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Mitophagy is one of the selective autophagy pathways that catabolizes dys-

functional or superfluous mitochondria. Under mitophagy-inducing conditions,

mitochondria are labeled with specific molecular landmarks that recruit the

autophagy machinery to the surface of mitochondria, enclosed into

autophagosomes, and delivered to lysosomes (vacuoles in yeast) for degrada-

tion. As damaged mitochondria are the major sources of reactive oxygen spe-

cies, mitophagy is critical for mitochondrial quality control and cellular

health. Moreover, appropriate control of mitochondrial quantity via mito-

phagy is vital for the energy supply-demand balance in cells and whole organ-

isms, cell differentiation, and developmental programs. Thus, it seems

conceivable that defects in mitophagy could elicit pleiotropic pathologies such

as excess inflammation, tissue injury, neurodegeneration, and aging. In this

review, we will focus on the molecular basis and physiological relevance of

mitophagy, and potential of mitophagy as a therapeutic target to overcome

such disorders.
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neurodegeneration; ubiquitin

Mitochondria are double-membrane subcellular blocks

that house essential metabolic processes such as ATP

production, phospholipid biosynthesis/transport, amino

acid synthesis, and iron–sulfur cluster formation [1–4].
In addition to their roles as polyvalent metabolic facto-

ries, mitochondria serve to control calcium signaling,
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inflammatory responses, and apoptosis. Since mitochon-

dria generate ROS (reactive oxygen species) during elec-

tron transport through the OXPHOS (oxidative

phosphorylation) complexes, they are constantly chal-

lenged by oxidative stress [5,6]. Excessively accumulated

ROS could randomly react with mitochondrial proteins,

lipids, and DNA (mtDNA), ultimately disrupting mito-

chondrial integrity. The resultant dysfunctional mito-

chondria could easily release their inner contents such

as ROS and mtDNA, which further induce cellular

oxidative stress and excess inflammation, respectively,

that potentially perturb cell/tissue fitness [7,8]. Accord-

ingly, appropriate removal of damaged mitochondria is

essential to maintain biological homeostasis. Moreover,

mitochondrial activity and abundance are flexibly

adjusted in response to cellular demands. In several

tissues such as brain, skeletal muscle, heart, liver, and

kidney that consume a massive amount of ATP,

mitochondrial biogenesis is strongly promoted and/or

mitochondrial respiration is highly activated to meet the

cellular needs. When these cells are shifted from energy-

consuming conditions to steady-state conditions,

mitophagy is often induced to decrease mitochondrial

quantity, thereby adapting to cellular metabolic

changes. Thus, proper management of mitochondrial

quantity is also critical to maintain biological elasticity.

Autophagy, one of the membrane trafficking path-

ways that delivers cytoplasmic constituents to lyso-

somes (vacuoles in yeast), plays key roles in quality

and quantity control of organelles (Fig. 1, upper part)

[9–11]. In this catabolic pathway, double membrane-

bound structures called autophagosomes serve as

containers for cargo delivery to lysosomes.

Autophagosome biogenesis occurs at a relatively low

level under non-stressed conditions, whereas it is dras-

tically induced by several stress signals such as amino

acid deprivation and nitrogen starvation. Induction of

autophagy leads to de novo formation of cup-shaped

structures called isolation membranes (or phago-

phores) that expand to become spherical and eventu-

ally close to form autophagosomes [10]. During this

dynamic process, a portion of the cytoplasm contain-

ing proteins and organelles is randomly engulfed by

the autophagosome. Finally, autophagosomes fuse

with lysosomes for the degradation of autophagosomal

content by lysosomal hydrolases. Hence, autophagy

Cytosolic 
constituents

Bulk autophagy

Selective autophagy

Isolation membrane 
formation

Autophagosome
formation

Fusion with lysosomes

Specific proteins or 
organelles

Isolation membrane/
phagophore Autophagosome

Lysosome
(Vacuole in yeast)

Fig. 1. Two distinct pathways of autophagy. Autophagy can act as either bulk (nonselective) or selective degradation process. In bulk

autophagy, cytoplasmic constituents such as proteins, lipids, nucleotides, and organelles are engulfed by the flattened isolation membrane.

The isolation membrane expands and closes to form a double membrane-bound structure called autophagosome. Autophagosomes are

transported to lysosomes (vacuoles in yeast cells) and fused with the lytic organelles. Lysosomal hydrolytic enzymes degrade the

autophagic cargoes. In selective autophagy, specific cargoes such as protein aggregates, dysfunctional organelles, and invading pathogens

are sequestered into autophagosomes, delivered to lysosomes, and degraded.
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primarily mediates bulk degradation of many intracel-

lular components.

Although autophagy is recognized as a nonselective

catabolic pathway, numerous studies have revealed

that it also acts in a selective mode (Fig. 1, lower part)

[12,13]. This selective type of autophagy is induced in

response to specific stimuli (triggers for activation) and

requires signals (labels for substrate recognition).

Mitophagy is one of the selective autophagy pathways

that exclusively encapsulates damaged or excess mito-

chondria to degrade them [14–19]. Overview of this

process is depicted in Fig. 2.

Autophagosome formation itself and mitophagy in

general are complex processes involving many proteins

that need to be tightly regulated. Studies in the last

decades have identified such key proteins important

for the degradation of mitochondria in various model

organisms [19] (Fig. 3). Importantly, labeling of mito-

chondria is dictated by specific OMM (outer mito-

chondrial membrane) proteins called mitophagy

receptors, or ubiquitin chains conjugated to multiple

OMM proteins. The former recruit the autophagy

machinery to mitochondria via direct interaction,

whereas the latter do so via indirect interaction with

adaptors that bind both ubiquitin and autophagy-

related proteins. These labeling molecules establish

mitophagy initiation sites and facilitate the generation

of isolation membranes localized to mitochondria.

Hence, mitophagy can be categorized into two modes:

receptor-mediated mitophagy and ubiquitin-mediated

mitophagy. In this review, we will focus on molecular

mechanisms that promote mitochondrial clearance in

yeast and mammalian cells and overview its patho-

physiological roles.

Receptor-mediated mitophagy in yeast

Atg32 and other factors involved in yeast

mitophagy

Receptor-mediated mitophagy in the budding yeast

Saccharomyces cerevisiae is mostly dependent on

Atg32, a single-pass transmembrane protein on the

OMM, that has been identified in 2009 by two inde-

pendent groups from their genome-wide screens using

a nonessential gene deletion library [20,21]. This

59 kDa protein exposes its N-terminal region (43 kDa)

to the cytosol and its C-terminal region (13 kDa) to

the mitochondrial IMS (intermembrane space) [20,21].

The cytosolic region of Atg32 is critical for its binding

Mitochondria

Recruitment of mitophagy receptors
/Formation of poly-ubiquitin chains

Lysosome
(Vacuole in yeast)

Encapsulation by 
autophagosomes1 2

3 Fusion with lysosomes 
and degradation

ROS etc...
mtDNA mutations
Depolarization

AutophagosomeIsolation membrane/ 
phagophore

Mitophagy 
receptors Ubiquitin 

chains

Fig. 2. Overview of mitochondria-specific autophagy (mitophagy). Upon mitochondrial stress (e.g., loss of membrane potential, accumulation

of mtDNA mutations, and generation of ROS), mitophagy receptors or ubiquitin chains/autophagy adaptors label mitochondria. These

degradation tags recruit the autophagy machinery to the mitochondrial surface and promote generation of isolation membranes/phagophores

encapsulating mitochondria. The isolation membrane elongates and closes to form an autophagosome that completely engulfs the targeted

mitochondria. Autophagosomes are transported and fuse with lysosomes (vacuoles in yeast). Lysosomal hydrolases then degrade

mitochondria.
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to Atg8 and Atg11 (Fig. 4), promoting formation of

autophagosomes encapsulating mitochondria. Loss of

Atg32 almost completely abolishes mitophagy, whereas

other autophagy-related processes such as bulk autop-

hagy, pexophagy, ER-phagy, and the Cvt (cytoplasm-

to-vacuole targeting) pathway are hardly affected,

suggesting that Atg32 is a mitophagy-specific receptor

[20,21].

