation CARs present a single activation signalling motif, typically derived from a CD3-f

chain. Second- and third-generation CARs include one or two co-stimulatory domains (CSDs), respectively, such as CD28, 4-1BB (CD137) or

OX40 (CD134). The fourth-generation CARs, based on second-generation CARs, contain a constitutive or inducible expression cassette,

leading to the transcription of a protein, such as IL-12. Fifth-generation CARs, also based on second-generation CARs, present intracellular

domains of cytokine receptors, such as the IL-2 receptor b-chain (IL-2Rb) chain fragment, with a STAT3/5 binding motif.
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their extracellular domain the so-called hinge or

spacer region. The hinge region of a CAR is often

adapted from spacer regions found in natural recep-

tors, such as IgG, CD28 and CD8a [24]. As the name

implies, the spacer region represents a connecting

sequence between the ecto- and TMDs, and impacts a

CAR’s function by defining important structural prop-

erties, such as receptor’s length, flexibility and even

membrane stability [8,9]. Of note, the hinge length can

be connected to the position of the epitope on the tar-

get protein, as suggested for CD22 [25]. Consequently,

the design of this region should be wisely considered

when developing a CAR.

A previous study has evaluated different scFvs tar-

geting distinctive antigens, with and without spacer

regions [26]. This work showed that, depending on the

target epitope, the presence or absence of the connect-

ing sequence could or could not be, respectively, bene-

ficial for the binding efficiency, by determining the

epitope’s distance to the CAR-T cell’s membrane [26].

A recent study with an anti-CD37 CAR has further

demonstrated how the size of the hinge can impact not

only the target recognition, but also the CAR activa-

tion. Here, the authors showed that a certain length

(and composition) of the hinge could improve both

these issues [27]. Unfortunately, no universal model of

hinge region has been proposed and each new CAR

should ideally be tested with a panel of distinct spacer

candidates.

Transmembrane domain of CARs

The TMD of a CAR construct, usually adapted

from common immune cell receptors such as CD3-f,
CD4, CD8 or CD28, is responsible for anchoring

the CAR to the cell membrane, and connecting the

hinge region to the CAR’s cytoplasmic domain [8].

Recently, a study aiming to understand the impact

of this domain in the activity of the CAR-T cell devel-

oped CAR constructs with different TMD regions.

This work demonstrated that the TMD has a signifi-

cant impact on the CAR surface expression levels and

stability [20]. An additional study has generated anti-

CD19 CAR-T cells with distinct TMD to further com-

prehend their role in CAR-T cell activation. The

results showed that CARs containing a CD28-derived

TMD have the ability to establish heterodimers, as

opposed to CD8-derived TMD, which lack such

capacity. These results support that the TMD of a

CAR is crucial for receptor dimerization and conse-

quent modulation of the response of host effector T

cells [28].

Cytoplasmic region of CARs

The cytoplasmic domain of a CAR, or the signal

transduction region, is responsible for the triggering of

T-cell activation, and further steers the direction and

regulates the intensity of the effector T cell’s cytotoxic

response. In general, upon antigen binding to the

extracellular domain, T-cell activation occurs via the

phosphorylation of immunoreceptor tyrosine-based

activation motifs (ITAMs) present in the cytoplasmic

CD3-f domain, which is the activation domain most

commonly found in CARs [29,30].

The composition of the cytoplasmic domain can be

manipulated to enhance a CAR’s specificity, potency

and safety, giving rise to five different generations of

CARs (Fig. 2). First-generation CARs were character-

ized by a single activation cytoplasmic domain.

Second- and third-generation CARs contain one and

two co-stimulatory modules, respectively. Fourth-

generation CARs bear additional immunomodulatory

properties, by harbouring a cytoplasmic module that

sustains the release of transgenic cytokines. Fifth-

generation CARs exhibit improved anticancer cyto-

toxic properties, due to the addition of signalling

subdomains of cytokine receptors that activate cytokine-

dependent signalling pathways [31].

First-generation CARs display the most minimalist

composition and carry a single activation signalling

motif, typically derived from a CD3-f chain [29,30].

