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Enzyme subunit interfaces have remarkable potential in drug design as both

target and scaffold for their own inhibitors. We show an evolution-driven

strategy for the de novo design of peptide inhibitors targeting interfaces of

the Escherichia coli FoF1-ATP synthase as a case study. The evolutionary

algorithm ROSE was applied to generate diversity-oriented peptide libraries

by engineering peptide fragments from ATP synthase interfaces. The result-

ing peptides were scored with PPI-Detect, a sequence-based predictor of pro-

tein–protein interactions. Two selected peptides were confirmed by in vitro

inhibition and binding tests. The proposed methodology can be widely applied

to design peptides targeting relevant interfaces of enzymatic complexes.

Keywords: peptide library; PPI-Detect; protein interfaces; ROSE;

sequence evolution

The last couple of decades have witnessed a fast

increase in the interest of peptides as therapeutic tools,

whether as active ingredients or as drug–peptide

complexes [1]. While previously considered trouble-

some drug candidates, today there are over 60

approved peptide drugs, and there are hundreds in

Abbreviations

AMPs, antimicrobial peptides; DEL, DNA-encoded library; MST, microscale thermophoresis; PPI, protein–protein/peptide interaction; ROSE,

(Random Model of Sequence Evolution); SME, simulated molecular evolution.
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clinical or preclinical trials [2]. Peptide drugs typically

have low toxicity and are capable of extremely tight

binding to their targets, and cell permeable peptides

have been used as carriers for intracellular acting

molecules [2]. Active areas of drug development for

peptides include oncology [3], metabolic [4], vascular

[5], and, with very promising results, microbial diseases

[6]. Currently, most available peptide drugs are natural

or derived thereof [1].

Commonly, the exploration of the structural space

of peptide candidates is performed by the generation

of combinatorial peptide libraries either by chemical

synthesis or by biological intervention [7]. For the

chemical synthesis, the ‘split-and-mix’ approach is the

most popular, either by using traditional solid-phase

peptide synthesis [8] or by the more recent DNA-en-

coded library (DEL) platform [9]. In addition, biologi-

cal methods are also frequently used to produce

peptide libraries by directed evolution approaches,

either by subjecting a gene of interest to rounds of

site-directed mutagenesis or by random mutations in

order to release genetic variants that generate peptide

diversification [7].

Despite the advances in methods for generating pep-

tide libraries as well as for in vitro high-throughput

screening analyses [7], they are still notoriously time-

consuming and expensive. Commonly, in silico

approaches are designed to produce random peptide

libraries by performing stochastic substitutions in the

different positions of an amino acid sequence [10,11].

Other algorithms have been gradually incorporated to

guide the computational generation of peptides carry-

ing certain secondary structures, such as amphipathic

helices, kinked amphipathic helices, structures aimed

to interact with lipid membranes, and others retaining

symmetric features [12]. However, evolutionary algo-

rithms have been scarcely applied to either generate

peptides libraries from putative hits or in hit-to-lead

generation processes [13].

Here, we propose the design, guided by evolutionary

rules, of peptide libraries derived from short fragments

of protein regions relevant for the function or modula-

tion of the protein. The aim of this approach was to

generate diversity-oriented libraries, where the explo-

ration of the structural space is controlled by evolu-

tionary parameters such as tree topology, evolutionary

distance, mutation rate, insertions, and deletions,

among others. The resulting peptide libraries can be

analyzed with similarity-based search engines (align-

ment-based methods) or with alignment-free models in

order to identify new candidates with the targeted bio-

logical activity. For the evolution-generated peptide

libraries, there are several algorithms with

potentialities to be applied to this aim. They were orig-

inally developed to evaluate the accuracy of multiple

sequence alignment and phylogenetic reconstruction

tools by generating sets of related simulated protein

sequences from known phylogenies. Some examples of

evolutionary algorithms are as follows: ROSE (Ran-

dom Model of Sequence Evolution) [14], SIMPROT

(Simulation Protein Evolution) [15], and INDELible

(Insertions and Deletions Simulator) [16]. Here, we

selected ROSE to generate diversity-oriented libraries

from root peptides, because it offers a simple and ver-

satile evolutionary algorithm that allows users to set

suitable parameter values for the generation of thou-

sands of related peptides at no demanding computer

resources (Fig. S1). This new application of evolution-

ary algorithms for sequence simulations is a funda-

mental change in the rational strategies to explore the

structural space in the generation of synthetic peptide

libraries.