Mitophagy in yeast is strongly induced under respi-

ratory or nitrogen starvation conditions [20–23]. When

cells are grown in media containing nonfermentable

carbon source (e.g., glycerol, ethanol, and lactate),

they thoroughly rely on mitochondrial oxidative phos-

phorylation to generate ATP for their growth and sur-

vival. Under these conditions, Atg32 is tran

scriptionally upregulated and localized to the OMM,

forming a complex with Atg8 and Atg11. Atg8 is con-

jugated to PE (phosphatidylethanolamine), a major

membrane lipid enriched in autophagosomes, and

ensures maturation of autophagosomes. Atg11 acts as

a scaffold in selective autophagy-related pathways and

contains domains required for assembly of core Atg

proteins such as Atg1 (a most upstream protein kinase

for autophagy initiation) and Atg9 (a polytopic trans-

membrane protein embedded in vesicle-like structures)

[24,25]. Thus, Atg32-Atg11 interactions are crucial to

promote formation of autophagosomes. As the N-ter-

minal cytosolic region of Atg32 interacts with Atg8

and Atg11, deletion of this domain significantly abol-

ishes mitophagy under respiratory conditions, whereas

deletion of the IMS domain has slight or almost no

effects on mitophagy [26].

A previous study indicates a link between mito-

chondrial dynamics and mitophagy. Dnm1, a dyna-

min-related mitochondrial division GTPase localized

to the mitochondrial surface via Fis1 (a tail-anchored

OMM protein) and Mdv1 or Caf4 (a WD repeat

adaptor for Dnm1 and Fis1) [27], interacts with

Atg11 and associates with the Atg32-8-11 complex

[28]. Atg11-Dnm1 interactions are critical for efficient

mitophagy, and loss of Dnm1 causes significant

defects in degradation of mitochondria. However,

other studies have demonstrated that mitophagy is

not significantly altered in the absence of Dnm1

[29,30], suggesting a previously unappreciated mecha-

nism mediating mitochondrial fragmentation during

mitophagy in some specific strains and/or under some

specific conditions.

Domain structure of Atg32

Atg32 is predicted to consist of three modules: an N-

terminal cytosolic domain (amino acid residues 1–388
a.a.), a single TM (transmembrane) domain (389–411
a.a.), and a C-terminal IMS domain (412–529 a.a.).

The TM domain is required for targeting and insertion
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Fig. 3. Expanding histories of the mitophagy field. Spots on the timeline depict key discoveries and developments of experimental methods

related to mitophagy. Note that all the important events cannot be included due to space limitations. Bar graphs demonstrate the number of

papers published in the indicated year that are extracted from the PubMed/Medline database using the title/abstract keyword ‘mitophagy’.
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of Atg32 to the OMM, as a variant lacking the TM

domain is not properly localized to mitochondria but

disperses throughout the cytosol and nucleus [26]. The

N-terminal cytosolic domain contains two consensus

motifs (86–122 a.a.) critical for the interaction of

Atg32 with Atg8 and Atg11. Mutations in the AIM

(Atg8-family interacting motif) affect Atg32-Atg8

interactions and cause a partial defect in degradation

of mitochondria, suggesting that Atg32 binding to

Atg8 contributes, at least to some extent, to mitophagy

[26]. Moreover, a recent study suggests that Gyp1, a

GAP (GTPase-activating protein) of Ypt1, has been

identified as a novel Atg8 interaction partner. Loss

of Gyp1, its GAP activity, or its first AIM; AIM1

(160–163 a.a.) causes a partial reduction in mitophagy,

yet how Gyp1 contributes to autophagosome forma-

tion remains elusive [31].

An artificially OMM-anchored Atg32 cytosolic

domain is sufficient to promote degradation of mito-

chondria. Remarkably, when ectopically anchored to

peroxisomes, the Atg32 cytosolic domain is capable of

promoting pexophagy, supporting the idea that the

cytosolic domain of Atg32 acts as a degron-like mod-

ule necessary and sufficient for the degradation of

specific organelles [26]. In S. cerevisiae, ectopic target-

ing of the pexophagy receptor Atg36 to mitochondria

can also activate mitophagy even in the absence of

Atg32 [32]. Thus, mitophagy and pexophagy in yeast

may share a common set of molecules coordinately

acting downstream of their receptors to mediate for-

mation of autophagosomes surrounding each orga-

nelle. Whether ectopically targeted Atg32 and Atg39/

40 (receptors required for ER-phagy) can promote

ER-phagy and mitophagy, respectively, remains to be

investigated.

A recent study using NMR spectroscopy has

revealed that Atg32 has a previously undescribed PsR

(pseudo-receiver) domain (200–341 a.a.) [33]. Deletion

of this region significantly reduces Atg32-Atg11 inter-

actions and mitophagy activity during nitrogen starva-

tion. A comparative analysis of protein structures

indicates that this domain is well aligned to receiver
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Fig. 4. Models for initial actions of mitophagy receptors. In yeast, the sole mitophagy receptor Atg32 is induced in response to oxidative

stress and anchored to the OMM. Atg32 is then activated via CK2-dependent phosphorylation, which is reversed by the protein

phosphatase Ppg1. Activated Atg32 interacts with Atg8 and Atg11, promoting formation of the isolation membrane. In mammalian cells,

NIX, BNIP3, FUNDC1, FKBP8, and BCL2L13 seem to be induced in response to developmental cues and mitochondrial stress signals,

activated via phosphorylation, and interact with LC3 on the OMM. Several kinases and phosphatases have been reported to regulate the

activities of these mitophagy receptors.
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domains found in RRs (response regulators) known as

a major family of signaling proteins in prokaryotes.

Receiver domains in RRs accept phosphoryl groups

transferred from specific protein kinases that sense

environmental changes to transduce cellular signaling

[34]. Despite their structural homology, Atg32 lacks

the conserved residues that are essential for receiver

domain function, thereby classifying Atg32 as a PsR

domain family protein. The Atg32 PsR domain func-

tion is yet to be determined; however, it may con-

tribute to activation of neighboring Atg32 domains or

recruiting additional factors to mitochondria.

Transcriptional activation of Atg32

How Atg32 protein levels are increased upon mito-

phagy induction still remains obscure. Accumulation

of oxidative stress caused by inefficient electron trans-

port in mitochondria seems to be a primary signal that

activates Atg32 transcription, as a treatment with

NAC (N-acetylcysteine), a precursor form of the

antioxidant glutathione and a scavenger of free radi-

cals, suppresses Atg32 induction [21]. A study using

Pichia pastoris, a methylotrophic yeast, has reported

the roles of Tor (target of rapamycin) and its down-

stream PpSin3-PpRpd3 complex in expression of the

ortholog PpAtg32 [35]. Tor is a serine/threonine kinase

that controls a variety of growth signals and connects

nutrient availability with most of anabolic and cata-

bolic processes. Inhibition of Tor by rapamycin

induces PpAtg32 expression, but can promote neither

PpAtg32 phosphorylation nor mitophagy. In addition,

PpSin3 and PpRpd3, two orthologs that function

downstream of Tor as a transcriptional repressor com-

plex for Atg8 in S. cerevisiae, are also important for

transcriptional repression of PpAtg32. In cells lacking

PpSin3 and PpRpd3, PpAtg32 is induced without star-

vation signals, suggesting that the Tor-Sin3-Rpd3 axis

contributes to downregulation of PpAtg32 expression.

