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ABSTRACT

INTRODUCTION: Tryptophan is the precursor of kynurenine pathway (KP) metabolites which regulate immune tolerance, energy metabo-
lism, and vascular tone. Since these processes are important during pregnancy, changes in KP metabolite concentrations may play a role
in the pathophysiology of pregnancy complications. We hypothesize that KP metabolites can serve as novel biomarkers and preventive ther-
apeutic targets. This review aimed to provide more insight into associations between KP metabolite concentrations in maternal and fetal
blood, and in the placenta, and adverse maternal pregnancy and fetal outcomes.

METHODS: A systematic search was performed on 18 February 2022 comprising all KP metabolites, and keywords related to maternal
pregnancy and fetal outcomes. English-written human studies measuring KP metabolite(s) in maternal or fetal blood or in the placenta in
relation to pregnancy complications, were included. Methodological quality was assessed using the ErasmusAGE quality score (QS) (range:
0-10). A meta-analysis of the mean maternal tryptophan and kynurenine concentrations in uncomplicated pregnancies was conducted.

RESULTS: Of the 6262 unique records, 37 were included (median QS =5). Tryptophan was investigated in most studies, followed by kynure-
nine, predominantly in maternal blood (n=28/37), and in the second and third trimester of pregnancy (n=29/37). Compared to uncompli-
cated pregnancies, decreased tryptophan in maternal blood was associated with an increased prevalence of depression, gestational
diabetes mellitus, fetal growth restriction, spontaneous abortion, and preterm birth. Elevated tryptophan was only observed in women with
pregnancy-induced hypertension compared to normotensive pregnant women. In women with preeclampsia, only kynurenic acid was
altered; elevated in the first trimester of pregnancy, and positively associated with proteinuria in the third trimester of pregnancy.

CONCLUSIONS: KP metabolite concentrations were altered in a variety of maternal pregnancy and fetal complications. This review implies
that physiological pregnancy requires a tight balance of KP metabolites, and that disturbances in either direction are associated with
adverse maternal pregnancy and fetal outcomes.
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growth restriction, preterm birth, spontaneous abortion

RECEIVED: June 26, 2022. ACCEPTED: October 10, 2022. DECLARATION OF CONFLICTING INTERESTS: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this article.
TYPE: Review

CORRESPONDING AUTHOR: Régine PM Steegers-Theunissen, Department of
Obstetrics and Gynecology, Erasmus MC, University Medical Center, P O Box 2040,

Rotterdam 3000 CA, The Netherlands. Email: r.steegers@erasmusmec.nl

FUNDING: The author(s) disclosed receipt of the following financial support for the research,
authorship, and/or publication of this article: This research was funded by the Department of
Clinical Chemistry of the Erasmus MC, University Medical Center, Rotterdam, The Netherlands.

Introduction

The essential amino acid tryptophan is required for protein
synthesis, and is therefore important for growth and develop-
ment of the placenta and fetus. Tryptophan is also the substrate
for multiple metabolic pathways, including the serotonin

“Both authors contributed equally to this work.

pathway, tryptamine pathway and indole pathway.! However,
by far the greatest proportion of tryptophan (>95%) is metab-
olized via the kynurenine pathway (KP). KP metabolites have
pro- and antioxidant effects and are involved in many physio-
logical processes that play a key role in pregnancy, including the
regulation of vascular tone in the mother and placenta, immune
tolerance, and neuroprotection.>? Indeed, the KP, and equally
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Figure 1. Overview of the kynurenine pathway (modified from: Broekhuizen et al®).
Abbreviations: IDO, indoleamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; NAD+, nicotinamide adenine dinucleotide.

important, the transport of its metabolites across the placenta,
affect placental function and pregnancy outcome.*”

The KP is regulated by the hepatic tryptophan 2,3-dioxyge-
nase (TDO)2, and the extrahepatic indoleamine 2,3-dioxyge-
nase (IDO)1 and IDO2.3¢ These enzymes catalyze the
conversion of L-tryptophan into N-formylkynurenine, which
can be further metabolized into L-kynurenine, kynurenic acid,
anthranilic acid, 3-hydroxy-anthranilic acid, quinolinic acid,
picolinic acid, and nicotinamide adenine dinucleotide (NAD™)
(Figure 1). In 1998, Munn et al” revealed that inhibition of
IDO resulted in pregnancy loss in mice, indicating that the KP
is crucial to maintain pregnancy. The placenta is one of the few
human tissues that constitutively expresses IDO1 under physi-
ological conditions.?8 Its expression and activity are reduced in
pregnancies complicated by fetal growth restriction (FGR) and
preeclampsia (PE).59-12

Under physiological conditions, total tryptophan concentra-
tions decrease throughout pregnancy in maternal blood, while
kynurenine concentrations remain constant.!> However, reference
values of KP metabolites during pregnancy are currently lacking,
and it is unclear how changes in tryptophan and kynurenine con-
centrations affect the downstream KP metabolites. Nevertheless, it
is essential that KP metabolite concentrations are maintained

within a certain range throughout pregnancy. This was demon-
strated in animal studies in which tryptophan supplementation
improved fetal growth and neonatal outcome, while excessive tryp-
tophan intake led to a decreased placental and fetal weight and
increased fetal mortality.1418

Although the tryptophan metabolizing pathways toward mel-
atonin and serotonin production have been implicated to play a
role in pregnancy complications,'®-?* little is yet known about
how alterations in tryptophan metabolism into KP metabolites
relate to pregnancy complications. Variations in KP metabolite
concentrations as potential cause or consequence of pregnancy
complications, may serve as novel biomarkers and/or (preventive)
therapeutic targets. Therefore, this systematic review provides an
overview of the current literature on KP metabolites variations
during pregnancy in maternal blood, fetal blood, and the placenta
in relation to maternal pregnancy and fetal outcomes.