Although this primary signal region is sufficient to

activate T cells upon phosphorylation of ITAMs, and

consequently trigger an effective response against can-

cer cells, it is unable to induce complete tumour cell

eradication [32]. To enhance CAR-T cell efficacy

towards cancer cells by modulating the persistence,

proliferation and/or cytokine secretion capacities of

engineered T cells, the second-generation of CARs

emerged [9]. These receptors feature not only the CD3-f
primary signal region common to first-generation

CARs, but an additional co-stimulatory domain

(CSD), typically derived from the CD28, 4-1BB

(CD137) or OX40 (CD134) natural molecules [33,34].

Usually, CSDs are found near the cell membrane

where they are able to establish interactions with their

cognate signalling partners [9]. Currently, most of

chimeric receptors approved for clinical use are

second-generation CARs [35]. It is important to note

that different CSDs lead to an increase in T-cell activ-

ity through the activation of different mechanisms

[36], which should be carefully considered during

CAR design.

In order to further increase the potency of CAR-T

cell therapy, the third generation of CARs emerged
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from the combination of different CSDs. This type of

design takes advantage of the different signalling activ-

ities of distinct co-stimulatory molecules. However, it

might also impact the expressing cells by allowing a

robust tonic signal which will directly affect the clinical

outcome [9].

The fourth- and fifth-generation of CARs are both

based on the second-generation, but contain additional

intracellular domains that confer enhanced antitumour

properties to these receptors. The fourth-generation

CARs, owing to the presence of cytokine secretion

domains, are able to promote constitutive or inducible

expression of desired inflammatory cytokines, such as

the IL-12. T cells that are manipulated to express

fourth-generation CARs are denominated T cells redi-

rected for universal cytokine-mediated killing

(TRUCKs) and have been explored for the treatment

of several malignancies in pre-clinical models [37–39].
The CARs of fifth- and latest generation display a

truncated cytoplasmic IL-2 receptor b-chain domain

and a binding moiety for the transcription factor

STAT3/5. These receptors are advantageous as they

provide the three essential signals for a complete T-cell

response – CAR engagement, co-stimulatory and

cytokine-driven JAK-STAT3/5 signalling [40].

Although promising, this approach is still in its initial

stages of development and further studies need to be

performed to better understand its potential clinical

applications.

Overall, the four composing regions of a CAR con-

struct – the ectodomain, hinge region, TMD and cyto-

plasmic portion – are closely related and there is no

standard configuration applicable to all cases, always

requiring several pre-clinical tests in different models

to finely tailor the receptor’s specificity and efficacy.

A quick look at the CARs in the clinic

Given the versatility of CARs’ structural composition,

it is possible to redirect CAR-T cells to specifically tar-

get tumour-associated antigens and mount an effective

antitumour immune response, by improving the inef-

fective host antitumour immune activity and overcom-

ing the immunosuppressive tumour microenvironment.

In recent years, several clinical trials with CAR-T

cells have been conducted, most of them being directed

towards the treatment of haematological malignancies.

The greatest success recorded in the history of CAR-Ts

involves the CD19 antigen, a common marker of B

cells [13]. Since CD19 expression is restricted to B cells,

both normal and malignant, and their depletion can be

effectively achieved by administering intravenous anti-

CD19 immunoglobulins [41], this molecule represents a

safe therapeutic target. Various clinical trials using

anti-CD19 CARs were conducted and revealed impres-

sive remission rates in patients with different types of

haematological malignancies, including paediatric

refractory or relapsed ALL [11] and NHL [12]. In 2017,

following the demonstration of the antitumour efficacy

and the survival and persistence rates of anti-CD19

CAR-T cells in pre-clinical in vitro and in vivo assays

and several impressive results in phase I and II clinical

trials, the U.S. Food and Drug Administration (FDA)

approved Tisagenlecleucel (market name Kymriah�) as

the first CAR-T cell therapy [42]. From then until early

2021, two other CAR-T drugs against CD19 – Axicab-

tagene Ciloleucel (market name Yescarta�) and Brexu-

cabtagene Autoleucel (market name TecartusTM) – have

been granted FDA approval [43,44]. Despite the

encouraging results achieved with the CAR-T cell tech-

nology directed to the CD19 antigen, it is important to

mention that CAR-based T cell formulations exhibit

several drawbacks, including adverse and toxic clinical

effects caused by an uncontrolled cytokine secretion

occurring in excessive antitumour responses [45], as

well as tumour relapse due to CAR-T cell exhaustion

or the lack of antigen-presenting cancer cells [46].