Moreover, a recent study showed that loss of the Paf1

(RNA polymerase Ⅱ-associated factor 1) complex, a

highly conserved complex involved in transcription

elongation, leads to global upregulation of ATG genes

including ATG32 and ATG11, and induction of mito-

phagy [36].

A previous report has revealed that protein N-termi-

nal acetylation, a co-translational modification con-

served from yeast to humans, is required for efficient

mitophagy [37]. During prolonged respiration, the

ATG32 mRNA and Atg32 protein levels are partially

reduced in cells lacking NatA (N-acetyltransferase A),

a heterodimeric complex that consists of the catalytic

subunit Ard1 and the ribosomal adaptor subunit

Nat1, or cells expressing a catalytically inactive NatA

variant. Although NatA substrates critical for

mitophagy in yeast have not yet been identified,

protein N-terminal acetylation seems to be linked to

the regulatory steps of Atg32 induction.

Phosphorylation of Atg32

Phosphorylation/dephosphorylation switch of Atg32 is

a key regulatory step of mitophagy. Previous studies

have demonstrated that Atg32 is phosphorylated under

mitophagy-inducing conditions in a manner dependent

on Ser114 and Ser119 [26,38,39]. Substitution of these

residues with alanine significantly decreases Atg32

phosphorylation, Atg32-Atg11 interactions, and mito-

phagy. Importantly, these post-translational modifica-

tions are mediated by CK2 (casein kinase 2), a

constitutively active serine/threonine kinase (Fig. 4)

[39].

A recent study has revealed that the PP2A-like

phosphatase Ppg1 dephosphorylates Atg32 and sup-

presses mitophagy (Fig. 4) [40]. Loss of Ppg1 and its

interacting partners Far proteins enhances CK2-depen-

dent Atg32 phosphorylation, Atg32-Atg11 interactions,

and mitophagy. The Ppg1-Far complex binds to Atg32

on the OMM, and this interaction is reduced upon

nitrogen starvation, indicating that dissociation of the

Ppg1-Far complex from Atg32 is crucial for Atg32

activation [41]. Signals that perturb the association of

the Ppg1-Far complex with Atg32 upon mitophagy

induction remain unclear.

Moreover, excess activation of TORC1 (Tor com-

plex Ⅰ) seems to destabilize Atg32-Atg11 interactions

[42]. Loss of Npr2, a component of the SEACIT

(Seh1-associated complex inhibiting TORC1) complex

that suppresses TORC1 activity, significantly reduces

mitophagy during prolonged respiration. Whether

overactivation of TORC1 affects the phosphorylation

status of Atg32 remains to be tested. Given that

TORC1 may negatively regulate CK2-substrate inter-

actions [43], it is conceivable that SEACIT-dependent

inactivation of TORC1 could promote CK2-mediated

Atg32 phosphorylation critical for Atg32-Atg11 inter-

actions.

Relevance of phospholipids in mitophagy

Multiple studies establish that perturbation of phos-

pholipid homeostasis in mitochondria or the ER could

affect mitophagy. Psd1 and Psd2, two phosphatidylser-

ine decarboxylases that synthesize PE from PS (phos-

phatidylserine), are required for efficient mitophagy

[44]. Intriguingly, Psd1 is only required for nitrogen
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starvation-induced mitophagy, while Psd2 is more crit-

ical for prolonged respiration-induced mitophagy but

also partially for nitrogen starvation-induced mito-

phagy. Although detailed mechanisms underlying these

defects are not well understood, loss of Psd1 seems to

cause inefficient recruitment of Atg8 to the surface of

mitochondria.

Loss of Opi3, a phospholipid methyltransferase

localized in the ER, leads to suppression of Atg32

induction and a decrease in mitophagy during respira-

tion [45]. Opi3 catalyzes conversion of PE to PC

(phosphatidylcholine) in the ER membrane. Deletion

of the OPI3 gene causes aberrant elevation of glu-

tathione levels that reduces cellular oxidative stress,

thereby negatively affecting Atg32 induction and mito-

phagy [45]. These findings raise the possibility that

respiring yeast cells coordinate phospholipid methyla-

tion and mitophagy via unknown mechanisms.

The ER stress induced by DTT (dithiothreitol)

affects PE export from mitochondria to the ER, caus-

ing reduced PC levels in both organelles [46]. This ER

stress-responsive PE transport is reduced in cells lack-

ing Mdm10, a component of the ERMES (ER-mito-

chondria encounter structure), leading to more

reduced levels of PC in the ER and mitochondria.

Reducing mitochondrial PC levels could induce mito-

phagy [46]; however, the detailed mechanisms remain

to be elucidated.

Regulation of Atg32-mediated mitophagy via ER

factors

Exchange of phospholipids between the ER and mito-

chondria is mediated by the ERMES complex [47].

This multimeric tethering complex is localized as dis-

tinct foci where the ER and mitochondrial membranes

are closely positioned. Loss of ERMES components

strongly decreases starvation-induced mitophagy [48].

Under the same conditions, the ERMES component

Mmm1 is colocalized with Atg8 and Atg32, supporting

the idea that ERMES acts in formation of autophago-

somes enclosing mitochondria.

A recent study has revealed a link between mito-

phagy and protein biogenesis in the ER. The GET

(guided-entry of tail-anchored proteins) pathway medi-

ates membrane insertion of TA (tail-anchored) pro-

teins into the ER. Get1 and Get2 form a

heterodimeric complex on the ER, acting as a receptor

for TA proteins newly synthesized in the cytosol and

promoting membrane insertion of TA proteins [49–51].
Loss of the Get1/2 complex strongly decreases mito-

phagy, whereas it only slightly affects other autop-

hagy-related processes [52]. Further studies are needed

to elucidate how this ER-associated complex acts in

Atg32-mediated mitophagy.

Receptor-mediated mitophagy in
mammals

In mammals, multiple mitophagy receptors/adaptors

seem to promote selective clearance of mitochondria

(Fig. 4). These receptors/adaptors function in certain

specific cell types and under particular conditions, but

they may also function in a partially redundant man-

ner. Similar to Atg32, mammalian mitophagy recep-

tors are transmembrane proteins anchored to the

OMM and contain LIR (LC3-interacting region) motif

that binds to LC3, a mammalian Atg8 homolog,

thereby localizing autophagosome formation to mito-

chondria.

BNIP3 and NIX

BNIP3 (Bcl-2/adenovirus E1B 19 (nineteen)-kDa-inter-

acting protein 3) is a ubiquitously expressed protein

that has first been identified as a pro-apoptotic mito-

chondrial protein to increase permeability of mito-

chondrial membranes and release cytochrome c [53–
55]. BNIP3 is expressed as an inactive monomer under

normal conditions, but upon stress stimuli, it homod-

imerizes on the OMM in a manner dependent on its

TM domain. Mutations in the TM domain, which dis-

rupt BNIP3 homodimerization but not its mitochon-

drial targeting, reduce the number of autophagosomes

[56]. BNIP3 contains a conserved LIR motif in its N-

terminal region and interacts with LC3. Mutations in

this region reduce the interaction between BNIP3 and

LC3 [56]. Expression of a BNIP3 LIR mutant reduces

colocalization of LC3 with mitochondria, indicating

that LC3 targets to mitochondria via its interaction

with BNIP3. Furthermore, substitutions of Ser17 and

Ser24 near the LIR motif of BNIP3 decrease its inter-

action/colocalization with LC3B under mitophagy-in-

ducing conditions [57]. In addition, overexpression of

phosphomimetic BNIP3 mutants decreases mitochon-

drial protein levels. Collectively, these findings suggest

that phosphorylation of BNIP3 promotes BNIP-LC3

interactions and mitophagy.