Methods

This systematic review was performed in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines,” and the Meta-analysis of
Observational Studies in Epidemiology (MOOSE) guide-

lines.?¢ The protocol was designed a priori and registered in
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PROSPERO, an international prospective register of system-
atic reviews (registration number: CRD42021273120).

Search strategy, information sources, and eligibility
criteria

A comprehensive literature search was performed in Embase,
Medline, Web of Science, and Cochrane Central Register of
Controlled Trials databases, including studies published before
18 February 2022. The full search strategy is shown in the
Supplemental Appendix, but in short, it included synonyms of
all KP metabolites, and terms related to the periconception and
pregnancy periods, and maternal pregnancy and fetal outcomes.

Studies were eligible if KP metabolites were measured during
the periconception period or pregnancy in maternal or fetal
blood or in the placenta, and were related to maternal pregnancy
or fetal outcomes. We included human studies written in the
English language. Letters, editorials, opinion papers, case reports,
case series, conference abstracts, and reviews were excluded.

Study Selection and Data Extraction

Three independent reviewers (A.J.P.S. (initial search), M.B.
(search update), and S.K.M.v.Z.) screened the title and abstract
of unique records identified by the search. Next, the full texts of
the selected studies were retrieved and assessed for final inclu-
sion by two independent reviewers (M.B. and S.K.M.v.Z.).
These 2 reviewers extracted the data from the included studies
independently by using a pre-specified template. Throughout
all stages of the selection and extraction processes, disagree-
ments between the 2 reviewers were resolved by consensus or
by consultation of a third reviewer (L.v.R.).

Assessment of risk of bias

Two independent reviewers (M.B.and S.K.M.v.Z.) assessed the
risk of bias using the ErasmusAGE quality score.?”-8 This qual-
ity score consists of 5 items comprising study design (0 =cross-
sectional, 1=longitudinal, 2 =intervention), study size (0=<100,
1=100-500, 2=>500 participants), exposure (0 =not reported,
1=moderate, 2=adequate exposure measurement), outcome
measurement (O=not appropriate, 1=moderate, 2=adequate),
and adjustments for confounders (0=unadjusted, 1 =adjusted for
key confounders, 2=adjusted for additional covariates). This
results in a quality score ranging between 0 and 10, with 10 rep-
resenting the highest quality. The ErasmusAGE quality score is
based on previously published scoring systems developed for in
vivo clinical studies.?”?¢ However, no such scoring system exists
for ex vivo studies.

Data synthesis

We performed a narrative synthesis of the results of the included
studies, grouped into maternal pregnancy and fetal outcomes.
The direction of the associations between the KP metabolite
concentrations and maternal pregnancy and fetal outcomes are

presented in tables (Tables 2-6). The measures of effect were
represented as in the original studies, and displayed as effect esti-
mate (mean, median, f, or fold change (FC), with its respective
error measure (standard deviation (SD), standard error (SE)),
95% confidence interval (95% CI), or interquartile range (IQR)),
sample size (V) and P-value. If the measures of effect were not
reported, the raw data (already available or provided upon
request) were used to perform statistical analyses: linear regres-
sion analysis for continuous outcome variables, and an inde-
pendent sample #-test to compare KP metabolite concentrations
between 2 groups.

Since KP concentrations depend on the timing of sampling
during pregnancy,' and reference values during uncomplicated
pregnancy are lacking, a meta-analysis was conducted of the
means of KP metabolite concentrations per trimester of preg-
nancy with the condition that at least 3 studies reported abso-
lute values of a specific KP metabolite in a similar matrix
(maternal or fetal blood, or in the placenta). All statistical anal-
yses were performed using SPSS (IBM SPSS Statistics 25) and
R (R for Windows, version 3.5, R Package Meta’). A

P-value <.05 was considered statistically significant.

Results
Study selection

The search identified 6262 unique records, of which 64 were
found eligible for full-text reading after title and abstract
screening. After reading the full texts, 37 studies were finally
included (Figure 2).