The virtual screening of large peptide libraries can

benefit from the use of sequence-based protein–pro-
tein/peptide interaction (PPI) predictors. Given the

amino acid sequences are the sole inputs of these

methods, they leverage a large applicability together

with fast execution rates [17]. The main approaches

used to develop sequence-based PPI predictors encom-

pass motif/domain-based searches, global sequence

similarity, and codon usage in genes encoding interact-

ing and noninteracting proteins [18]. Comprehensive

revisions on this topic, as well as a list of available

predictors of PPI sites, have been published by Ding

and Kihara [18] and Casadio and colleagues [19]. The

main shortcoming faced by sequence-based PPI predic-

tors has been their poor precision, originated by an

overproduction of false-positive hits [20]. Recently,

Romero-Molina et al. [17] introduced PPI-Detect, a

machine-learning-based predictor of PPI using domain

information. PPI-Detect rendered a significantly

increased precision in different test sets, which obeys

to the incorporation of a reliable set of noninteracting

domains in its training data, as well as a powerful

numerical algorithm to encode and extract diverse fea-

tures from amino acid sequences. In addition, PPI-

Detect was challenged with the discrimination of active

from inactive derivatives of EPIX4, an endogenous

peptide inhibitor of the GPCR CXCR4 [17]. There,

this program also showed a high success rate. Such

results predicting interactions at fragment/peptide level

make PPI-Detect a particularly suitable sequence-

based predictor of PPI for the massive screening pep-

tide binders of a certain target.

Among the molecules susceptible of being modu-

lated therapeutically by peptides, FOF1-ATP synthase,
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also called ATP synthase, has risen to prominence in

recent years [21–23]. It is composed of a membrane

sector, FO, that transduces the proton motive force

into rotation, and a soluble sector, F1, that contains

its three catalytic sites. In Escherichia coli and other

bacteria, it is composed of eight types of subunits with

FO:a1b2c10-12 and F1:α3β3γδϵ stoichiometries [24,25].

During rotation, numerous inter- and intracatenary

interactions are coordinately formed and disrupted,

property that highlights the importance of the inter-

faces in the communication and cooperativity among

ATP synthase’s subunits [26]. Additional to its most

common locations (the inner membranes of mitochon-

dria, bacteria, and chloroplast thylakoids), ATP syn-

thase is found on the plasma membrane of several

mammalian cell types (hepatocytes, adipocytes, and

endothelial cells), playing crucial roles in regulating

many cellular processes in humans [27]. These roles, as

well as its involvement in various genetic diseases [28],

have made human ATP synthase an attractive target

for therapeutic molecules [29]. In addition, ATP syn-

thase has been proven as a promising target for the

development of new antibiotics [30]. This break-

through has led to an accelerated search for com-

pounds that could be used as new ATP synthase-

targeting antibiotics [22]. The ongoing search has also

included many natural peptides that show appealing

pharmaceutical activities [29]. Despite the variety of

exogenous peptide inhibitors that evidence the high

‘druggability’ of this enzyme, which makes it an attrac-

tive target to develop new antimicrobial peptides

(AMPs), to the best of our knowledge no inhibitory

peptide derived from ATP synthase fragments and tar-

geting the same enzyme have been previously designed

[22].

