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Maintenance of the proteome (proteostasis) is essential for cellular homeosta-

sis and prevents cytotoxic stress responses that arise from protein misfolding.

However, little is known about how different types of misfolded proteins

impact homeostasis, especially when protein degradation pathways are com-

promised. We examined the effects of misfolded protein expression on yeast

growth by characterizing a suite of substrates possessing the same

aggregation-prone domain but engaging different quality control pathways.

We discovered that treatment with a proteasome inhibitor was more toxic in

yeast expressing misfolded membrane proteins, and this growth defect was

mirrored in yeast lacking a proteasome-specific transcription factor, Rpn4p.

These results highlight weaknesses in the proteostasis network’s ability to

handle the stress arising from an accumulation of misfolded membrane

proteins.
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Proteins, including those destined for the cytoplasm or

secretory pathway, must fold into their native confor-

mations to support cellular health and homeostasis.

Maintaining the proper balance of folded proteins

within the cell is referred to as proteostasis [1].

Molecular chaperones facilitate protein folding and

refolding and maintain the solubility of non-native

proteins [2–4].
Nevertheless, protein misfolding is a common occur-

rence [5] and can result from environmental stressors,

errors in gene expression, or genetic mutations [6]. Mis-

folding can result in a loss-of-function phenotype, as is

the case with the cystic fibrosis transmembrane

conductance regulator (CFTR) [7], or a toxic gain-of-

function phenotype, as seen when misfolded proteins

accumulate in neurodegenerative diseases, including

Alzheimer’s, Parkinson’s, and Huntington’s [8,9], or

antitrypsin-associated liver disease [10]. Therefore,

eukaryotic cells evolved stress response pathways to pre-

serve homeostasis, including the unfolded protein

response (UPR) in the endoplasmic reticulum (ER), the

heat shock response (HSR) in the cytosol, and the

recently described proteasome stress response (PSR)

[11–15].
One mechanism by which the proteostasis network

(PN) maintains the proteome is by regulated protein
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degradation. Elimination of misfolded proteins is

accomplished by three main degradation pathways, the

ubiquitin proteasome system (UPS), protein sorting to

the vacuole/lysosome, and autophagy [16–18]. For

secretory proteins, such as select mutant forms of

CFTR, elimination occurs via ER-associated degrada-

tion (ERAD) [7,19,20]. Other misfolded secretory pro-

teins can be delivered through the Golgi for degradation

in the vacuole/lysosome [21–23]. Misfolded cytoplasmic

proteins can also be degraded by the UPS via a process

termed cytoplasmic quality control (CytoQC) [24–28].
Alternatively, misfolded cytoplasmic proteins can be

degraded by autophagy, as seen for select neurodegener-

ative disease-associated protein aggregates [29], and

ER-phagy is a specialized form of autophagy, which can

degrade fragments of the ER and disease-associated

misfolded proteins that accumulate in the ER [30–33].
Unfortunately, the PN—and especially the UPS—decli-

nes with age, which increases the toxicity from mis-

folded proteins that escape or overwhelm these

degradative pathways [34,35].

To define the relative contributions of select degra-

dation pathways on homeostasis, we asked whether

topologically distinct misfolded proteins differentially

impact yeast cell growth when proteasome activity is

reduced. We developed and employed a panel of mis-

folded proteins, all of which contain the identical mis-

folded domain, but that are targeted to the vacuole,

CytoQC, or ERAD. We demonstrate that the greatest

toxicity arises from integral membrane ERAD sub-

strates that accumulate when the proteasome is inhib-

ited. Similar effects were seen in yeast lacking a

transcription factor, Rpn4, which responds to an

increase in misfolded protein and activates proteasome

expression. Our data reveal a hierarchy of quality con-

trol pathways that overcome proteotoxicity arising

from compromised PN function.

Materials and methods

Yeast strains, plasmids, and plasmid

construction

Yeast were treated as described previously [36]. A complete

list of the Saccharomyces cerevisiae strains used in this

study is shown in Table S1. Strains expressing proteins

induced by b-estradiol under the control of the GAL1 pro-

moter were constructed as described [36].