Study characteristics

The most important study characteristics are summarized in
Table 1, showing that tryptophan and kynurenine were most
frequently investigated compared to the other KP metabolites.
A minority (n=11) of the studies also measured other KP
metabolites, including N-formylkynurenine, kynurenic acid,
anthranilic acid, 3-hydroxykynurenine, xanthurenic acid,
3-hydroxyanthranilic acid, quinolinic acid, and picolinic acid.
The KP metabolites were predominantly determined in mater-
nal blood, but also in umbilical cord blood, and placental tissue.
The KP metabolites were studied in relation to various maternal
pregnancy and fetal outcomes. Maternal pregnancy outcomes
included depression and anxiety during pregnancy, gestational
diabetes mellitus (GDM), PE and pregnancy-induced hyper-
tension (PIH), whereas fetal outcomes comprised FGR, birth
weight, preterm birth (PTB), preterm premature rupture of
membranes (PPROM), and spontaneous abortion (SA).

Most of the studies were observational iz vivo studies
(n=31), including case-control studies (n=16), cohort studies
(n=11), and cross-sectional studies (n=4). The 6 ex vivo stud-
ies investigated metabolism of tryptophan along the KP in
placental tissue from PE or FGR pregnancies.>%1:47,57.63 In
total 16 studies used metabolomics to identify underlying bio-

logical pathways and biomarkers in multiple pregnancy
complications, 38:40:41,43,4447,48,52-55,57,58,60-62



International Journal of Tryptophan Research

Records identified (n = 9,859):
Embase (n = 4,803)
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Figure 2. Flowchart of the process of literature search and selection of studies for this systematic review.

Abbreviations: KP, kynurenine pathway.

The ErasmusAGE quality score of the in vivo studies
ranged from 3 to 9, with a median of 5 (IQR =4-6, Figure 3).

The boxplots show the medians with interquartile ranges,
the minimum and the maximum values.

Kynurenine Pathway Metabolite Concentrations in
Uncomplicated Pregnancies

An overview of maternal tryptophan and kynurenine concen-
trations from the uncomplicated pregnancy populations in the
included studies is given in Table 2. A meta-analysis could only
be performed on the second and third trimester concentrations
(Supplemental Figure 1). Figure 4 displays the pooled mean
concentrations or, when not available, the concentrations from
individual studies, including concentrations in non-pregnant
state and postpartum. It can be concluded that the maternal
tryptophan concentration decreases between the second and
third trimester of pregnancy, while the maternal kynurenine
concentration remains constant.

Maternal pregnancy outcomes

Depression and anxiety
Maternal blood. Seven studies (6 cohort, 1 cross-sectional)
examined the association between KP metabolites and depres-

sive symptoms (Table 3).31-37 Only one cohort study (QS=7)

determined KP metabolites in the first trimester of pregnancy,
and found no associations with (the severity of) depressive
symptoms.3!

Of the 3 studies performed in the second trimester of preg-
nancy,’1"33 one cross-sectional study (QS=5) revealed lower
tryptophan concentrations in women with a more depressed
mood assessed by the depression/dejection subscale of the
Profile of Mood Status (POMS-D; range 0-60), with a higher
score indicating a more depressed mood (POMS-D scores
>20 vs <20=56.8 vs 63.2pmol/L, N=23 vs 351, P=.017).33
No such associations were found for kynurenine, kynurenic
acid, quinolinic acid and picolonic acid.31-33

Out of 5 third trimester cohort studies,313437 Scrandis
et al’” (QS =3) showed that tryptophan was negatively associ-
ated with depression (B=-.277, N=27, P=.04), however, the
other 4 larger studies did not confirm this.3134-3¢ Interestingly,
Scrandis et al’” assessed depressive symptoms using the struc-
tured Interview Guide for the Hamilton Depression Rating
Scale-Seasonal Affective Disorder (SIGH-SAD), while the
other studies used the more recently validated Edinburgh
Postnatal Depression Scale (EPDS).31,34-36

Four of these third trimester cohort studies also investi-
gated the association between kynurenine and depres-
sion.33737 The results were conflicting, as these studies
reported negative (QS=6, p=-.002, SE=0.001, P=.03)%,
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ErasmusAGE quality score
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Fetal outcomes
(n=11)

Maternal pregnancy outcomes
(n=20)

Figure 3. Boxplots of the ErasmusAGE quality score for the included in
vivo studies grouped into studies investigating maternal pregnancy
outcomes (depression and anxiety during pregnancy, gestational
diabetes mellitus, preeclampsia, and pregnancy-induced hypertension;
n=20) and fetal outcomes (fetal growth restriction, birth weight, preterm
birth, preterm premature rupture of membranes, spontaneous abortion;
n=11). The boxplots show the medians with interquartile ranges, the
minimum and the maximum values.

positive (QS =7, EPDS =13: OR (%) =256.6,95% CI=21.3,
948.6, N=82, P=.021),3! or no associations3+36:37 between
kynurenine and depressive symptoms. Furthermore, Sha
et al’! reported a positive association between quinolinic acid
and (the severity of) depressive symptoms (QS=7, total
EPDS: OR (%)=41.5, 95% CI=1.8, 96.6, N=82, P=.039;
EPDS=13: OR (%) 98.2, 95% CI=10.4, 255.7, N=82,
P=.022). Kynurenic acid, anthranilic acid, 3-hydroxykynure-
nine, and 3-hydroxyanthranilic acid were not associated with
(the severity of ) depressive symptoms.313

Three cohort studies investigated tryptophan and kynurenine
in relation to levels of anxiety.32343> None of these studies found
an association between tryptophan or kynurenine and anxiety
symptoms during pregnancy. In all 3 studies the state of anxiety
was measured using the State-Trait Anxiety Inventory (STAI).64

Summary. Low tryptophan concentrations in maternal
blood in the second and third trimester of pregnancy may be
associated with a more depressed mood during pregnancy. On
the other hand, third-trimester quinolinic acid was positively
associated with depression during pregnancy, while the other
KP metabolites were not consistently altered in the second or
third trimester of pregnancy. None of the studies observed an
association between second- and third-trimester tryptophan
and kynurenine and anxiety during pregnancy.