NIX (Nip3-like protein X)/BNIP3L (BNIP3-like

protein) has previously been identified with its high

homology to BNIP3 (56% identical overall) and is

required for efficient elimination of mitochondria dur-

ing erythrocyte maturation [58–60]. Expression of

BNIP3 can promote degradation of mitochondria in

Nix-/- reticulocytes. Similar to BNIP3, NIX is a single-

pass transmembrane protein and contains a canonical
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LIR motif that promotes interactions with several

Atg8 family proteins. Ser34 and Ser35, which are

located near the LIR motif of NIX, seem to be phos-

phorylated and contribute to NIX-LC3 interactions

[61]. NIX stably dimerizes on the OMM via its TM

domain. This dimerization is required for efficient

NIX-LC3 interactions and robust recruitment of the

autophagy machinery to mitochondria, as disruption

of the dimerization decreases LC3 puncta formation

and augments mitochondrial loss under mitophagy-in-

ducing conditions [62]. How developmental cues dur-

ing reticulocyte differentiation induce NIX activation

is currently unknown.

FUNDC1

Under hypoxic conditions and reduced availability of

oxygen, mitochondrial mass and respiration are

reduced [63]. FUNDC1 (Fun14 domain-containing

protein 1), a ubiquitously expressed multi-spanning

OMM protein conserved from Drosophila to humans,

acts as a receptor for hypoxia-induced mitophagy [64].

FUNDC1 contains a LIR motif in its N-terminal

region, and deletion of this motif reduces the

FUNDC1-LC3 interactions and impairs mitophagy

[64]. Mass-spectrometric analysis revealed that Ser13

and Tyr18 around the LIR motif are potential phos-

phorylation sites [64,65]. Two distinct kinases, CK2

and Src, contribute to phosphorylation of FUNDC1,

thereby inhibiting FUNDC1-LC3 interactions and

subsequent mitophagy [64,65]. Upon hypoxia, the

mitochondrial protein phosphatase PGAM5 dephos-

phorylates FUNDC1 at Ser13 and stabilizes

FUNDC1-LC3 interactions [65]. Moreover, ULK1, an

Atg1 kinase homolog in mammals, localizes to mito-

chondria and phosphorylates Ser17 of FUNDC1 to

promote FUNDC1-LC3 interactions [66]. This finding

raises the possibility that mitophagosome formation

could be regulated via the interaction between core

Atg proteins and mitophagy receptors. Whether this is

the case for other mitophagy receptors remains to be

investigated.

During hypoxia, FUNDC1 protein levels are

decreased by the ubiquitin-proteasome system [67].

FUNDC1 is ubiquitinated at Lys119 by the E3 ubiqui-

tin ligase MITOL/MARCH5 (a mitochondrial RING

finger E3 ligase) and subjected to the proteasome-me-

diated degradation [67]. Mutation of Lys119 leads to

an increase in levels of FUNDC1 upon hypoxia, pro-

moting targeting of LC3 to mitochondria. Thus,

MARCH5-mediated FUNDC1 degradation may sup-

press hypoxia-induced mitophagy. It is still elusive

whether other types of mitophagy receptors are ubiqui-

tinated and degraded via the proteasome-dependent

pathway.

BCL2L13

Although the mammalian homolog of Atg32 has not

been identified, a previous study revealed that mito-

phagy in yeast lacking Atg32 could partially be

restored by expression of BCL2L13 (BCL2-like 13), a

mammalian mitochondrial protein containing a single

TM domain and two LIR motifs [68]. Expression of a

BCL2L13 mutant defective in LC3 interaction does

not induce mitophagy in the atg32-null yeast, indicat-

ing that BCL2L13 could interact with Atg8 via its LIR

motif to promote mitophagy in yeast [68]. Loss of

Atg7, a core Atg protein required for Atg8 lipidation,

abolishes BCL2L13-mediated mitophagy in yeast lack-

ing Atg32, indicating that BCL2L13 promotes yeast

mitophagy via the conventional autophagy machinery.

The affinity of BCL2L13 for LC3 seems to be modu-

lated via its phosphorylation, as a mutation of Ser272

near the second LIR motif reduces BCL2L13-LC3

interactions and mitophagy. Moreover, a recent study

demonstrated that BCL2L13 recruits ULK1 to mito-

chondria [69]. Whether ULK1 directly phosphorylates

BCL2L13 has not been elucidated. Further studies will

clarify whether/how BCL2L13 activity is regulated

under mitophagy-inducing conditions.

FKBP8

FKBP (FK506-binding protein) family members are

evolutionally conserved intracellular receptors for the

immunosuppressive drug FK506 and act in diverse cel-

lular processes such as calcium signaling, transcription,

and protein folding/trafficking [70]. FKBP8 (FK506-

binding protein 8, also known as FKBP38) is highly

expressed in brain, and a recent study suggests its roles

in mitophagy under several stress conditions. FKBP8

is targeted to the OMM upon CCCP treatment and

binds to LC3A via its N-terminal LIR motif [71]. Co-

overexpression of ATG8 family proteins, especially

LC3A, and FKBP8 induces mitophagy in a manner

independent of Parkin. Moreover, loss of FKBP8

increases enlarged mitochondria and overexpression of

FKBP8 causes mitochondrial fragmentation, suggest-

ing that this protein also acts in mitochondrial dynam-

ics. Since FKBP8 functions in diverse cellular

processes, further experiments are necessary to clarify

how FKBP8 promotes mitophagy under physiological

conditions.
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Ubiquitin-mediated mitophagy in
mammals

In addition to mitophagy receptors described above,

ubiquitin chains on the OMM serve as signals for

damaged mitochondria. Although several E3 ubiquitin

ligases have been reported to play a role during mito-

phagy in mammals, we will mainly focus on two key

players, PINK1 and Parkin, that are known as causal

genes for hereditary recessive Parkinson’s disease (PD)

with early onset [72,73]. Thus, elucidation of the mech-

anisms underlying PINK1/Parkin-mediated mitophagy

will shed light on the pathogenesis of this neurodegen-

erative disease.

PINK1 activation and phosphorylation of

ubiquitin

PINK1/Parkin-mediated mitophagy mainly acts in

elimination of damaged mitochondria with lower

membrane potential [74–78]. The most upstream factor

of this pathway is PINK1 (PTEN-induced putative

kinase 1), a mitochondrial serine/threonine kinase.

Under conditions that mitochondrial membrane poten-

tial is properly maintained, PINK1 precursor is con-

stantly imported to the IMM (inner mitochondrial

membrane) through TOMM40 in the OMM and

TIMM23 in the IMM. The MTS (mitochondria-target-

ing signal) of this precursor is processed by MPP (mi-

tochondrial processing peptidase), and the TM domain

is cleaved by the IMM protease PARL (Presenilins-as-

sociated rhomboid-like protein) (Fig. 5) [79–82]. After

the cleavage by PARL, PINK1 loses its TM domain

and is translocated back to the cytosol, where PINK1

is ubiquitinated by E3 ubiquitin ligases UBR1/2/4 and

rapidly degraded in a proteasome-dependent manner

[83]. Thus, PINK1 expression is maintained at a rela-

tively lower level under steady state conditions. Upon

membrane potential dissipation (by treatment with

ionophores such as CCCP and valinomycin), PINK1

precursor is not translocated across the IMM and thus

cannot be processed by PARL, and, instead, is accu-

mulated on the OMM. Then, PINK1 forms a homod-

imer on the OMM and is autophosphorylated at

Ser228 and Ser402 (Fig. 5) [84]. This autophosphoryla-

tion of PINK1 is required for its kinase activity.