Oligonucleotides and plasmids used in this study are

listed in Table S2. To drive expression using b-estradiol,
the GAL1 promoter from pCG163 was amplified using pri-

mers oCG336 and oCG337 (for NBD2*, Chimera A*,
Chimera N*, and Ste6p*), and oCG338 and oCG339 (for

SZ*). To generate the SZ* GAL1-regulated expression plas-

mid, the PCR product was subcloned into pRS416 TEF

SZ* [37] after first removing the TEF promoter using SacI

and XbaI, generating pCG217. For all other plasmids, the

PCR product was subcloned into the HindIII and XmaI

sites following removal of the PGK promoter, which gener-

ated pCG213, pCG214, pCG215, and pCG216. DNA

sequencing (Genewiz) was performed to confirm the desired

construct. Where indicated, protein expression was induced

by the addition of 300 nM b-estradiol.

Cycloheximide chase assays

Protein degradation was monitored using a cycloheximide

chase assay essentially as described [38]. In brief, yeast cells

expressing the indicated protein were grown overnight in

selective media to log phase, and a 1 mL aliquot of culture

was mixed with NaN3 to provide the 0-min time point.

Cycloheximide was then added to the remaining culture to

a final concentration of 200 µg�mL�1, the cultures were

incubated at 26 ⁰ or 37 ⁰C, as indicated, and an aliquot

was removed at each time point before cells were lysed [39].

Pelleted protein samples were incubated in sample buffer

plus fresh b-mercaptoethanol (final concentration of 5%),

the samples were incubated at 37⁰C for 30 min, and an ali-

quot was analyzed by SDS/PAGE and immunoblotting.

Antibodies used in this study were rat monoclonal anti-

HA-HRP high affinity (3F10; Roche Applied Science,

Penzberg, Germany) and rabbit anti-glucose-6-phosphate

dehydrogenase (A9521; Sigma-Aldrich, St. Louis, MO,

USA), and immunoblots were probed with anti-rabbit sec-

ondary antibody (Jackson ImmunoResearch, West Grove,

PA, USA) as a qualitative measure of equal protein load-

ing. Proteins were visualized with SuperSignal Chemilumi-

nescence (Thermo Fisher Scientific, Waltham, MA, USA),

images were taken using a Bio-Rad ChemiDoc XRS+
Imager (Bio-Rad Laboratories, Hercules, CA, USA), and

the results were quantified using ImageJ version 1.51 soft-

ware (National Institutes of Health). All images captured

for quantification were unsaturated to assure accurate band

intensity measurements. Western blots with low protein

signal were acquired using binning, which decreases the

final resolution of the images and sometimes produces a

grainy appearance. Statistical analysis was performed using

Student’s t-test and GRAPHPAD Prism 9 for Windows

(GraphPad, San Diego, CA, USA). Differences were con-

sidered statistically significant at P < 0.05 and were

indicated by an asterisk. In several cases, the standard error

bars are smaller than the symbols displayed on the graph

and were thus invisible.

Growth assays

The indicated strains were transformed with plasmids har-

boring the cDNAs to express the indicated proteins from
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either constitutive or GAL1-regulated promoters. Over-

night, cultures (in selective medium containing glucose)

were diluted to an OD600 of 0.2 into 96-well plates and

were treated with DMSO or 50 µM MG132. Where noted,

protein expression was induced by the addition of 300 nM

b-estradiol. Growth was monitored for 21–23 h at 37 ⁰C in

a Cytation 5 Multi-Mode Reader (BioTek, Winooski, VT,

USA), using double orbital shaking, and the OD600 was

measured every 30 min. Relative growth rates were deter-

mined after subtracting a media background and plotting

the OD600 over time. For growth curve analysis, one-way

ANOVA (GraphPad Prism 9.02) followed by Dunnett’s

post hoc test was performed using the recorded OD600 val-

ues to determine differences in growth compared with an

empty vector control. Differences were considered statisti-

cally significant at P < 0.05.