Gestational diabetes mellitus.

Maternal blood. Four studies (1 cohort, 3 case-control)
investigated KP metabolites in relation to GDM (Table 4).38-4
One case-control study (QS=5) determined KP metabolites
in the first trimester of pregnancy and suggested that kynure-
nine was elevated in women who developed GDM (FC=1.42,
GDM vs control N =34 vs 34, P=.03).38 In these women, tryp-
tophan, kynurenic acid and 3-hydroxyanthranilic acid concen-
trations were not altered.3?

The other 3 studies were performed in the second trimester
of pregnancy.®*-* Two of these identified decreased tryptophan
concentrations in women with GDM compared to controls
through metabolomics (Zheng et al*: QS=6,FC=0.85, GDM
vs. control N=30 vs 30, P=.001; Leitner et al*l: QS=4, mean
relative concentrations (SD)=0.39 (0.28) vs 0.53 (0.35), GDM
vs control N=14 vs 18, P=.025 own analysis). However, Jiang
et al’? (QS=8) found no associations between tryptophan and
GDM in a large cohort study. In all studies, GDM was diag-
nosed at 24 to 28weeks of gestation using a routine oral glu-
cose tolerance test (OGTT) and the International Association
of Diabetes and Pregnancy Study Groups (IADPSG) criteria
for diagnosis of GDM.38-41

Summary. A low maternal tryptophan concentration in the
second trimester of pregnancy may be associated with GDIM. This
association was not found for other KP metabolites. Although
data in the first trimester of pregnancy are limited, kynurenine

might be positively associated with developing GDM.

Preeclampsia. Ten studies (5 case-control, 1 cohort, and 4 ex
vivo) investigated associations between KP metabolites in
maternal blood, fetal blood, and placental tissue and the devel-
opment of PE (Table 5).>9-11:42-47

Maternal blood. Only one study investigated the association
between KP metabolites in the first trimester of pregnancy
and PE, and found elevated kynurenic acid concentrations in
women who later developed PE (QS=9, mean (SE)=0.0233
(0.00077) vs 0.0207 (0.00013) umol/L, N=2936, P<<.001). At
this stage of pregnancy, tryptophan and other KP metabolites
were not altered.*?

In women who had already developed PE in the third tri-
mester of pregnancy, maternal kynurenic acid, as well as pico-
linic acid concentrations were positively associated with
proteinuria (QS =4, kynurenic acid: r=.684, N=40, P<.025;
picolinic acid: 7=.641, N=40, P<<.031), suggesting a relation
with severity of this disease. However, the rise in the concen-
trations of these metabolites was not large enough to result in
statistically significant different concentrations between
women with PE and uncomplicated pregnancies in this study.*
Most studies did also not identify altered tryptophan concen-
trations in women with PE in the third trimester of pregnancy
(Zhao et al*: QS =4, median (SE) = 37.0 (1.2) in PE vs 34.5
(1.3) in controls, N=40, P=.05 ; Liu et al*: QS=4, N=38,
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Table 2. Maternal tryptophan and kynurenine concentrations (umol/L) throughout uncomplicated pregnancies per trimester of pregnancy.

AUTHOR QS I\ MATRIX FASTING METHOD OF DETERMINATION TRYPTOPHAN, KYNURENINE,
MEAN (SD) MEAN (SD)

1st trimester

Sha et al®! 7 90 Plasma NM HPLC + UV-detector 32.9 (5.4) 1.34 (0.33)

2nd trimester

Nilsen et al42 9 2820 Plasma No GC-MS/MS, LC-MS/MS 59.0 (9.0) 1.11 (0.21)

Jiang et al®® 8 366 Serum Yes UHPLC-MS/MS 43.4 (13.1)

van Lee et al3* 8 243 Plasma Yes LC-MS/MS 49.4 (8.2) 1.06 (0.20)

Sha et al®! 7 76 Plasma NM HPLC + UV-detector 28.4 (4.3) 1.32 (0.17)

Keane et al®? 6 104 Plasma NM HPLC + UV-/fluorescence-detector ~ 32.5 (8.9) 0.99 (0.27)

Groer et al® 5 374 Serum NM HPLC + UV-/fluorescence-detector ~ 62.6 (15.2) 1.90 (0.75)

Virgiliou et al®’ 5 35 Serum NM LC-MS 35.3(6.2)

3rd trimester/at birth

Sha et al®! 7 69 Plasma NM HPLC + UV-detector 28.4 (4.3) 1.32 (0.17)