In 2014, three independent groups have reported

that PINK1 phosphorylates the Ser65 residue of ubiq-

uitin on the OMM [85–87]. The resultant phospho-

ubiquitin has a high affinity for cytosolic Parkin, an

E3 ubiquitin ligase, thereby recruiting Parkin to the

surface of depolarized mitochondria. Importantly, acti-

vation of Parkin is also required for its mitochondrial

targeting, as a catalytically inactive Parkin mutant can-

not localize to depolarized mitochondria [88–91].
PINK1 also phosphorylates Parkin at the Ser65 resi-

due, inducing conformational changes and activation

of Parkin [92–94].
PINK1 stability seems to be modulated via PKA

(protein kinase A) and PKA-mediated phosphorylation

of MICOS (mitochondrial contact site) components.

The MICOS complex tethers the IMM and OMM to

establish a connection between the two membranes

[95]. MIC60, a component of the MICOS complex,

transiently interacts with PINK1 upon CCCP treat-

ment, and its downregulation reduces PINK1 localiza-

tion to depolarized mitochondria, thereby decreasing

Parkin mitochondrial targeting [96]. Moreover, PKA

phosphorylates MIC60 to negatively affect Parkin

translocation to mitochondria, likely through disrupt-

ing PINK1-MIC60 interactions and consequently

destabilizing PINK1, without affecting mitochondrial

cristae structures.

Parkin-mediated ubiquitination of OMM proteins

Similar to other RBR (RING-in-between-RING) E3

ligases, Parkin contains two RING finger domains and

an IBR (in-between-RING) region, and the overall

structure of Parkin has been solved in 2013 [97,98].

Parkin is ubiquitously expressed in mammalian tissues.

After recruited to damaged mitochondria and phos-

phorylated by PINK1, Parkin builds ubiquitin chains

on OMM proteins (Fig. 6). Several OMM proteins

including mitofusin, Miro, and VDAC have been iden-

tified as putative Parkin substrates [99–106]. A recent

study revealed that exogenous proteins (e.g., GFP and

maltose-binding protein; MBP) artificially targeted to

mitochondria can be ubiquitinated by Parkin [107].

Moreover, when Parkin is recruited to peroxisomes via

its interaction with the peroxisome-targeted PINK1,

proteins on the peroxisomal membrane are ubiquiti-

nated by Parkin [108]. Collectively, these results sug-

gest that Parkin does not have high substrate

specificity, which may be optimal for efficient and

quick ubiquitin coating of damaged mitochondria.

These ubiquitin chains are further phosphorylated by

PINK1 and act as additional receptors for Parkin

mitochondrial targeting (Fig. 6).

Autophagy adaptors linking ubiquitin chains to

autophagosomes

How are ATG proteins recruited to ubiquitin-coated

mitochondria? Autophagy adaptors are important to

link mitochondria to the autophagy machinery. These
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adaptors include p62/SQSTM1, NBR1, NDP52/CAL-

COCO2, TAX1BP1, and OPTN (optineurin), contain-

ing both a UBD (ubiquitin-binding domain) and a

LIR motif that connect ubiquitin-coated mitochondria

with autophagosomes [109–112]. All these receptors

are recruited to depolarized mitochondria [113].

Among five autophagy adaptors, NDP52 and OPTN

seem to be crucial for PINK1/Parkin-mediated mito-

phagy [113,114]. PINK1 kinase activity is required for

localization of NDP52 and OPTN to depolarized

mitochondria, further recruiting the upstream ATG

proteins such as ULK1 and WIPI1 that induce

autophagosome biogenesis. During phagophore elon-

gation, PE-conjugated ATG8 proteins subsequently

recruit more NDP52 and OPTN via their LIR motifs,

forming a positive feedback loop to accelerate

autophagosome biogenesis [115]. In addition, NDP52

associates with the ULK1 complex through its compo-

nent FIP200, which is facilitated by the serine/thre-

onine kinase TBK1 (TANK-binding kinase 1) [116].

Ectopic expression of NDP52 on the OMM is suffi-

cient to recruit the autophagy machinery to mitochon-

dria and initiate mitophagy in the absence of LC3,

raising the possibility that NDP52 targets the autop-

hagy initiation complex directly to the cargo. More-

over, OPTN interacts with ATG9 vesicles, a

membrane source for phagophore elongation, and dis-

ruption of this interaction suppresses mitophagy [117].

Collectively, these results suggest that mitophagy adap-

tors associate with several core ATG proteins and pro-

mote formation of autophagosomes encapsulating

damaged mitochondria.

TBK1-mediated phosphorylation of autophagy

adaptors

TBK1 is activated via its phosphorylation at Ser172

upon mitochondrial depolarization. This activation

requires OPTN and NDP52, and ubiquitin-binding

activity of OPTN [114]. Loss of TBK1 reduces

Activated PINK1

P P

OMM

IMM

Ub
P

Ub
P

P

Parkin

P P
Ub
P

P

Ub

P P
P

P

OMM proteins

Activation of PINK1/
phosphorylation of ubiquitin

Phospho-ubiquitin recruits Parkin
/Parkin phosphorylation by PINK1

Ubiquitination of OMM proteins
by Parkin Ubiquitin phosphorylation by PINK1

Positive feedback loop

Fig. 6. Formation of positive feedback loop with Parkin-mediated polyubiquitination. Activated PINK1 phosphorylates ubiquitin on the OMM

proteins. The resultant phospho-ubiquitin acts as a receptor for recruiting Parkin to damaged mitochondria. Parkin is activated via PINK1-

dependent phosphorylation, promoting conjugation of ubiquitin chains to OMM proteins. These ubiquitin chains serve as additional

substrates for PINK1, establishing a positive feedback loop to coat damaged mitochondria with massive ubiquitin chains.

Fig. 5. PINK1 behaviors on healthy and dysfunctional mitochondria. On healthy mitochondria, a newly synthesized PINK1 precursor is

imported into mitochondria in a membrane potential (DΨ)-dependent manner through the two translocator channels TOMM40 and TIMM23.

MPP (mitochondrial processing peptidase) in the mitochondrial matrix cleaves the PINK1 MTS (mitochondrial targeting signal), and PARL (an

IMM protease) cleaves the PINK1 TM domain. Processed PINK1 is retrotranslocated to the cytosol, subsequently recognized/modified by

the E3 ubiquitin ligases UBR1/2/4, and degraded by the proteasome. Upon DΨ dissipation, the PINK1 precursor is neither translocated

across the IMM nor cleaved by PARL. Instead, it is stuck in the TOMM40 channel and inserted into the OMM, undergoing

homodimerization and autophosphorylation to self-activate.
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recruitment of the autophagy adaptors such as

NDP52, OPTN, and p62 to damaged mitochondria.

Moreover, activated TBK1 mediates phosphorylation

of OPTN at its UBAN domain to increase the binding

to ubiquitin chains, and at Ser177 to stabilize its inter-

action with LC3, synergistically reinforcing OPTN

association with ubiquitin-coated mitochondria and

autophagosomes [114,118]. Notably, phosphorylation

of OPTN further accelerates TBK1 activation, thereby

promoting more recruitment of OPTN to depolarized

mitochondria and forming another positive feedback

loop to facilitate mitophagy [114]. In addition, a recent

study suggests that Ca2+ increases interactions of a

Ca2+-binding protein TBC1D9 (Tre-2/Bub2/Cdc16

(TBC) 1 domain family member 9) with ubiquitin

chains on damaged mitochondria, which are required

for TBK1 activation and mitophagy [119].