Here, we provide a new in silico strategy guided by

evolutionary and machine learning-based methods for

the de novo design of peptide inhibitors by engineering

protein fragments of FOF1-ATP synthase. This strat-

egy permits exploring a relevant structural space

around root peptides with potential protein binding

properties. The role of interactions at the interfaces of

protein subunits in the structural flexibility of complex

enzymatic systems, as well as in the stabilization of the

inhibitors binding, has been demonstrated [31,32]. In

this study, we selected fragments (peptides), ranging

between 20 and 40 residues, which belong to interfaces

between ATP synthase subunits. Given the involve-

ment of these peptides in protein–protein interactions

relevant for the functioning of the enzyme, we hypoth-

esize that is possible to extract and tailor in silico such

fragments, and turn them into effective modulators of

those original protein–protein interactions. Such a

concept, aimed at functionalizing a fragment of the

enzyme as a novel inhibitor, constitutes a de novo

design of bioactive peptides. To address this goal, we

further envisioned the application of evolutionary

algorithms together with an accurate machine learn-

ing-based predictor of protein–protein interactions, to

rationally generate and screen a diversity-oriented pep-

tide library (Fig. 1).

Materials and methods

Dataset

Fragments of interfaces involved in protein–protein inter-

actions between subunits of ATP synthase were extracted

subdivided into four classes: Class-1 are interfaces from

the catalytic domain of the ATP synthase, taken from the

structure with PDB ID 1E79, chains ID: ABCDEF (nine

peptide fragments). Class-2 groups peptides from the

rotor of the enzyme, extracted from the structure with

PDB ID 1E79, chains ID: GHI (six peptide fragments).

Class-3 gathers fragments from the hydrophilic portion of

the stalk, taken from the PDB ID 2CLY (seven peptide

fragments). Class-4 corresponds to fragments from the

transmembrane domain, extracted from the PDB ID 1C17

(seven peptide fragments). All the extracted fragments

possess sequence lengths between 20 and 90 amino acids

(File S1).

Multiple sequence alignments to build consensus

root sequences

Each peptide class was aligned independently using MAFFT

(Multiple Alignment using Fast Fourier Transform) v7.215,

a high-speed multiple sequence alignment. The iterative

refinement method FFT-NS-i was used with default param-

eters [33]. Multiple sequence alignments (MSA) were used

to extract consensus sequences by estimating the frequency

of each residue at every column of the alignment. The resi-

dues above an identity threshold of 60% conformed the

positions in the consensus sequence. The amino acid

sequences of all the fragments extracted from the ATP syn-

thase as well as their corresponding MSA are summarized

in File S1. The obtained consensus sequences for each class

were subsequently used as root peptides to feed ROSE, to

generate the final peptide library.

ROSE: Random model of sequence evolution

The ROSE program (https://bibiserv.cebitec.uni-bielefe

ld.de/rose) creates a family of related peptides from a root

peptide by applying a probabilistic model of evolution con-

sidering events such as insertion, deletion, and substitution

of characters guided by the topology and branch lengths of
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a predefined evolutionary tree. ROSE was calibrated, so

that the generated peptides retained at least 70% of identity

with the corresponding root sequence. ROSE’s internal

parameters were tuned as follows: the binary mutation

guide trees with 1023 nodes and depth k = 9, with average

distance (dav) = 5–20 PAMs (Fig. S1). In addition to dav,

the diversity of the resulting peptides also depends on the

root sequence, which is represented by a mutation proba-

bility vector where each position/residue is weighted by

variability or conservation degree shown in the sequence

consensus [‘zero’ value indicates no mutations (high conser-

vation degree) while ‘one’ value represents high mutation

probability]. An example of an input file for ROSE to gen-

erate a set of related peptides is shown in File S2.