Nazzari et al®® 6 97 Serum NM HPLC + UV-/fluorescence-detector ~ 54.4 (12.0) 1.00 (0.37)

Grafka et al*® 5 105 Plasma Yes IEC + amino acid analyzer 35.0 (9.0)

Zhao et al*s 4 20 Serum Yes LC-MS/MS 34.5 (5.8) 0.85 (0.45)

Kudo et al'® 4 12 Plasma NM HPLC + UV-detector 32.7 (4.8) 112 (0.17)

Valensise et al®° 4 12 Plasma NM HPLC + UV-detector 35.6 (9.5)

Scrandis et al®” 3 27 Serum NM LC + UV-/fluorescence-detector 44.9 (9.5) 1.40 (0.40)

Abbreviations: GC, gas chromatography; HPLC, high-performance liquid chromatography; IEX, lon-exchange chromatography; KP, kynurenine pathway; LC, liquid
chromatography; MS, mass spectrometry; MS/MS, tandem mass spectrometry; NM, not mentioned; UHPLC, ultra-high-performance liquid chromatography; UV,
ultraviolet.

P= .05; Jddskeldinen et al*: QS=6,N=71, P=.05). Only one
study reported increased tryptophan in late-onset PE specifi-
cally (QS=6, mean (SD): 42.8 (6.9) vs 32.7 (4.8) pmol/L,
N=33, P<.001).1 3-Hydroxyanthranilic acid levels were ele-
vated in women who had already developed PE in one metabo-
lomics study (QS=6, FC=1.76, N=67, P=.00014),* but this
was not confirmed by targeted analysis nor in another metabo-
lomics study.*#

Fetal blood. Concentrations of KP metabolites in the
umbilical cord blood were similar between PE and uncompli-
cated pregnancies.*46

Placenta. Placental concentrations of tryptophan were
increased in early-onset PE (median (IQR)=26.7 (20.6-30.2)
vs 20.5 (15.7-24.1) ng/g tissue, N = 24, P=.005),> and decreased
in late-onset PE (mean (SD): 3.85 (0.88) vs 4.86 (1.30) pg/g
tissue, N=36, P=.01).1" Moreover, preeclamptic placentas
secreted less kynurenine compared to healthy placentas ex vivo,
measured by metabolomics (relative difference=0.63, N=12,

P<.00005)* as well as targeted analysis (Kudo et al'®: 0.29
(0.04) vs 0.48 (0.06) nmol/mg/min, N=22, P<.01 ; Zardoya-
Laguardia et al: N=24, P<.05), implying reduced placental
IDO1 activity.

Summary. Kynurenic acid was elevated in the first trimester
of pregnancy in women with PE. Furthermore, both kynurenic
acid and picolinic acid were positively associated with protein-
uria in women with PE in the third trimester of pregnancy.
None of the other KP metabolites was changed in maternal
blood, nor was any KP metabolite altered in umbilical cord
blood. Compared to healthy placentas, placental kynurenine
production was lower in preeclamptic placentas, while the pla-
cental tryptophan concentration was increased in early-onset
PE but decreased in late-onset PE.

Pregnancy-induced hypertension

Maternal blood. Two case-control studies investigated
alterations in tryptophan concentrations in the third trimester
in pregnancies complicated by PIH. In the largest of the 2
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Figure 4. Tryptophan and kynurenine concentrations in healthy women, before pregnancy, as well as in the first trimester, second trimester, third
trimester of pregnancy, and postpartum. The concentrations in the second and third trimester of pregnancy represent the pooled means * standard error
of tryptophan (N=7) and kynurenine (N=5), depicted as filled circles and squares, respectively. The open circles and squares represent values from

single studies.

studies, tryptophan was significantly higher in women with
PIH compared to controls (QS=5, mean (SD): 99 (7) vs 35
(9) pmol/L, N=210, P<.00005).# However, in a smaller
cohort study, this difference was not observed (QS =4, mean
(SD): 38.1 (10.3) vs 35.6 (9.5) pmol/L, N =22).%0

Although no studies were conducted to investigate varia-
tions of other KP metabolites in PIH specifically, the kynure-
nine concentration was lower in the first trimester in pregnant
African American women who developed PIH compared to
those who developed PE as identified through metabolomics
(QS=7,N=100, P<.05).%

Fetal blood. No alterations of tryptophan were found in
the umbilical cord blood of pregnancies complicated by PIH
(mean (SD): 72.1 (16.8) vs 80.2 (19.6) pmol/L, N =22).50

Summary. The tryptophan level is higher in women with
PIH at the end of pregnancy compared to normotensive preg-
nant women.