Results

Characterization of misfolded protein substrates

that utilize different protein degradation

pathways

We previously reported on several model misfolded

proteins that were based on the yeast ATP-binding

cassette (ABC) transporter, Sterile 6 (Ste6p) (Fig. 1A)

[40]. A Ste6p mutant containing a 42 amino acid trun-

cation in the second nucleotide-binding domain

(NBD2*) (Ste6p*; Fig. 1B) results in ER retention and

degradation by the UPS/ERAD [41–44]. Thus, to min-

imize secondary effects from the expression of distinct

misfolded protein domains, all of the model substrates

used in the current study contained this truncated

NBD from Ste6p* (Fig. 1B). They included a dual-

pass transmembrane protein fused to NBD2* oriented

toward the cytoplasm (Chimera A*), a single-pass

transmembrane protein depositing NBD2* in the ER

lumen (Chimera N*), a single-pass transmembrane

protein fused to NBD2* that localizes in the cytoplasm

(SZ*), and a soluble, that is, transmembrane-free, form

of the domain (NBD2*) (Fig. 1C-F) [37,38,45,46].
We reported previously that Chimera A*, SZ*, and

NBD2* rely on the cytoplasmic Hsp70, Ssa1p, for

maximal degradation [37,38,46], but the requirements

for the degradation of Chimera N* were not defined.

Chimera N* is unique among the substrates tested, as

inefficient insertion of TMH2 results in deposition of

NBD2* into the ER lumen [45]. Because the NBD2*
moiety in Chimera N* resides in the ER lumen, we

predicted that degradation would instead require the

ER lumenal Hsp70, Kar2p. As expected, Chimera N*
degradation was Ssa1p-independent (Fig. S1A), but

surprisingly, the substrate was modestly stabilized in

yeast harboring a KAR2 mutant (kar2-1), which we

previously showed is required for the degradation of

lumenal substrates (Fig. S1B) [47–49]. Because Hsp40s

ER

cyto

Chimera A*

Chimera N*

Ste6p

NBD2

NBD2*

SZ*

NBD2*

ER

cyto

ER

cyto

ER

cyto

ER

cyto

ER

cyto

(A)

(B)

(C)

(D)

(E)

(F)

Ste6p*

Fig. 1. Misfolded proteins that contain NBD2*, a truncated second

nucleotide-binding domain (NBD2) derived from Ste6p. The

topologies of (A) Ste6p and Ste6p*, (B) Chimera A*, (C) Chimera

N*, (D) SZ*, and (E) NBD2* are shown. Each substrate contains

the same truncated NBD2 domain. The red segment represents a

3X HA-tag.
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typically enhance Hsp70 activity but can also recognize

substrates directly [50–52], we next examined the

requirement for the ER lumenal Hsp40s, Scj1p, and

Jem1p, on Chimera N* turnover. As shown in

Fig. S1C, Chimera N* was stabilized to the same

degree in an scj1Δjem1Δ strain as in the kar2-1 strain,

consistent with the notion that these chaperones work

together to select Chimera N* for degradation. As the

NBD2* motif is deposited into the ER lumen in

Chimera N*, the protein also presents several

additional consensus sites for N-glycan modification to

the cellular glycosylation machinery. Indeed, we

showed previously that there appear to be four glyco-

sylation sites utilized, adding an additional 12 kDa to

the molecular mass [45]. For other glycosylated

substrates, degradation requires ER lumenal mannosi-

dases [53–56]. However, Chimera N* showed minimal

stabilization in a yos9D strain (Fig. S1D), suggesting

that glycans do not constitute the primary determinant

in Chimera N* recognition.

We next confirmed that Chimera N* is an ERAD

substrate and thus investigated the contributions of

the ERAD-associated E3 ligases, Hrd1p and Doa10p,

on degradation [57,58]. ERAD substrates with lesions

in the ER lumen, such as Chimera N*, are classified as

ERAD-L substrates and are typically degraded in a

Hrd1p-dependent manner [59,60]. Chimera N* was

stabilized in yeast lacking Hrd1p (Fig. S2A) but was

considerably stabilized in a strain containing a

temperature-sensitive mutant form of Cdc48p (cdc48-

2) (Fig. S2B). This result is consistent with the role of

this AAA-ATPase on ERAD substrate extraction from

the ER membrane [61,62].