PPI-Detect: sequence-based predictor of

protein–protein interactions

PPI-Detect is a user-friendly web application [17], freely

available within the PROTDCAL-SUITE [34] (https://protdcal.

zmb.uni-due.de/), which allows predicting whether two pro-

teins, or protein–peptide pairs, will interact or not, using

exclusively their primary structure information. PPI-Detect

integrates a novel numeric encoding method of pairs of

peptides sequences from ProtDCal [35] and a Support Vec-

tor Machine (SVM) classifier based on information con-

tained in two databases of protein domain–domain

interactions 3Did [36] and i-Pfam [37], as well as in Nega-

tome 2.0 [38], a curated database of domains with very low

chances of forming stable complexes. In this context, PPI-

Detect was used to screen the libraries regarding the pep-

tide interactions with both domains of the E. coli and

human ATP synthases.

In vitro inhibition test of the ATPase activity of

E. coli F1 sector (EcF1)

Unless stated otherwise, all the chemicals were from Sigma

Chemical (St. Louis, MO, USA). Recombinant wild-type

EcF1 was expressed in cells of E. coli strain DK8 trans-

formed with the pBWU13.4 plasmid and purified as

described elsewhere [39,40]. Protein concentrations were

determined using the Pierce BCA Protein Assay Kit

(Thermo-Fisher, Rockford, Illinois, USA). ATPase activi-

ties were determined as reported elsewhere [41], following

inorganic phosphate concentration using the malachite

green phosphate assay [42] in 96-well microplates. All pep-

tides were previously incubated with 1.1 μM EcF1 for 1 h at

30 °C, in the presence of 1 mM ATP, 1 mM Mg(II), 50 mM

TRIS-SO4, pH 8.0. The concentration of inhibitor required

to achieve a 50% reduction in enzymatic activity, IC50, was

obtained using the Hill equation:

vi
v0

¼ ICh
50

ICh
50þ Peptide½ �hþVr,

where v0 and vi are the initial catalytic velocities in

absence and in presence of a given concentration of pep-

tide, [Peptide]. h is the Hill coefficient and Vr is the resid-

ual velocity at a maximal inhibition of the peptide.

Microscale thermophoresis

Microscale thermophoresis (MST) was used to measure the

interaction between EcF1 and the designed peptides in a

Monolith NT.115 instruments (NanoTemper Technologies

GmbH) [43]. The enzyme was labeled with the fluorescent

PPI 
Fragments

Pep�de 
Library

High scored pep�des
(p(E. Coli) > 0.5 ; p(Human) < 0.5; Δp↑)

ATP Synthase
Target (E. coli) 
and off-target 

(human)

ATP Synthases

Interfacial 
fragments

Δp = p(E. Coli)– p(Human)

Fig. 1. Schematic representation of the

applied de novo design strategy. The

procedure starts by extracting multiple

fragments involved in protein–protein
interactions (PPI) from ATP synthase

structures. The ROSE program is used for

generating an evolution-driven peptide

library from native fragments of ATP

synthases. The program PPI-Detect is

employed for the virtual screening of this

library to identify potential binders of the

target ATP synthase.
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red dye NT-647. A peptide stock was serially diluted (1 : 1)

with EcF1 at a constant concentration of 50 nM in 50 mM

TRIS-SO4, pH 8.0M. In all experiments, after a short incu-

bation, the samples were loaded into Monolith™ NT.115

premium Treated Capillaries. Thermophoresis was defined

as the ratio of signals within a 1 s time window ~ 1 s and

~ 20 s after the laser was switched on. The change in the

normalized fluorescence (Fnorm), which is defined as the

ratio of the fluorescence values prior to and after IR laser

activation, was fitted to

Fnorm ¼Uþ B�U

1þ EC50

Peptide½ �
� �h

,

where EC50 is the peptide concentration that gives

half-maximal response, and U and B represent signals

of the enzyme unbound and bound states, respectively.

Results

De novo design strategy and results outlined

The approach presented in this study was implemented

as follows. The fragments from the ATP synthases

were mutated by ROSE to build an extended peptide

library as a source of new inhibitors targeting the

interfaces of the above-mentioned subunits (Fig. S1).