Following the encouraging clinical performance of

the CAR-T cell technology in the treatment of liquid

malignancies, several efforts have been made to

achieve similar success against solid tumours. Numer-

ous clinical trials have interrogated the application of

this immunotherapeutic approach on solid tumours,

with the CAIX enzyme [47] and HER2 oncogenic

receptor [48] being some examples of the selected

molecular targets.

In an attempt to develop a CAR-T cell therapy

against HER2, a member of the epidermal growth fac-

tor receptor (EGFR) family overexpressed in many

human cancers [49–51], a CAR was developed based

on the clinically used anti-HER2 mAb trastuzumab.

After only a few hours, the treatment resulted in the

patient’s death probably due to the recognition of

residual HER2 in the patient’s lung tissues by the engi-

neered T cells [48]. Similarly to what happened with

the HER2-targeting CAR-T cells, a trial using T cells

targeting CAIX, an enzyme overexpressed in kidney

cancer, resulted in severe liver toxicity due to the low-

level expression of CAIX in the normal biliary tree

[47].

Despite extensive clinical evidence accounting for

the efficacy of the CAR-T cell technology for cancer

treatment, it is evident that serious issues remain. In

the light of this, the continuous search for safer and

more effective and personalized strategies is impera-

tive.
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Critical issues in CAR-T cell
technology for cancer therapy

There is a series of challenges with regard to the CAR-

T cell treatment efficiency, such as the persistence, sur-

vival and function of the T cells, as well as issues

related to inherent tumour heterogeneity, which com-

promises the therapeutic efficacy of such T cell-based

formulations.

The ACT strategy is a multistep process that

involves the collection of the immune cells and their

expansion and activation in vitro for long periods

before and after genetic engineering (Fig. 1) [19]. Con-

sequently, the ability of CAR-T cells to proliferate and

persist after their infusion into the patient is determi-

nant for therapeutic success. In fact, some studies have

shown that enhanced CAR-T cell persistence and sur-

vival actively promotes a better therapeutic response

[52,53].

Moreover, the infused T cells may lose their effector

functions as a result of T-cell exhaustion. This phe-

nomenon can be driven by different factors, such as

persistent antigen stimulation, which leads to T-cell

hyperactivation, the presence of certain CSDs and neg-

ative regulation by inhibitory receptors and immuno-

suppressive factors [54]. As previously mentioned, this

can also be reminiscent of a strong CAR-dependent

tonic signal.

The long-term efficiency of CAR-T cell-based treat-

ment can be compromised by the tumour cells once

they manage to downregulate or even lose all the

expression of the target antigen. In 2014, Maude and

colleagues reported that a group of patients who

received CAR-Ts targeting CD19 initially showed a

great response but subsequently relapsed due to the

presence of malignant B cells lacking CD19 expression

[13]. Similarly, a study reported that the treatment of

HER2-positive cells with the anti-HER2 mAb trastu-

zumab leads to the downregulation of the target mole-

cule and, as a resistance mechanism, the concurrent

overexpression of additional oncogenic receptors, such

as EGFR and MET [55]. The mechanisms by which

such dramatic loss of tumour antigens takes place

remain to be understood, but we envision that cancer

stem cells and tumour heterogeneity may play a role.

Regarding the safety of CAR-T cell technology, con-

cerns include the potentially dangerous side effects,

such as on-target off-tumour toxicity, and cytokine

release storms [7,8]. Regarding the former, the most

decisive factor for the success of the CAR-T cell ther-

apy is the target antigen recognized by the chimeric

receptor. Ideally, this target should be exclusively

expressed by the tumour cells to avoid immune

responses against non-malignant cells and tissues.