In contrast to Chimera N*, Chimera A*, SZ*, and
NBD2* deposit misfolded domains in the cytoplasm

(Fig. 1). Chimera A* and NBD2* are handled by the

UPS, but SZ* is targeted to both ERAD and the vac-

uole (see below) [37,38,46]. Moreover, Chimera A* is

targeted for ERAD, but NBD2* requires the CytoQC

machinery for its disposal [38,46]. Therefore, it was

unclear whether the recognition of the truncated and

misfolded NBD2 in Chimera A* and NBD2* occurred

similarly. Of note, we previously reported that a 42

amino acid truncation in Chimera A* destabilizes this

ERAD substrate, but the half-lives of different C-

terminal truncations varied significantly [63]. For exam-

ple, a truncation that removed 51 amino acids was

‘hyperstable’, whereas the removal of 47 amino acids

from the C terminus led to hyperinstability. Conse-

quently, we asked whether these alternate truncations in

Chimera A* would similarly affect NBD2* stability.
As previously reported, the full-length NBD2 species

was stable over a 60-min time course, and NBD2*

(‘Q247X’) was unstable (Fig. 2) [38]. In addition and

in accordance with the effects on Chimera A*, the 47

(I242X) and 51 (L238X) amino acid-truncated NBD2

species were degraded either more quickly (t1/

2 ~ 13 min) or more slowly (t1/2 > 60 min) than

NBD2* (t1/2 ~ 30 min), respectively (Fig. 2B). The

degradation of each substrate was also proteasome-

dependent, as anticipated (Fig. S3A–C) [38]. More-

over, each of the truncations also shared similar

Ssa1p-dependent degradation profiles (Fig. S3D–F).
These data suggest that the same mode of chaperone-

based recognition is used for the NBD2 truncations,

regardless of whether the substrate is targeted for

ERAD or CytoQC.

Hsp104 is required only for the degradation of a

truncated cytosolic NBD in the cytosol

To facilitate its targeting to the ERAD pathway, the

aggregation-prone Chimera A* substrate requires the

cytoplasmic AAA+ ATPase/disaggregase, Hsp104 [63].

Because SZ* and NBD2* contain the same truncated

second nucleotide-binding domain, we asked whether

these substrates were also Hsp104-dependent. As

shown in Fig. 3, Hsp104 facilitated the degradation of

both substrates. In contrast and as might be expected

based on its topology, Chimera N* degradation was

Hsp104-independent. In addition, Ste6p* was also

Hsp104-independent, most likely due to the mainte-

nance of proper intramolecular interactions, thereby

allowing Ste6p* to avoid aggregation. These data

demonstrate that for the artificial substrates—regard-

less of whether a substrate is selected for ERAD (Chi-

mera A*), both ERAD and vacuolar degradation

(SZ*), or CytoQC (NBD2*)—the turnover of a protein

containing an aggregation-prone domain in the cyto-

plasm requires Hsp104.

Misfolded membrane proteins compromise cell

growth when proteasome function is suppressed

Even though each substrate examined in this study, as

well as Ste6p*, contains the same misfolded domain,

they exhibit a set of nonoverlapping requirements for

their degradation (see Table 1 for a summary of data

from the current study and past work). This afforded

us the unique opportunity to examine how the demand

on different nodes of the PN might affect cell growth.

To this end, we transformed each substrate listed in

Table 1 into yeast lacking PDR5, which allows for the

effective administration of a proteasome inhibitor

(e.g., MG132) into the strain. We first monitored

yeast growth at 37 °C. Consistent with a robust PN in
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wild-type yeast, no significant effects on cell growth

were evident (Fig. 4A).

Because the efficiency of the UPS declines with age

or under stress conditions, thus leading to severe

effects on several nodes of the PN [34,35], we next

asked whether a particular class of misfolded proteins

is more toxic when proteasome function is altered. In

this case, when MG132 was included in the growth

media, maximal growth was achieved when cells con-

tained a vector control, and the expression of SZ* and

NBD2* had only minor effects on growth (Fig. 4B).