The resulting libraries were then screened to identify

putative binders of E. coli ATP synthase, by using the

program PPI-Detect (https://ppi-detect.zmb.uni-due.de/

), a support vector machine (SVM)-based model

trained to identify whether two protein domains will

interact, and also assessed in the prediction of

protein–peptide interactions [17]. In order to reduce

the likelihood of cross-species reactivity, the

interaction probability of peptide candidates with

domains of human ATP synthase was also scored.

Finally, two peptides selected among the top-ranked

candidates, that is those showing high score with E.

coli and low with human ATP synthase, were syn-

thetized and analyzed with in vitro inhibition and bind-

ing assays. Notably, both peptides, labeled as P1 and

P2, showed concentration-dependent inhibition of the

E. coli ATP synthase in the micromolar order. P1 and

P2 were derived from the hydrophilic portion of the

stalk chain and from the catalytic domains of the ATP

synthase, respectively (Fig. 2).

Generation of the peptide library by using an

evolutionary algorithm

Multiple sequence alignments were carried out on each

of the four sets of fragments extracted from interfaces

between subunits of the ATP synthase (File S2). The

resulting consensus peptides, with sequences between

14 and 41 residues, are summarized in Table S1.

The probabilistic model of evolution implemented in

ROSE was applied to generate sets of mutants from

each of the consensus sequences summarized in Table

S1. ROSE parameters were calibrated so that each set

of mutants shared sequence identities equal or higher

than 70%. These resulting sets were fused in an initial

library of 5428 peptides. Subsequently, the redundancy

within this starting library was eliminated by using

CD-Hit [44] at a maximum identity cut off of 80%,

which resulted in 360 final candidates in the peptide

library. In this way, the evolutionary algorithm used

for generating new peptides provided rationality to the

exploration of the structural space of peptides during

the identification process of hits in drug design.

Fragment 
related to P1

Fragment 
related to P2α

β

ββ

α

γ

δ

ε

OSCP

b

d

CF6

Fig. 2. Model representation of the native

fragments from ATP synthases which are

related to the identified inhibitors P1 and

P2. The fragments are shown in green

cartoons. Schematic representations of

the ATP synthase structure are presented

in surface colored by subunits: α, pink; β,
blue; γ, red; δ, gray; ϵ, orange; subunit
OSCP, yellow; b subunit, tan; d subunit,

purple; and coupling factor 6, cyan. The

chains containing the highlighted

fragments are depicted with transparent

surfaces. The structure on the left

corresponds to the PDB ID 2WSS [67] and

the heptamer on the right to the PDB ID

1NBM [68].

187FEBS Letters 595 (2021) 183–194 ª 2020 Federation of European Biochemical Societies

Y. B. Ruiz-Blanco et al. EvoNeering- and PPI-based peptide design

 18733468, 2021, 2, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.13988 by C

ochraneC
hina, W

iley O
nline L

ibrary on [02/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Virtual screening of the peptide libraries using

PPI-Detect

PPI-Detect [17] was used to score the interaction likeli-

hood between each peptide and all the main subunits

in E. coli’s (Ec) and in the human’s (Hs) F1Fo-ATP

synthase. Finally, eight candidates were extracted

according to three selection criteria: (a) Peptides with

maximum interaction likelihood with HsF1Fo below

0.5. (b) Peptides with maximum interaction likelihood

with EcF1Fo above 0.5. (c) The difference between the

interaction probabilities with E. coli and human

enzymes is at least 0.1 (Table 1).

Three peptides, P1, P2, and P6, out of the eight final

candidates obtained from the virtual screening show a

net positive charge, which is a common feature among

antibacterial and antitumoral peptides. Among these

three candidates, P1 and P2 have the most negative

GRAVY indices, which suggest that they have better

solubility than P6. In addition, they also show the

highest predicted value of helical content, what is

related to the structure of the parent fragment in the

ATP synthase (Fig. 2). We therefore selected these two

promising peptides for synthesis and assessment of

their inhibitory power against EcF1. Since such pep-

tides did not show significant similarities with any

member of the most comprehensive AMP database

reported up to date [45], they can be considered as ‘de

novo-designed’ inhibitors.