Fetal outcomes

Fetal growth restriction. Eight studies (3 cohort, 2 cross-
sectional, 2 case-control, and 1 ex vivo) investigated the associa-
tions between KP metabolites in maternal blood, fetal blood, or
placenta and FGR or birthweight (Table 6).%°1-56:

Maternal blood. No statistically significant differences were
observed in first-trimester tryptophan concentrations between
women who did or did not carry a FGR child in two studies
(QS =5 for both).”1** Although in adult pregnancies the first-
trimester tryptophan concentration was not associated with
low birthweight, it was associated with low birthweight in
adolescent pregnancies (QS=5, <2500g, N=39, P=.043).5

At birth tryptophan concentrations were also lower in women
who carried a FGR child compared to uncomplicated pregnan-
cies measured by metabolomics (QS=5, mean (SD) pmol/L:
15.4 (11.4) vs 24.5 (7.1), N=84, P<.001).53> However, the
third-trimester kynurenic acid concentration was not related
to birthweight in uncomplicated pregnancies (QS=4).°

Fetal blood. Most data on umbilical cord blood variations
in FGR were acquired using metabolomics and demonstrated
conflicting results. One study reported a reduced tryptophan
concentration in FGR fetuses (QS=5, mean (SD) pmol/L:
18.1 (14.8) vs 35.6 (7.3), N =84, P<.001 (own analysis of sup-
plemental data)),’® and another study showed a trend toward
a reduced tryptophan concentration in selective FGR twins
compared to their appropriate-for-gestational-age co-twins
(QS=4, N=20, no P-value reported).’> In contrast, a metab-
olomics study revealed higher tryptophan concentrations in
FGR (QS=5, N=43, P<.0001) and found that tryptophan
was an excellent discriminator between FGR and appropriate-
for-gestational-age fetuses, while kynurenine was unaltered.>

Tryptophan was not associated with birthweight (QS=7,
N=42),°2 nor was kynurenic acid (QS=4, N=32).5¢ Only the
isomeric form of methoxykynurenate, a product of xanthurenic
acid, was negatively associated with birthweight (QS=7,N =42,
P<.05).52

Placenta. Placental kynurenine formation, as measure for
IDO1 activity, was significantly lower in FGR compared to
preterm controls (N=18, P<.01).” A metabolomics study of
the placental explant secretome revealed that with increasing
O, levels, the concentration of tryptophan decreased, while
kynurenine increased in the medium of both explants from
small for gestational age and appropriate-for-gestational-age
fetuses.>”
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Table 4. Summary of studies that investigated associations between maternal KP metabolite concentrations and gestational diabetes mellitus.

AUTHOR Qs METHOD
1st trimester
McMichael et al38¢ 5

Metabolomics  GDM vs control =

2nd trimester

Jiang et al®® 8 Targeted GDM =
Zheng et al*® 6 Metabolomics  GDM vs control |
Leitner et al*! 4 Metabolomics ~ GDM vs control |

COMPARISON TRP KYN NFK KA AA 3-HK XA

3-HAA QA PA

Symbols: blank, not investigated or not identified in case of metabolomics; =, no association; N negative association/lower concentration; 1, positive association/higher
concentration. Abbreviations: Trp, tryptophan; Kyn, Kynurenine; KA, Kynurenic acid; NFK, N-formylkynurenine; AA, anthranilic acid; 3-HK, 3-hydroxykynurenine; XA,
xanthurenic acid; 3-HAA, 3-hydroxyanthranilic acid; QA, quinolinic acid; PA, picolinic acid; KP, kynurenine pathway; GDM, gestational diabetes mellitus.

Summary. Although data on maternal KP metabolites in
FGR were limited, low tryptophan concentrations in both
maternal and fetal blood may be associated with FGR. Despite
reduced placental kynurenine production in FGR, kynurenine
seemed unaltered in fetal blood.

Preterm birth

Maternal blood. Two metabolomics studies reported a
significant association between tryptophan metabolites in
the first trimester of pregnancy and SA,>%¢0 a condition that
may be considered an extreme form of PTB. While one of
these studies found a decreased tryptophan concentration in
SA (QS=6,FC=0.77, N=32, P=.0026),°° kynurenine was
found to be increased in the other study (QS=4, FC=1.41,
N=101, P=.04),°8 but neither study confirmed each other’s
finding.

Three studies (2 case-control, 1 cohort) investigated metab-
olomic profile and amino acid profile variations in relation to
PTB.>¢* One metabolomics study found lower second-tri-
mester tryptophan concentrations in women who gave birth
prematurely (QS=5, mean (SD) = 31.11 (5.52) vs 35.31 (6.19)
pmol/L, N =70, P=.0045).°* However, this association was not
confirmed by the other 2 studies through self-reported dietary
questionnaires in the first trimester of pregnancy (QS=5,
N=160)* or metabolomics in the third trimester of pregnancy
before initiation of steroid or tocolytic therapy (QS=6,
N=143).2 Also, third-trimester kynurenine concentrations

were unaltered (QS =6, N =143).62

Fetal blood. Only one study investigated KP metabolites
in umbilical cord blood in relation to PTB, in PPROM spe-
cifically. In PPROM with intrauterine infection kynurenine
was decreased (P=.0019, N=24), while kynurenic acid was
increased (P=.0005, N =24) when compared to term deliver-
ies.®3 Similar results were observed in PPROM without infec-
tion, although no statistics were mentioned. This study found
no alterations in 3-hydroxyanthranilic acid, quinolinic acid,
and picolinic acid concentrations.®3

Placenta. Similar to the umbilical cord blood concentra-
tions, ex vivo placental kynurenine formation was signifi-
cantly lower in preterm compared to term controls (N =20,
P<.05).°

Summary. SA was associated with a lower tryptophan, but
a higher kynurenine concentration in maternal blood in the
first trimester of pregnancy compared to uncomplicated preg-
nancies. Similarly, the second-trimester tryptophan concentra-
tion was decreased in premature versus term pregnancies. The
kynurenine concentration was lower in the premature-born
placenta, and fetal blood of PPROM-pregnancies compared

to controls.