However, most of the times this cannot be achieved,

as the target antigen can also be residually expressed

by normal cells. The cytokine release storms, an

uncontrolled secretion of cytokines that results from a

rapid and intense CAR-T cell-derived response follow-

ing antigen binding, may result in severe inflammation

and morbidity [7,19]. Recent studies have shown that

the use of anti-IL-6 mAb tocilizumab can control the

secretion of cytokines, such as IL-6, without affecting

CAR-T cell efficacy [45]. Nonetheless, additional solu-

tions are warranted to circumvent the safety- and

toxicity-related obstacles challenging the clinical imple-

mentation of CAR-T cell technology.

Emerging improvements of CAR-T cell
therapy

Despite all the progress made in the field of protein

and CAR design, different types of toxicity are still a

major concern incontrovertibly linked to CAR-T cell

therapy, as discussed in the previous section. In this

sense, several approaches have been proposed to

improve the safety associated with CAR-based anti-

cancer therapies [56], such as the inclusion of suicide

genes within the receptors and the development of

advanced systems, including the dual and the switch-

able CAR systems [56].

One of such strategies relies on the incorporation of

inducible cell death-associated genes in CAR-T cells,

as is the case of caspase 9. These caspase-based sys-

tems are engineered to express a binding protein

domain that dimerizes when activated by a chemical

inducer of dimerization, such as the AP1903 synthetic

drug and, consequently, to induce T-cell apoptosis. In

this way, when the mounted antitumour response

becomes excessive, it becomes possible to eliminate the

reactive T cells, at the expense of reducing CAR-T cell

efficiency [57–59].
To minimize the off-tumour toxicity associated with

several CAR-T cell therapies, dual CAR systems have

been developed. The concept of this approach relies on

the design of a CAR construct with two different

extracellular domains with specificity against distinc-

tive antigens that need to be simultaneously expressed

by the tumour cells. These extracellular domains are

associated with different signalling regions, an activa-

tion domain and a CSD [60–63]. Ideally, CAR-T cells

displaying such constructs will only produce a strong

antitumour response when bound to cells that express

both antigens. Although this system has already been

implemented, residual signalling through the binding

of only one antigen was still observed, generating
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enough CAR-T cell activity and, consequently, off-

target damage [60,62].

Another way to prevent unwanted CAR-mediated

signalling is the use of the so-called switchable CARs.

This system consists of using an exogenous signal,

such as a small molecule, to control the activation and

antigen specificity of the CAR-T cells. Wu and col-

leagues have incorporated a switch that activates the

T cell when triggered by both said molecule and the

target antigen expressed by the tumour cells [64].

Using this positive regulation system, it is possible to

control the potency of the CAR-T cells by tightly con-

trolling the signalling molecule dosages.

The need for cancer-specific antigens

The ideal target for a CAR-T cell would be a molecule

specifically expressed at the cellular surface of neoplastic

cells, and essential for cancer development and progres-

sion. Although there is a vast list of candidates, few

antigens meet the requirements for a successful CAR-T

cell therapy, especially in the solid tumour setting.

The identification of such molecular targets with suffi-

cient cancer-specific expression, although proven rather

challenging, would represent an extraordinary advance

in the field of CARs. These required characteristics of

the molecular target open a window of opportunity for

the development of CAR-T cells targeting cancer-

associated glycan antigens (Box 2) [65].

Aberrant glycosylation, an ubiquitous and funda-

mental molecular hallmark of both liquid and solid

tumours, leads to the emergence of a dense array of

cancer-specific glycan antigens that are mainly

restricted to the plasma membrane of cancer cells

[16,66,67]. Altered glycan expression has been

described in cancer for decades and has been applied

in the clinical setting for prognostic and disease moni-

toring purposes [16,68]. Genetic and epigenetic alter-

ations occurring in cancer lead to changes in the

expression of glycosyltransferases [69]. These enzymes

control the biosynthesis of glycans, leading to an aber-

rant expression of specific carbohydrate structures

in cancer cells that are absent or show neglectable

expression in healthy tissues (Fig. 3) [66,67,69].