In vitro inhibition of EcF1 by the designed

peptides

Peptides P1 and P2 were synthetized and their inhibi-

tion activities were tested against EcF1 by following

inorganic phosphate liberation. Figure 3A shows the

inhibitory effect determined at a single peptide

concentration of 50 μM. Clearly, the two peptides

inhibited the enzyme far beyond experimental uncer-

tainty. To further characterize the inhibitory activities,

dose–response measurements were carried out (Fig. 3

B). Nonlinear analysis of these data using the Hill

equation showed inhibitory potencies in the micromo-

lar range for both peptides (IC50 = 46 � 2 and

53 � 2 μM for P1 and P2, respectively). The Hill num-

ber obtained for P1 (h = 2.91 � 0.36) revealed a posi-

tive cooperativity in the interaction of this peptide

with the enzyme, while that obtained for P2

(h = 0.97 � 0.2) indicated an apparent 1:1 stoichiome-

try. Interestingly, the residual velocity (Vr) was nearly

zero for both peptides, showing that they act as dead-

end inhibitors.

In addition, we used MST as an orthogonal method

to verify the interaction of EcF1 and the two peptides

(Fig. 4). As an example of MST results, Fig. 4A shows

the traces obtained for P1. Titration of the nonfluores-

cent ligand resulted in a gradual change in MST sig-

nal. The dose–response curves yielded results in good

agreement with those obtained by enzyme kinetic

assays (Fig. 4B,C). P1 yielded EC50 and h values of

12.5 � 0.2 μM and 1.6 � 0.1, respectively, again show-

ing a positive cooperativity in the interaction. In the

case of P2, EC50 = 90�30 μM, while h was set to 1 due

to the lack of convergence in the data fitting process.

In summary, the experimental results gave clear sup-

port for a direct inhibitory interaction of the two

designed peptides against EcF1.

Discussion

FOF1-ATP synthase

FOF1-ATP synthase has a sophisticated rotary mecha-

nism that involves the formation and disruption of

Table 1. Summary of the final peptides, and their interaction scores, from the virtual screening of the evolutionary library.

Name Sequence Class Scorea Chargeb GRAVYc Helicityd (%)

P1 SLKEIQEAIDLDRELPKLMQKPPAIDWKYGKANMAKAPNV Class-3 0.12 1 −0.675 60.0

P2 ARQVSALHQRIPSAVGYQPTISFAHFGKDLDALTKEERLT Class-1 0.1 1 −0.370 55.0

P3 TLEKPKFEALKVPIPEDLDYKYTAQVDAEPKE Class-3 0.17 −3 −0.903 0.0

P4 AREVSALLQRIPSAVGYQPTIIFGHFGADLDATTEDERLT Class-1 0.14 −3 −0.077 47.5

P5 AREVSPLLQREPSAVGYQPTISFGGFGSDLDALTENERLT Class-1 0.13 −3 −0.378 40.0

P6 SLKEIQEAIDLARELAKLKQKPPVIDWMYGKATMAQAPSV Class-3 0.11 1 −0.250 55.0

P7 LVIFNRDQQRPTRKSDYSVIAAELLADEQEKATL Class-2 0.1 −1 −0.576 47.1

P8 LVTFNRDEQRPNHKADYSDIAAQLLRDEQEKGYL Class-2 0.1 −2 −1.191 44.1

aThe score values correspond to the difference between the maximum interaction likelihood of the peptides with domains of Escherichia coli

and human ATP synthases.; bThe charge values correspond to the balance between the number of acid (Glu and Asp) and basic (Lys and