In contrast, pronounced effects on growth were evi-

dent in yeast expressing Ste6p*, Chimera A*, or Chi-

mera N*. In order to assure that the observed toxicity

was not the result of elevated levels of expression, we

also compared steady-state levels by immunoblot

(Fig. S4). Surprisingly, despite use of the same expres-

sion system for Ste6p*, Chimera A*, Chimera N*, and
NBD2*, expression levels differed. Nevertheless, the

three substrates with the lowest expression levels were

the most toxic, excluding the possibility that toxicity

arises by high levels of substrate expression.

Earlier work indicated that Ste6p* expression

induced a unique stress response pathway that relied

on the Rpn4 transcription factor that responds to

reduced proteasome activity and thereby activates the

expression of proteasome subunits [15,64]. To test

whether the toxicity of expressing Ste6p*, Chimera A*,
and Chimera N* was related to a failure of this stress

response to mitigate proteotoxic stress, we put the sub-

strates under control of an inducible promoter in order

to test growth in rpn4Δ yeast. The use of an inducible

promoter was necessary as expression of Ste6p* in an

rpn4Δ strain is toxic [64]. As observed in the MG132-

treated yeast and consistent with those data, expres-

sion of Ste6p*, Chimera A*, and Chimera N* all

resulted in severely delayed growth in rpn4Δ yeast

(Fig. 4C). These data indicate that cells require opti-

mal proteasome activity to avoid the proteotoxicity

associated with integral membrane, aggregation-prone

ERAD substrates.

Discussion

In this study, we report first on the completed charac-

terization of a set of misfolded proteins, all of which

contain the same misfolded region but which engage

different QC pathways. Through our previous work

and this research, we have now categorized these sub-

strates (Table 1), an undertaking that underscores the

diversity of substrate selection and participating degra-

dation pathways during PQC. To arrive at this conclu-

sion, no prior investigation employed such a diverse

array of substrates, particularly those containing the

same misfolded degradation-targeting region (i.e., ‘de-

gron’), which limits secondary effects. Armed with this

set of reagents, we were then able to examine the

growth of yeast expressing each substrate in the pres-

ence or absence of a proteasome inhibitor, or in the

absence of a transcription factor, Rpn4, that regulates

the expression of proteasome subunits. Based on this

second aspect of our analysis, three substrates (Ste6p*,
Chimera A*, and Chimera N*) negatively impacted

HA NBD2

HA Q247X

HA I242X

HA L238X

# a.a. 
truncated

51

47

42

(A)

(B)

* *

L238X

Q247XNBD2

I242X

0 30 60 0603051 15

0 30 60 0603051 15

HA-HRP

HA-HRP

G6PD

G6PD

Fig. 2. Relative stabilities of NBD2 truncations. (A) NBD2

truncations used in this study are truncated by 51, 42, and 47

amino acids, generating L238X, Q247X (also referred to herein as

NBD2*), and I242X, respectively. (B) Protein stability was assessed

by a cycloheximide chase analysis as described in Materials and

methods in pdr5D yeast expressing L238X, Q247X, and I242X

treated with DMSO. Data represent the means � S.E., n = 6–12.

All P values were determined using Student’s t-test by comparing

each truncation to full-length NBD2, * denotes P < 0.05 for the

indicated time points. The degradation of all three truncations was

found to be statistically different from NBD2 at both the 30- and

60-min time points, as indicated by an asterisk above the time

points.
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growth, indicating that integral membrane ERAD sub-

strates present a toxic challenge to cells with compro-

mised proteasome capacity. In contrast, SZ*, which is

degraded primarily in the vacuole after ER exit [37],

does not induce the same level of toxicity to

proteasome-challenged cells (Fig. 4B and C). We pro-

pose that the ability of this protein to largely escape

the ER decreases its toxicity.

The levels of Rpn4p in the cell are regulated by

degradation, so when degradation is slowed due to

(A)

* * *

C.