Fig. 3. Tumour-specific carbohydrate antigens are potential targets for CAR-T cells. Genetic and epigenetic alterations occur during the

development and progression of cancer, leading to the expression of the so-called cancer-associated carbohydrate antigens, which vastly

decorate the surface of cancer cells. These structures, namely, the truncated O-glycans Tn and sialyl Tn (STn), and both neutral and

sialylated Lewis antigens such as Lewis y (Ley) and sialyl Lewis x (SLex), have been used as targets for the development of CAR-T cells.

Aberrant glycan motifs comprising specific proteins and lipids, such as MUC1 modified with STn and highly sialylated GD2, respectively,

also represent promising cancer therapeutic targets.
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Oncogenesis-induced aberrant glycosylation can, there-

fore, generate a wide range of candidate epitopes,

exposed at the cell surface, eligible for the development

of highly specific CAR-based therapeutic strategies.

Several methodologies have been used to identify the

aberrant glycosylation occurring in cancer, including

the use of lectin/antibody-based detection of aberrant

glycans, as well as mass spectrometry-based glycomics

and glycoproteomics [70,71]. These cancer-specific

carbohydrate structures include the short-truncated

O-glycans Tn and sialyl Tn (STn) that arise from

incomplete O-glycan biosynthesis, and both neutral

and sialylated Lewis antigens such as Lewis y (Ley)

and sialyl Lewis x (SLex) [15,16]. In addition, aberrant

glycan motifs comprising specific peptidic sequences,

such as MUC1 glycopeptides modified with STn [16],

are also promising cancer targets.

The development of antiglycan antibodies with high

specificity is a challenging process. Recently, a study

has identified scFv variants with higher affinity for the

Tn epitope and broadly reactive towards a variety of

Tn-presenting glycoproteins, allowing the genetic mod-

ification of T cells with respective novel glycan-

directed CARs. These engineered T cells demonstrated

strong cytotoxic responses against both mouse and

human cancer cell lines defective in O-linked glycosyla-

tion [72].

In addition to the Tn epitope, the corresponding sia-

lylated glycan structure – the STn antigen – also repre-

sents an ideal candidate for CAR-T cell therapy. This

truncated O-glycan epitope depicts high tumour speci-

ficity and is associated with a variety of glycoproteins,

such as the tumour-associated glycoprotein TAG72,

commonly overexpressed by different cancer types.

Previous studies have reported that the anti-TAG72

CAR-T cells have the ability to selectively elicit a

potent cytotoxic response and to inhibit tumour

expansion in xenograft models [73]. However, clinical

studies showed a heterogeneous clearance rate of the

anti-TAG72 CAR-T cells and a challenging T-cell traf-

ficking to the TAG72-expressing metastatic sites [74].

Cell surface hypersialylation is a common feature of

tumour cells that actively supports the establishment

of an immunosuppressive microenvironment [15,75,76].

The membrane-expressing sialylated antigens support

cancer cell immune evasion through the establishment

of a multitude of inhibitory synapses with the sialic

acid-binding immunoglobulin-type lectins (siglecs),

which constitute transmembrane protein receptors

expressed at the cell surface of immune effector cells.

The incorporation of sialic acid-binding domains natu-

rally found on siglecs, such as siglec-7 and siglec-9, in

the structure of the CAR construct allows the resulting

genetically modified T cells to detect and eliminate the

cancer cells displaying cell surface sialoglycan antigens,

both in vitro against different cell lines and in vivo, in

a tumour xenograft model of melanoma [77].