Arg) residues.; cThe GRAVY index is provided as indicator of the hydrophilicity of the peptides [70].; dThe helicity is obtained as the fraction

of residues in alpha helix conformation, as predicted by PSIPred [71].; Bold indicates structural features that led to the selection of P1 and

P2 as the top-ranked peptide inhibitors.
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multiple interactions established through transient sub-

unit–subunit interfaces [46–49]. The basic bioenergetic

function of ATP synthase, complex as it is, is not the

only function this enzyme is involved in. As previously

mentioned, it has been found in many other locations

of mammalian cells than mitochondria, playing an

important role in regulating many human cellular pro-

cesses. Consequently, ATP synthase has unexpectedly

become a therapeutic drug target in the treatment of

numerous diseases [50,51], besides its proven usefulness

for antibiotic development [30]. After these findings,

the inhibition of ATP synthase for clinical purposes

has drawn special interest. A wide variety of molecules

has been found to inhibit it, including exogenous natu-

ral compounds and peptides, and endogenous ATP

synthase subunits [29,50]. This chemical spectrum of

molecules inhibiting ATP synthase underscores the

versatility of the enzyme as a molecular target and val-

idates ongoing efforts by different groups to find and

optimize new inhibitors targeting this enzyme to both

develop new antibiotics or compounds to treat human

disorders [29,52–54].
Although the FOF1-ATP synthase complex is inhib-

ited by over 250 natural and synthetic inhibitors, the

number of peptide-like inhibitors reported so far is

relatively low [55]. Most of these peptides with promis-

ing pharmaceutical activities coming from exogenous

natural sources such as venoms, sponges, and insects

have been reported as inhibitors of EcF1 [56–59]. How-

ever, very few endogenous peptide inhibitors of the

FOF1-ATP synthase complex have been discovered so

far. IF1, a small natural regulatory protein which binds

to the hydrophilic F1 portion [60,61], and the ϵ subunit

of F1 in bacteria and chloroplasts [62], are the most rep-

resentative endogenous inhibitors of the ATP synthase.

Nonetheless, the potentialities of other ATP synthase

fragments for being tailored and turned into a novel

inhibitor have not been considered in the de novo design

of endogenous inhibitors. Here, we demonstrate the

suitability of turning enzyme fragments into peptide

inhibitors by combining the rational generation of

diversity-oriented peptide libraries from such protein

fragments and machine-learning algorithms evaluating

the peptide–protein interactions.

De novo design of F1-ATP synthase inhibitors

As mentioned in the introductory section, evolutionary

algorithms have been hardly applied to the in silico

generation of peptide libraries. In general, the

Fig. 3. Inhibition of ATPase activity of EcF1 by the designed peptides. v0 and vi are the initial catalytic velocities in absence and in presence

of a given concentration of peptide [Peptide], respectively. (A) Fraction activity measured at 50 μM peptide concentration. Both peptides

showed a statistically significant catalytic decrease in relation to the peptide-free enzyme (*P < 0.01 compared with the untreated control).

The inhibitory potencies of P1 and P2 are also statistically different between each other at the 0.01 significance level. (B) Dose–response
plot. The data were fitted using the Hill equation. Positive control measurements using quercetin as EcF1 inhibitor yielded IC50 = 38 � 4 μM
and h = 0.95 � 0.01, which are in good agreement with published data [69]. All measurements were performed using the malachite green

phosphate assay, with 1.1 μM EcF1, 1 mM ATP, 1 mM Mg(II), 50 mM Tris-SO4, pH 8.0, 30 °C. Values are means � SD from at least

triplicates.
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application of evolutionary approaches has been

devoted to the optimization steps of peptide drugs.

For instance, the simulated molecular evolution (SME)

algorithm has recently been applied to improve the

peptide selectivity for cancer cells after applying a

machine-learning model predicting peptides with anti-

cancer activity [13]. SME is a stochastic optimization

algorithm that includes genetic variations on peptides/
proteins showing a promising biological activity. This

algorithm is tightly coupled to a selection process rep-

resented by artificial neural networks aimed to opti-

mize a certain biological property [63,64].