Phagophore elongation during mitophagy

Ubiquitin chains formed by Parkin on the OMM are

required for recruitment of RABGEF1, an upstream fac-

tor of the endosomal Rab GTPase cascade, to mitochon-

dria [120]. RABGEF1 induces transient mitochondrial

targeting of its downstream factors RAB5, MON1/

CCZ1, and RAB7. RAB7 is inserted into the OMM and

acts in assembly of ATG9-containing vesicles to damaged

mitochondria [120]. TBC1D15 (TBC 1 domain family

member 15) is a GAP for RAB7 and extracts RAB7 from

the OMM. TBC1D15 is localized to the OMM via its

interaction with Fis1, an OMM protein. Loss of Fis1 or

TBC1D15 leads to massive accumulation of RAB7 on

damaged mitochondria [120,121]. Taken together, these

results suggest that proper endosomal RAB cycles are

critical for efficient mitophagosome formation.

Deubiquitinating enzymes and phosphatases in

PINK1/Parkin-mediated mitophagy

As described above, phosphorylation and ubiquitina-

tion on depolarized mitochondria are critical to pro-

mote selective clearance of mitochondria. These post-

translational modifications are reversible, and several

studies suggest that phosphatases and deubiquitinating

enzymes (DUBs) also participate in the regulatory steps

of PINK1/Parkin-mediated mitophagy. Two DUBs

USP15 and USP30 remove ubiquitin chains on the

OMM, thereby antagonizing PINK1/Parkin-mediated

mitochondrial ubiquitin coating [122–125]. In contrast,

USP8 detaches ubiquitin chains from autoubiquitylated

Parkin, promoting Parkin recruitment to depolarized

mitochondria and subsequent mitophagy [126]. More-

over, PTEN-L and PPEF2 (protein phosphatase with

EF-hand domain 2) mediate dephosphorylation of

phospho-ubiquitin and suppress mitophagy [127,128].

Other E3 ubiquitin ligases

Studies using transgenic mice to monitor mitophagy

suggest that loss of PINK1 or Parkin does not seem to

significantly reduce mitophagy levels in vivo [129,130].

In addition, PINK1- or Parkin-knockout mice do not

exhibit severe disease-relevant phenotypes. It remains

possible that Parkin may act in a mutually redundant

manner with other mitochondrial E3 ubiquitin ligases to

ubiquitinate mitochondrial proteins. The RBR family

E3 ligase ARIH1/HHARI is widely expressed in cancer

cells and promotes mitophagy in a manner dependent

on PINK1, contributing to removal of dysfunctional

mitochondria and protection from chemotherapy-in-

duced cell death [131]. MUL1 (mitochondrial ubiquitin

ligase 1; also known as MAPL, MULAN, and GIDE),

an E3 ubiquitin ligase that promotes mitochondrial

fragmentation through stabilization of Drp1 (a dyna-

min-related protein required for mitochondrial fission)

and degradation of mitofusin (a protein required for

OMM fusion), also acts in Parkin-independent mito-

phagy [132]. In addition, the autophagy adaptor p62

recruits a Cullin-RING E3 ubiquitin ligase Rbx1 to

damaged mitochondria, building ubiquitin chains on

the OMM in a manner independent of PINK1/Parkin

[133]. MITOL/MARCH5 and HUWE1 (HECT, UBA,

and WWE domain-containing E3 ubiquitin protein

ligase 1) have also been suggested to act in Parkin-

independent mitophagy [67,134].

Physiological relevance of mitophagy
in cell/tissue homeostasis

Physiological roles of mitophagy in yeast

Atg32-mediated mitophagy contributes to the mainte-

nance of mtDNA in yeast. During prolonged nitrogen

starvation, under which mitophagy is induced and

ROS generation is accelerated, cells lacking Atg32

exhibit surplus ROS damage and deletion of mtDNA,

suggesting that mitophagy reduces mitochondrial ROS

accumulation and mtDNA instability [135].

Interestingly, Atg32-mediated mitophagy helps a patho-

gen to grow and infect to host cells. Candida glabrata, a

haploid budding yeast, causes severe systemic infections in

humans. During systemic infections, iron-chelating pro-

teins such as transferrin limit iron supply to C. glabrata

cells and repress their infection. Under iron-depleted con-

ditions, CgAtg32-mediated mitophagy is induced in C.

glabrata, and loss of Atg32 decreases the number of viable
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C. glabrata cells [136]. Consequently, C. glabrata lacking

CgAtg32 exhibits reduced virulence in infected mice, sug-

gesting that mitophagy is critical for their survival and

efficient infection in the host organism. How C. glabrata

cells detect decreased iron availability and induce

CgAtg32-mediated mitophagy remains elusive.

Programmed mitophagy in development and

differentiation

Mitophagy plays key roles in metabolic adaptation

during differentiation and development. This type of

mitophagy is called ‘programmed mitophagy’. NIX is

critical for removal of mitochondria during erythrocyte

differentiation [58,59]. Deletion of NIX in mice, as

well as ATG7, leads to accumulation of mitochondria

in erythrocytes and elicits anemia with increased

immature erythrocytes. NIX also contributes to RGC

(retinal ganglion cell) differentiation [137]. Mitochondrial

mass decreases during embryonic retinal development

and this seems to be dependent on NIX-mediated

mitophagy, as NIX-KO mice exhibits increased

mitochondrial mass and a reduced number of RGCs.

Mitophagy may be important to degrade mitochondria

and helps a shift to glycolytic metabolism, which is

required for efficient cell differentiation [137]. Further-

more, NIX acts in mitochondrial elimination required

for pluripotency of iPSCs (induced pluripotent stem

cells), although the detailed molecular mechanisms

remain to be elucidated [138].

Paternal mitochondria provided by sperm are selec-

tively degraded via programmed mitophagy in

Caenorhabditis elegans fertilized embryos [139,140].

This autophagy-dependent process, named allophagy

(allogeneic organelle autophagy), is mediated by

ALLO-1, a cytosolic protein that contains a LIR motif

for binding to LGG-1 (an Atg8 homolog in worms),

similar to mammalian autophagy adaptors [141]. In

addition to ALLO-1, IKKE-1, a worm homolog of

mammalian TBK1/IKKe kinases, is required for elimi-

nation of paternal mitochondria [141]. Mass-spectro-

metric analysis revealed that ALLO-1 is

phosphorylated at Thr74, and this phosphorylation is

required for efficient elimination of paternal mitochon-

dria. Knockdown of the sole E1 ubiquitin-activating

enzyme UBA-1 in worm reduces ALLO-1 localization

to paternal organelles, indicating an involvement of

ubiquitin in this process [141]. However, in pink-1 and

pdr-1 (a Parkin homolog in worms) deletion mutants,

paternal mitochondria seem to be eliminated at near

wild-type levels, raising the possibility that PDR-1

may not be essential for this process, or several E3

ubiquitin ligases may act in a redundant manner with

PDR-1 [141]. Further studies are required to elucidate

whether and how paternal mitochondria are ubiquiti-

nated.

A recent report has demonstrated that PINK1/Par-

kin-mediated mitophagy is important for adipocyte

differentiation [142,143]. Among adipocytes, beige cells

contain large amounts of mitochondria and produce

heat during adrenaline and cold stimulation. Upon

withdrawal of these stimuli, beige cells reduce mito-

chondrial mass and are converted to white cells [144].

In Parkin-deficient mice, this conversion does not pro-

gress as efficiently as that in wild-type mice. These

findings support the idea that Parkin contributes to

cell-fate decision of adipocytes, possibly via mito-

phagy, in vivo.