CAR-Ts designed against gangliosides, a group of

sialylated glycosphingolipids, such as the case of the

GD2 di-sialoganglioside, have also been developed for

the treatment of neuroblastoma. In particular, a CAR

has been engineered in Epstein–Barr virus (EBV)-

specific cytotoxic T lymphocytes for improved

co-stimulation [52]. Such CAR-T cells have improved

survival rates compared to control cells lacking viral

specificity, and their injection led to significant tumour

regression and/or necrosis in half of the tested indi-

viduals. Furthermore, such CAR-T cells exhibited

prolonged low-level circulatory persistence, which was

robustly correlated with improved patient clinical

outcome [78]. Several phase I/II clinical trials are

underway to evaluate the therapeutic potential of

GD2-targeting late-generation CAR-T cells in the

treatment of various GD2-expressing solid tumours

(NCT03356782; NCT03635632; NCT04539366).

The Ley tetrasaccharide antigen, although depicting

residual expression in healthy tissues, has also been

considered a suitable target candidate for CAR-T cells

due to its aberrant overexpression on the surface of

cancer cells of the majority of epithelial-derived

tumours [79,80]. In fact, a previous study has reported

that T cells bearing a CAR against Ley have the ability

to proliferate and secrete cytokines in vitro and also

can lead to tumour growth inhibition when delivered

to xenograft mice models of ovarian cancer [81]. A

phase I clinical study exploring autologous anti-Ley

CAR-T cell therapy for the treatment of a small group

of patients with AML reported that two patients

achieved partial remission. In the subjects with the

most favourable clinical outcome, CAR-T cells traf-

ficking to the bone marrow were observed, with con-

comitant circulatory CAR-T cells persistence [82].

Currently, CAR-Ts targeting this di-fucosylated glycan

structure are under evaluation for the treatment of

Ley-positive solid and liquid tumours (e.g.

NCT03198052, NCT03851146).

MUC1 is a transmembrane glycoprotein overexpressed

in most carcinomas. In the cancer context, this mucin

is aberrantly glycosylated, enriched in Tn- and STn-

containing glycopeptides. Previous studies have devel-

oped antibodies that are directed to glycopeptide

epitopes, providing highly specific antibodies against

cancer-associated glycoforms [83]. Through the manip-

ulation of the previously developed 5E5 antibody

directed to a glycopeptide epitope [83], Posey and col-

leagues engineered a T cell with a CAR targeting the
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cancer-associated Tn and STn antigens bound to

MUC1. This novel CAR successfully demonstrated to

specifically bind to its cognate target in vitro and cap-

able of inhibiting tumour growth in xenograft models

of several cancers [84]. Due to its potential therapeutic

efficacy, the performance of CAR-T cells against this

abnormal MUC1 glycoform is currently being evaluated

in a series of clinical trials for the treatment of different

malignancies (e.g. NCT03525782, NCT03633773).

Glycoengineering strategies are being applied for the

optimization of CAR-T cell homing and tissue colo-

nization [85]. During inflammation, selectins are

expressed on endothelial cells and, through the interac-

tion with the tetrasaccharide SLex-containing glycopro-

teins expressed on circulating leucocytes, they promote

lymphocyte rolling, arrest and endothelial transmigra-

tion to an infection or inflammatory site [86]. Attempts

to mimic the process of vessel extravasation have been

applied to CAR-T cell therapy. In fact, in vitro manip-

ulation of CAR-T cells leading to the expression of

SLex, the E-selectin ligand, led to an increased infiltra-

tive capacity of CAR-Ts into bone marrow following

intravascular administration into mice [87].

Concluding remarks

Over the past few years, the field of CAR-Ts has

demonstrated substantial therapeutic potential, mainly

for the treatment of haematologic malignancies. How-

ever, there are still numerous challenges undermining

the effectiveness, safety and widespread clinical imple-

mentation of CAR-T technology for the treatment of

other tumour types, such as solid neoplasms. These

limitations could be attributed in part to the lack of

cancer-specific antigens. Indeed, most of the surface

antigen discovery platforms have focused on cancer-

related proteins. It is widely recognized that the glyco-

sylation profile of cancer cells is strongly affected

during tumour development and progression. There-

fore, the tumour cell surface glycome and glycopro-

teome arise as ideal, yet still poorly explored source of

tumour-specific target antigens. Although challenging

to produce, antibodies specific for these altered carbo-

hydrate groups should be developed and further con-

ceived as a potential novel class of innovative CAR

molecules.
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