D.NBD2*

*
* *

HSP104
0 30 6015

hsp104
0 30 6015

HA-HRP

G6PD

HSP104
0 30 6015

hsp104
0 30 6015

HA-HRP

G6PD

HSP104
0 30 6015

hsp104
0 30 6015

HA-HRP

G6PD

HSP104
0 60 12030

hsp104
0 60 12030

HA-HRP

G6PD

(C)

(B) (D)

Fig. 3. Differential effects of Hsp104 on substrates containing the NBD2* moiety residing in the cytosol versus ER lumen. Wild-type

(HSP104) and hsp104D yeast were transformed with plasmids engineered for the expression of (A) SZ*, (B) NBD2* (C) Chimera N*, and (D)

Ste6p*. A cycloheximide chase analysis was performed following a 30-min temperature shift to 37 ⁰C. Data represent the means � S.E.,

n = 3–7. All P values were determined using Student’s t-test vs the wild-type control, * denotes P < 0.05.
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reduced proteasome efficiency, Rpn4p is available to

trigger proteasome subunit expression [65]. Alterna-

tively, if misfolded proteins induce a HSR, then heat

shock transcription factor 1 can induce RPN4 tran-

scription [66]. Interestingly, in our growth assays, the

presumed stabilization of Rpn4 by MG132 was

unable to adapt cells to the proteotoxic stress accom-

panying the expression of misfolded integral mem-

brane proteins. In contrast, yeast treated with another

proteasome inhibitor fully adapted to the expression

of misfolded proteins and degraded proteins with sim-

ilar efficiency to untreated cells [14]. However, the

shorter treatments used by others may have missed

the long-term effects of proteasome inhibition [14].

Indeed, one interpretation of our data is that integral

membrane proteins become increasingly toxic over

time because they can accumulate in the cytoplasm

and aggregate into Lewy body-like structures [67,68].

For example, when proteasome activity is reduced,

retrotranslocated CFTR amasses in perinuclear aggre-

somes [69]. Alternatively, Neal and colleagues recently

demonstrated that expression of an integral membrane

ERAD substrate could induce toxicity in a yeast

strain with impaired retrotranslocation [70]. Therefore,

further experiments will be essential to establish

whether the accumulation of misfolded integral mem-

brane proteins in the membrane or in the cytoplasm

presents a unique threat to proteasome-challenged

cells, and whether this effect applies to a wide group

of membrane proteins.

Unlike membrane proteins, misfolded cytoplasmic

proteins are instead targeted to and degraded by the

UPS via CytoQC [24,28,71–73]. Although some of the

mechanistic details of CytoQC have been explored

[24–26,71,74], the machinery required for the degrada-

tion of truncated species has not been fully elucidated.

We demonstrate here that changing the position of the

truncation in a cytosolic protein influences stability

(Fig. 2), an observation that correlates with our previ-

ous findings on altering the truncations in Ste6p* and

Chimera A* [63]. One scenario to explain these find-

ings is that chaperone recognition mediates degrada-

tion rate; however, all three truncations are equally

dependent on Ssa1p (Fig. S3). Alternatively, selection

by ubiquitin ligases might dictate stability. Interest-

ingly, L238X and Q247X exhibit a strong dependence

on the canonical CytoQC E3 ubiquitin ligases, San1p

and Ubr1p for turnover, whereas I242X is incom-

pletely stabilized in strains lacking San1p and Ubr1p

or even in a strain that also lacks the ER membrane-

associated E3 Doa10p (Fig. S5), which can also partic-

ipate in CytoQC [28,38,75].

Hsp104 is a key modulator of CytoQC and ERAD

[36,63,76] and exhibits disaggregase activity, especially

when cells are incubated at elevated temperatures [77].

Hsp104 functions in concert with the Hsp70 and

Hsp40 machinery to rescue heat-damaged proteins

[78], and previous work from our laboratory and this

study demonstrate that Hsp104 supports the degrada-

tion of Chimera A*, SZ*, and NBD2* (Table 1). Like

Chimera A*, NBD2* is also aggregation-prone [38,63],

which likely accounts for the Hsp104 requirement.