Mitophagy and inflammation

In a model of polymicrobial sepsis, loss of PINK1 or

Parkin elicits increased sensitivity and aberrant activa-

tion of inflammasome, suggesting the roles of PINK1/

Parkin in host protection during inflammation [145].

Moreover, PINK1 and Parkin have been suggested to

suppress release of mtDNA from mitochondria and

thus inhibit excess inflammation [146]. When exposed

to exhaustive exercise, mice lacking PINK1 or Parkin

exhibit increased secretion of cytokines, an indicative

of excess inflammation. These phenotypes are reversed

by concurrent loss of the NLRP3 inflammasome, indi-

cating that mtDNA release in PINK1- or Parkin-defi-

cient mice leads to activation of inflammasomes [146].

mtDNA could induce inflammatory responses in the

cytosol in a manner dependent on the cGAS-STING

pathway [147–149]. Loss of STING in these mutant

mice almost completely abolishes inflammatory

responses [146]. Collectively, these results support the

idea that PINK1 and Parkin may prevent an excess

inflammatory response via the STING pathway. How-

ever, it should be noted that whether this aberrant

activation of the STING pathway occurs in other spe-

cies is not currently clear, as Drosophila Sting mutants

do not seem to display suppressing effects on the loco-

motor deficits or mitochondrial disruption in Pink1 or

parkin mutants [150]. Moreover, kidney-specific knock-

out of TFAM (a mitochondrial matrix protein

required for packaging and maintenance of mtDNA)

or a nephrotoxic reagent-induced mtDNA release to

the cytosol, induces STING pathway-dependent acti-

vation of inflammation and renal damage [151,152].

Although the precise relationship between this phe-

nomenon and mitophagy in kidney remains unclear, it

seems likely that proper maintenance of mtDNA is

important for kidney homeostasis.
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PINK1 and Parkin have also been suggested to be

linked to a potential autoimmune mechanism that

could lead to neurodegeneration, suppressing transport

of mitochondrial proteins via the MDV (mitochon-

dria-derived vesicle) pathway and MitAP (mitochon-

drial antigen presentation) on the surface of antigen-

presenting cells [153]. Although how PINK1 and Par-

kin contribute to suppression of MDV formation

under immune-stimulating conditions is not fully

understood, these findings imply the potential involve-

ment of PINK1 and Parkin in autoimmune mecha-

nisms. Moreover, a recent study has reported that

genetic ablation of PINK1 induces MitAP and leads

to establishment of cytotoxic mitochondria-specific

CD8+ T cells in the periphery and in the brain in

response to intestinal infection with gram-negative bac-

teria [154]. Notably, Pink1�/� mice infected with these

bacteria exhibit a decrease in dopaminergic axonal

varicosities in the striatum and locomotor dysfunction.

Mitophagy seems to be modulated upon viral

infection. Upon viral infection, RIG-I (retinoic acid-

inducible gene-I) and MDA-5 (melanoma differentia-

tion-associated gene 5) recognize RNA derived from

the invading viruses, and promote oligomerization of

MAVS (mitochondrial antiviral signaling protein) on

mitochondria, which is required for induction of

downstream cascades to activate transcription of IFN

(interferon) genes and repress virus replication [155].

HHV-8 (human herpesvirus 8) encodes a number of

proteins, such as vIRF-1 (viral IFN regulatory factor

1), that are critical to inhibit IFN-activated antiviral

responses in the host cells. vIRF-1-expressing cells

exhibit reduced number of mitochondria during lytic

reactivation, and deletion of vIRF-1 maintains mito-

chondrial content [156]. NIX interacts with vIRF-1,

and loss of vIRF-1 reduces virus replication-promoted

mitochondrial localization of NIX. Further studies are

needed to investigate whether and how NIX-vIRF-1

interactions contribute to degradation of mitochondria

upon viral infection.

Mitophagy and neurodegeneration

Mitochondrial quality control is important especially

for nondividing cells, such as neurons, and a failure in

mitophagy could lead to neurodegenerative diseases.

Indeed, accumulation of damaged mitochondria is a

hallmark of age-related neurodegeneration, including

PD (Parkinson’s disease), AD (Alzheimer’s disease),

and ALS (amyotrophic lateral sclerosis).

PD is a neurodegenerative disease caused by loss

of dopaminergic neurons in the midbrain substantia

nigra [157]. Mitochondrial dysfunction has been

considered to be involved in the pathogenesis of PD,

based on the findings that the activity of the mito-

chondrial electron transfer system is reduced in PD

patients and that inhibitors of the system induce PD-

like symptoms. Pink1 and Parkin genes are mutated

in PD patients. Although loss of PINK1 or Parkin

does not exhibit PD-like phenotypes, its combination

with mtDNA mutator mice leads to significant mito-

chondrial dysfunction and impairs dopaminergic neu-

rons, supporting the idea that Parkin preserves

mitochondrial fitness and contributes to neuroprotec-

tion [158]. As PINK1 and Parkin act in the immune

responses, it should be noted that phenotypes in PD

could be caused by multiple losses of PINK1/Parkin

functions.

In addition to Pink1 and Parkin, LRRK2 (leucine-

rich repeat kinase 2) is also mutated in PD patients

and related to elimination of damaged mitochondria

[159]. LRRK2 acts in removal of Miro, a mitochon-

drial transmembrane GTPase that anchors mitochon-

dria to motor proteins and microtubules, and

modulates mitochondrial motility in the early step of

mitophagy [160]. LRRK2 forms a complex with Miro

upon mitophagy induction, thereby promoting dissoci-

ation of Miro from mitochondria and suppressing

mitochondrial mobility. The pathogenic LRRK2

G2019S mutation causes delayed mitochondrial arrest

and inefficient mitophagy [160]. Moreover, recent stud-

ies reveal that the G2019S mutation leads to hyperacti-

vation of LRRK2, thereby reducing PINK1/Parkin-

mediated mitophagy, and that inhibition of the

LRRK2 kinase activity restores mitophagy in cells

expressing LRRK2-G2019S [161,162]. By contrast, two

earlier studies report that expression of LRRK2-

G2019S increases mitophagy [163,164]. Further studies

are necessary to reconcile these discrepancies and

elucidate precise roles of LRRK2 in mitochondrial

clearance.

Deficits in mitophagy have also been associated with

AD (Alzheimer’s disease), the most common cause of

dementia characterized by loss of memory and other

cognitive abilities. Immunohistochemistry revealed that

reduced colocalization of mitochondrial proteins and

lysosomes in hippocampus of AD patients, indicating

decreased mitophagy-like events [165]. In addition,

expression levels of several mitophagy-related proteins

are decreased in human AD samples and AD iPSC-

derived neurons.

Mutations in OPTN and its upstream kinase TBK1

have been identified in patients with ALS, a disease

hallmarked by degeneration of motor neurons, which

leads to muscle weakness and paralysis [166–170].
OPTN-ubiquitin chain interactions on damaged
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mitochondria are disrupted by E478G, an ALS-linked

mutation in the UBAN domain of OPTN [171]. Sev-

eral ALS-linked mutations in TBK1 have also been

identified by whole-exome sequencing. A disease-asso-

ciated mutation in the C-terminal coiled-coil domain

renders TBK1 unable to interact with OPTN, possibly

interfering encapsulation of damaged mitochondria

into autophagosomes [168].

Mitophagy and tumorigenesis

Accumulation of defective mitochondria and excessive

ROS production has been linked to tumor formation

[172]. Thus, mitophagy could inhibit tumor formation

by removing defective mitochondria. Bnip3 expression

is reduced during malignant tumor development, and

Bnip3-deficient mice develop tumors more rapidly than

wild-type mice [173]. In addition, Parkin expression is

decreased in breast cancer cells, and Parkin overex-

pression mitigates abnormal cell proliferation, suggest-

ing that Parkin has an antitumor function [174].