Discussion

The present study summarized the associations between KP
metabolite variations in maternal blood, fetal blood, and placen-
tal tissue, and maternal pregnancy and fetal outcomes (Figure 5).
KP metabolites were mainly investigated in maternal blood, in
the second and third trimester of pregnancy, while data on first-
trimester KP metabolites were scarce. Compared to uncompli-
cated pregnancies, a low maternal tryptophan concentration was
associated with depression, GDM, FGR, PTB, and SA, while a
high tryptophan concentration was associated with PIH.
Furthermore, a high kynurenic acid concentration in the first tri-
mester of pregnancy was associated with developing PE. KP
metabolites in fetal blood were investigated in relation to PE,
PIH, FGR,and PTB, and only revealed a lower tryptophan con-
centration in FGR compared to appropriate-for-gestational-age
fetuses. In the placenta, the kynurenine concentration and
formation were attenuated in pregnancies complicated by PE,

FGR, and PTB.

Maternal pregnancy outcomes

Depression. In this study, we found that lower maternal tryp-
tophan and higher maternal quinolinic acid concentrations in
the second and third trimester of pregnancy may be related to
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Figure 5. Summary of kynurenine pathway metabolite alterations in maternal and fetal blood, and in the placenta in relation to pregnancy complications.
This figure focusses on kynurenine pathway metabolite alterations, and does not include unmeasured and undetected kynurenine pathway metabolites.

severity of depression during pregnancy. Quinolinic acid is
considered neurotoxic,®% and studies performed in non-
pregnant populations also found associations between
increased concentrations of quinolinic acid and depression.®
The decreased tryptophan and increased quinolinic acid con-
centrations in depression during pregnancy may, at least
partly, be explained by changes in the gut microbiome, which
was shown to regulate circulating KP metabolites, and was
altered in patients with depressive disorders, but description
of the underlying mechanisms falls beyond the scope of this
review.68-72

Gestational diabetes mellitus. Two metabolomics studies
reported decreased tryptophan concentrations in women with
GDM,*# which was however not confirmed by the large
cohort study of Jiang et al® and the recent study of McMi-
chael et al.38 The latter study did show an increased kynure-
nine concentration in women with GDM. Although results
are ambiguous, potentially decreased tryptophan and
increased kynurenine concentrations in maternal blood sug-
gest an increased flux of tryptophan through the KP, possibly
due to upregulation of IDO1 by the inflammatory state of
GDM.33.73

Preeclampsia. An elevated kynurenic acid concentration in
the first trimester of pregnancy before the onset of PE,*
and its correlation with proteinuria in women with PE#
could either be a consequence of early PE disturbances or an
actual pathophysiological factor in PE. Although trypto-
phan and kynurenine concentrations were not altered in
women with PE, the kynurenic acid concentration was ele-
vated. Yet, kynurenine formation was attenuated in PE pla-
centas. These discrepancies between placental and maternal

KP changes indicate that the maternally elevated kynurenic
acid concentration reflects KP alterations downstream of
kynurenine and is unlikely a result of placental alterations.?
Instead, it might originate from another (yet unknown)
source, and did not seem to affect the fetal kynurenic acid
concentration.*

Pregnancy-induced hypertension. Given the lower kynurenine
concentration in women with PIH versus PE as identified
through metabolomics,*® and the similar concentration of
kynurenine in PE and healthy women, it seems that women
with PIH have both an increased tryptophan and a decreased
kynurenine concentration.*>? These data thus suggest a
decreased flux of tryptophan through the KP in maternal
blood in PIH which differs from PE, and potentially repre-
sents an altered activity of other KP degrading enzymes, such

as hepatic TDO2.

Fetal outcomes

Fetal growth restriction. Given that tryptophan is an essential
amino acid and thus required for fetal growth, the relation
between tryptophan supply and fetal growth is evident. Indeed,
the tryptophan concentration was lower in the umbilical cord
blood of fetuses with FGR compared to controls.’ Reduced
maternal tryptophan concentrations in FGR pregnancies,
though only observed at the end of pregnancy, corroborate with
the hypothesis that insufficient maternal tryptophan intake can
explain the lower fetal and maternal tryptophan concentrations
in FGR pregnancies.>!,535

Preterm birth. Women with SA and women with PTB both
displayed lower tryptophan concentrations’®¢%¢! than
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women with term pregnancies. Low maternal tryptophan
concentrations in PTB may affect fetal KP metabolites, but
this remains subject for future studies. Maternal kynurenine
concentrations were elevated in SA. It should be noted that
in SA and PTB, KP metabolites have only been measured in
maternal blood through metabolomics, or were calculated
using self-reported dietary questionnaires, and therefore
require more research.