More specifically, Hsp104 retains Chimera A* in a

retrotranslocation-competent state [63]. Therefore, we

propose that Hsp104 disaggregates NBD2*, allowing

for the maintenance of a species that can enter the

proteasome aperture. Future work in which the effect

of Hsp104 on substrate solubility is reconstituted will

allow us to test this hypothesis.

One unexpected outcome from our experiments is

that Chimera N* degradation showed a relatively sub-

tle dependence on the ER lumenal Hsp70 and Hsp40s

(Fig. S1A). However, this is not without precedence,

as degradation of the alpha subunit of the epithelial

Table 1. Factors required for model substrate degradation. The requirements are listed for the indicated substrates and QC machinery.

Ste6p* and Chimera A* can be classified as ERAD-C substrates, Chimera N* is an ERAD-L substrate, SZ* is a substrate for degradation by

ERAD and the vacuole, and NBD2* is a CytoQC substrate.

Ste6p* Chimera A* Chimera N* SZ* NBD2*

Proteasome Yes Yes Partial Partial Yes

Vacuole No No No Yes No

Hsp70 Ssa1 Ssa1 Kar2 Ssa1 Ssa1

Hsp40 Ydj1& Hlj1 Ydj1&Hlj1 Scj1&Jem1 Ydj1 Ydj1&Hlj1

E3 Ubiquitin Ligase Doa10 Doa10 Hrd1 Doa10 San1&Ubr1

Hsp104 No Yes No Yes Yes

Cdc48 Yes Yes Yes Yes Yes

References [41,44] [46] [45] [37] [38]
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sodium channel was minimally dependent on Kar2p

despite the presence of a large ER lumenal domain

[79]. Our findings also suggests that the Yos9 lectin,

which recognizes glycosylated ERAD substrates [80],

like Chimera N*, plays a minor role in Chimera N*
turnover (Fig. S1D). Therefore, we suggest that a

cadre of chaperones and chaperone-like lectins con-

tribute to the selection of this ERAD substrate.

Finally, in the future, it will be critical to relate our

work to studies in higher cells. As noted elsewhere, the

reduction in PN and especially UPS activity during

aging implies that the altered homeostasis and cell

death that accompanies age might arise from the accu-

mulation of misfolded membrane proteins. Future pro-

teomic studies in aged mammalian cells will allow us

to test this hypothesis.
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Fig. 4. Limiting proteasome function sensitizes cells to the

expression of integral membrane ERAD substrates. (A and B) The

pdr5D strain or (C) rpn4Δ yeast was transformed with the indicated

expression plasmids and grown to stationary phase in selective

media. The next day, they were diluted back to a starting

OD600 = 0.2, and growth was monitored over time at 37 �C. Yeast
were treated with (A) DMSO, (B) 50 µM MG132, or (C) 300 nM b-

estradiol (to induce protein expression). Plots represent the

average data from n = 8–16. A one-way ANOVA (GRAPHPAD Prism

9.02) followed by Dunnett’s test was performed using the OD600

measurements recorded for growth curve replicates in order to

assess reduced growth resulting from (B) MG132 treatment

compared with an empty vector control and (C) the rpn4Δ strain

expressing each substrate compared with an empty vector control.

Data were statistically significant (P < 0.05) from the 7.5-h time

point onward (B) or starting at 6-h time point onward (C).
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Supporting information

Additional supporting information may be found online in

the Supporting Information section at the end of the article.
Fig. S1. The degradation of Chimera N* is facilitated

by endoplasmic reticulum lumenal chaperones.

Fig. S2. Chimera N* degradation is Hrd1- and Cdc48-

dependent.

Fig. S3. The degradation of truncated forms of NBD2

is proteasome-dependent.

Fig. S4. The relative expression of quality control sub-

strates examined in this study.

Fig. S5. I242X degradation is modestly affected by the

absence of San1p, Ubr1p, and Doa10p.

Table S1. Strains used in this study.

Table S2. Oligos and Plasmids used in this study.
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