Together, these findings imply that inefficient degrada-

tion of mitochondria could be linked to tumorigenesis

and progression, yet whether these phenotypes are due

to deficits in Bnip3- and Parkin-mediated mitophagy

or other functions of Bnip3 and Parkin independent of

mitophagy remains elusive. Furthermore, mice lacking

FUNDC1 in the liver exhibit increased susceptibility

to HCG (hepatocarcinogenesis) and enhanced inflam-

matory responses, suggesting the protective role of

FUNDC1 against tumorigenesis in the liver [175]. It

should, however, be noted that the contribution of

mitophagy receptors to tumorigenesis seems to differ

in cellular subtypes and/or cancer stages. Further stud-

ies are required to dissect the precise roles of mito-

phagy in tumor suppression.

Mitophagy and aging

Similar to autophagy, mitophagy could contribute to

suppression of aging. Excessive accumulation of

mtDNA mutations is a cause of accelerated mam-

malian senescence, and appropriate removal of mito-

chondria containing high levels of mtDNA mutations

by mitophagy may be one of the ways to prevent

senescence [176]. A study using yeast as a model has

revealed that under longevity-extending conditions,

loss of Atg32 leads to accumulation of dysfunctional

mitochondria and aberrant mitochondrial networks,

resulting in shortened lifespan [177].

Establishment of several fluorescent probes enabled

in vivo analyses of mitophagy levels during aging in

higher eukaryotes. A study using transgenic mice

expressing mt-Keima (for details, see Fig. 7) revealed

that in some brain regions, mitophagy activity

decreases during aging [178]. On the other hand, a

study using Drosophila expressing mt-Keima demon-

strated that mitophagy is increased in aged flight mus-

cle [179]. These findings raise the possibility that age-

related fluctuation of mitophagy levels differ in some

species and/or tissues. Moreover, loss of Parkin or

PINK1 function causes muscle tissue collapses and

decreased motor function in flies, resulting in short-

ened lifespan [180–184]. Whether and how PINK1/

Parkin-dependent mitophagy directly contributes to

these observed phenotypes await detailed analyses of

the relationship between individual senescence and

mitophagy.

Fluorescent reporters to monitor
mitophagy in vivo

Monitoring mitophagy in normal physiology and vari-

ous disease states still remains a major challenge. Clas-

sical methods such as electron microscopy can

visualize mitochondrial remnants engulfed in the

autophagosome-like structures in only a small section

of cells and tissues, thereby making it difficult to quan-

tify mitophagy levels in a whole cell and tissue. To

overcome this issue, several quantitative methods using

fluorescent reporters have been developed to evaluate

mitophagy and mitochondrial status in vivo (Fig. 7)

[185].

mt-Keima is excited by light peaking at 438 nm

under cytosolic conditions and increases to 550 nm at

acidic pH under lysosomal conditions, which enables

dual-excitation ratiometric imaging [186,187]. This

acid-stable probe provides end-point readouts of mito-

phagy in mammalian cells, tissues, flies, and mice

[122,188–195]. Mito-QC is a tandem mCherry-GFP

fluorescent tag fused with the TM domain of the

OMM protein Fis1 [196,197]. Upon delivery to lyso-

somes, only GFP, but not mCherry, signals are rapidly

quenched under the low pH environment. Mito-SRAI

(signal retaining autophagy indicator) is a mitochon-

drially targeted fusion protein of YPet and TOLLES

[198]. TOLLES (tolerance of lysosomal environments)

is a newly established fluorescent protein that is stable

under lysosomal pH. FRET (fluorescence resonance

energy transfer) occurs from TOLLES to YPet, a rela-

tively less pH-sensitive YFP. Only YPet is irreversibly

acid-denatured upon delivery to lysosomes, leading to

dequenching of TOLLES. MitoTimer is a redox-sensi-

tive fluorescent protein (DsRed1-E5) targeted to the

mitochondrial matrix [199], and its green-to-red

fluorescence transmission can be used to assess
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mitochondrial structure, oxidative stress, and mito-

phagy in vivo [200–205].

Potential interventions to modulate
mitophagy

Defects in mitophagy, which lead to accumulation of

dysfunctional mitochondria and imbalance between

energy supply and demand, are associated with pleio-

tropic pathological consequences. Thus, interventions

modulating mitophagy may become potential thera-

peutic approaches [206]. UA (Urolithin A) is a natural

compound that promotes induction of mitophagy both

in vitro and in vivo [207]. In C. elegans, UA treatment

prevents accumulation of dysfunctional mitochondria

with age and extends lifespan. These phenotypes seem

to require mitophagy activity, as pink-1 and dct-1 (a

homolog of BNIP3 and NIX in worms) mutants trea-

ted with UA do not exhibit lifespan expansion [207].

Moreover, a recent study has established AUTAC, an

autophagy-targeting chimera that contains S-guanylation-

inspired degradation tag for selective autophagy [208].

Artificial targeting of AUTAC to mitochondria acceler-

ates both selective clearance of fragmented mitochondria

and biogenesis of functionally normal mitochondria in

cells from Down syndrome patients. These events seem to

be independent of Parkin, as AUTAC-mediated degrada-

tion of mitochondria can be observed in HeLa cells

expressing undetectable levels of endogenous Parkin.

AUTAC could induce degradation of disease-associated

cytosolic substrates, opening a novel autophagy-based

approach against various human disorders.

Conclusions and future perspectives

In this article, we reviewed the fundamental principles of

selective degradation of mitochondria via autophagy.

Combined with the molecular understanding of mito-

phagy, studies using model organisms deficient in the key

molecules of mitophagy have revealed the diverse physio-

logical functions of mitophagy. Despite these advances,

many questions remain unanswered regarding mito-

phagy. Specifically, (1) Is there a signaling pathway that

regulates the balance between degradation and biogenesis

of mitochondria?, (2) Is mitophagy promoted cell nonau-

tonomously across organs and tissues?, (3) What proteins

regulate the basal mitophagy?, (4) Are there different

organ- and tissue-specific mitophagy receptors?, and (5)

Do organelles other than mitochondria act in induction,

promotion, and suppression of mitophagy? Finally, (6)

mito-SRAI

MitoTimer

mt-Keima

Mitophagy 
reporters

Ref.Characteristics

Autophagosome

Schematic illustrating mitophagy reporters

Fusion with lysosomes

Time

A mitochondrial matrix-targeted Keima

Changes its excitation peak from 438 nm in a neutral 
environment to 550 nm in an acidic environment

Is applicable to mitophagy imaging only in living 
specimens

mito-QC
A pH-sensitive tandem mCherry-GFP tag fused to the 
mitochondrial targeting sequence of the OMM protein

Only GFP is quenched upon fusion with lysosomes 
and mCherry-only foci can be observed

A fusion protein of TOLLES and YPet (a GFP mutant)

TOLLES acts as a FRET donor and YPet as a FRET 
acceptor 
YPet is degraded and TOLLES is dequenched upon 
lysosome fusion

Can be applied to both living and fixed specimens

A mitochondrial matrix-targeted fluorescent timer 
DsRed1-E5

Shifts its fluorescence from green to red over time

122, 162,
186-195

196, 197

198

199-205

Fig. 7. Lineup of mitophagy reporters. Also see the text for further details.
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among more than 8 million species of eukaryotes inhabit-

ing the earth, how common is mitophagy and what are

the variations in its molecular mechanisms and physio-

logical functions? Future attempts with a combination of

biochemical, cell biological, and genetic approaches,

together with in vivo analyses using model and nonmodel

organisms, will unveil these secrets of mitophagy.
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