Placental kynurenine pathway metabolites

Placental conversion of tryptophan into kynurenine, represent-
ing IDOT1 activity, was decreased in multiple human pregnancy
complications including PE, FGR, PTB, and SA,5%1047.7475
suggesting that impaired KP flux may have a pathological role
in human pregnancy complications.

Tryptophan can induce IDO1-dependent vasodilation in
placental arteries, but in contrast to the decreased placental
production of kynurenine by IDO1, vasodilation by trypto-
phan was enhanced in PE.> A possible explanation for this
observation might be that the placental KP function is deter-
mined by tryptophan transport rather than by IDO1 activ-
ity.>7¢ Another potential explanation is that PE and FGR are
both associated with placental insufficiency and hypothesized
to encompass a hypoxic placental environment. A lower con-
centration of the IDO1 cofactor O, was shown to reduce
IDO1 expression”” and attenuate placental metabolism of
tryptophan into kynurenine.’” Thus, this may compromise
the formation of KP metabolites iz vivo, in agreement with
the reduced quinolinic acid formation in diet-induced FGR.”8
As major source of de novo NAD™ formation, such a defi-
ciency may contribute to insufficient placental development.
Yet, this is contradicted by the observation that concentra-
tions of the NAD™ precursor, quinolinic acid, were similar
between PE and healthy placentas.>10

Although in this review we specifically focused on trypto-
phan metabolism through the KP, it is important to acknowl-
edge that KP alterations may also dysregulate the serotonin
and melatonin pathways by changing tryptophan availability
and aryl hydrocarbon receptor activation by kynurenine, and
consequently affect mitochondrial function.” 8 Indeed, mela-
tonin and serotonin were suggested to have a role in the patho-
genesis of depression during pregnancy, GDM, PE, and FGR

as well.19-24

Strengths and limitations

This study is the first to provide a comprehensive overview of
the current state of knowledge on variations of KP metabo-
lites in complicated human pregnancies. Publication bias was
limited by including all years of publication, performing qual-
ity assessment through the validated ErasmusAGE quality
score,?”?8 and by contacting corresponding authors directly
for any unreported data and additional details relevant for the

synthesis of the results. However, some publication bias might
have arisen from the inclusion of metabolomics studies, since
our search strategy did not find metabolomics studies that did
not identify discriminatory alterations in KP metabolites. As
a second limitation, heterogeneity in investigated KP metab-
olites maternal pregnancy and fetal outcomes complicated
clustering of—and making equivalent comparisons between—
results, limiting the possibilities of performing a meta-analysis.
Thirdly, the included studies did not distinguish between free
and total (albumin bound) tryptophan concentrations, while
free tryptophan is available for transport to the fetus. Neither
were free fatty acid concentrations measured, which are
known to increase free tryptophan concentrations. Lastly,
none of the included studies corrected for blood sampling
seasonality, while the season can affect KP metabolite con-
centrations in pregnant women.8!

Conclusions and Implications

The KP might provide a diagnostically and therapeutically
interesting target in complicated pregnancies, particularly in
FGR where tryptophan seems to be decreased in both mater-
nal and umbilical cord blood. Animal studies demonstrated
that tryptophan supplementation improved embryo survival in
mice exposed to pseudorabies virus-induced pregnancy fail-
ure,'* and fetal growth in ruminants,>1¢ potentially through
the role of KP metabolites in bone remodeling.8? Furthermore,
the development of hypertension in the pups of rats with
experimental chronic kidney disease was prevented by supple-
menting these pregnant rats with tryptophan.!’

Before starting tryptophan supplementation, however, it is
important to first investigate its effects on other KP metabo-
lites. Our study showed that elevated kynurenic acid concen-
trations were associated with PE en PPROM, which could
have detrimental neurodevelopment effects on the off-
spring.®3-%? Thus, future studies should include longitudinal
assessment of KP metabolites throughout (un)complicated
pregnancies, and investigate the relation between KP metabo-
lites in maternal and fetal blood.

Alterations in concentrations of KP metabolites do not nec-
essarily correspond between maternal blood, fetal blood and
placenta. Therefore, we believe it is time to revise the hypoth-
esis that maternal KP metabolites reflect the placental KP and
in particular placental IDO1 activity.

Kynurenic acid concentrations were elevated in maternal
blood in PE and in the umbilical cord blood in PPROM,
implying a potential pathological role for this KP metabolite. A
decreased tryptophan concentration was observed in maternal
blood in depression during pregnancy, GDM, FGR, PTB, and
SA, and in fetal blood in FGR and PPROM, and was only
found to be increased in PIH. Concurrently, the maternal con-
centration of kynurenine was lower in PIH and raised in
GDM. Hence, while the flux of tryptophan through the KP
seems enhanced in women with GDM, it may be attenuated in



18

International Journal of Tryptophan Research

PIH. These data emphasize that physiological pregnancy
requires a tight balance of KP metabolites, and that distur-
bances in either direction may be associated with adverse
maternal pregnancy and fetal outcomes.
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