Here, we propose a different approach for the

design of bioactive peptides, which also leverages

machine-learning models and evolutionary algorithms

but in a different mode. Our strategy repurposes the

simulation of sequences evolution to the rational gen-

eration of diversity-oriented peptide libraries that are

subsequently explored with machine-learning models

of PPI. This is achieved by applying a flexible evolu-

tionary algorithm, as implemented in ROSE, that com-

prises parameters such as average genetic distance, tree

topology, and insertion and deletion events, among

others. The advantage of using evolutionary algo-

rithms to build libraries of candidates lies in the appli-

cation of previous knowledge on the sites/residues that
account for biological activity when mutations are per-

formed. Thus, a consensus (root) peptide with its cor-

responding conservation scoring profile can be used to

assign different mutation rates to each position in the

sequence. On the other hand, the sequence diversity of

the peptides in the library can be controlled by

Fig. 4. Measurement of EcF1-peptide

binding by MST. (A) MST traces for the

titration of EcF1 with P1. (B) Titration

curve with P1. (C) Titration curve with P2.

All measurements were performed with

50 nM EcF1, 50 mM Tris-SO4, pH 8.0.
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evaluating the ROSE output with an all vs all global

alignment [65]. Here, we calibrated ROSE parameters

to produce peptide libraries with an overall 70% of

identity by using our software called SeqDivA

(Sequence Diversity Analysis), free-available at https://

github.com/eancedeg/SeqDivA [66]. All these evolu-

tionary considerations provide rationality to the gener-

ation of peptide libraries. Thus, the probability to find

new biologically relevant peptides is higher than

approaches using stochastic mutations. In the present

study, the resulting peptide library was screened with

PPI-Detect to identify putative binders of E. coli ATP

synthase and, at the same time, to diminish the likeli-

hood of binding with the human ATP synthase.

Table 2 summarizes the obtained scores for the two

identified inhibitors P1 and P2.

Figure 2 shows the locations of the native fragments

related to P1 and P2 in a model ATP synthase struc-

ture. Notably, P1, which is derived from one of the

chains in the stalk of the protein, is predicted to bind

potentially α, β, and γ subunits (Table 2), that are all

close or in direct contact with the original fragment in

the protein. Similarly, P2 is predicted as a binder of β
subunit, when precisely this peptide originates from a

fragment of an α subunit, the natural partner of the β
subunit in the hexamer ring of F1-ATP synthase.

These predictions are aligned with the base hypothesis

of our design strategy; that is, the new peptides con-

serve the binding properties of their parents. In addi-

tion, the results prove the accuracy of PPI-Detect for

identifying the right interaction partners among the

peptides in the generated library.

The strategy described in this work constitutes the

de novo design of ATP synthase inhibitors, using frag-

ments of interfaces between subunits of the protein as

starting points with no prior evidence of pharmacolog-

ical activity. The two designed peptides displayed IC50/
EC50 values in the micromolar order, a potency that

compares well with those reported for diverse exoge-

nous peptide inhibitors of this enzyme [52,56]. Our

immediate outlook involves improving the membrane

permeability with derivatives of these peptides in order

to evaluate their activity in vivo assays. Nonetheless,

the success of the computational methodology used to

design these peptides has been established and consti-

tutes an attractive framework for the design of pep-

tides to other enzymatic complexes or biomolecular

systems, where the disruption of specific protein–pro-
tein interactions at the interface of subunits or

domains can modulate their function.
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México (UNAM). LPA-B. received fellowship No.

275485 from CONACyT, México. This work was
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Fig. S1. Schematic description of the ROSE algorithm.

Table S1. Consensus peptides derived from the MSAs.

File S1. Multiple Sequence Alignments using MAFFT

for the ATP synthase interfaces (Class 1-4).

File S2. Input file for ROSE for the generation of

related peptides from a consensus peptide (root).
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