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Visual servoing with deep reinforcement
learning for rotor unmanned helicopter
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Abstract
Visual servoing is a key approach to achieve visual control for the rotor unmanned helicopter. The challenges of the
inaccurate matrix estimation and the target loss restrict the performance of the visual servoing control systems. This
work proposes a novel visual servoing controller using the deep Q-network to achieve an efficient matrix estimation. A
deep Q-network learning agent learns a policy estimating the interaction matrix for visual servoing of a rotor unmanned
helicopter using continuous observation. The observation includes a combination of feature errors. The current matrix
and the desired matrix constitute the action space. A well-designed reward guides the deep Q-network agent to get a
policy to generate a time-varying linear combination between the current matrix and the desired matrix. Then, the
interaction matrix is calculated by the linear combination. The potential mapping between the observation and the
interaction matrix is learned by cascading the deep neural network layers. Experimental results show that the proposed
method achieves faster convergence and lower target loss probability in tracking than the visual servoing methods with
the fixed parameter.

Keywords
Visual servoing, interaction matrix, deep Q-network, rotor unmanned helicopter

Date received: 17 May 2021; accepted: 10 February 2022

Topic: Vision Systems
Topic Editor: Alessandro Di Nuovo
Associate Editor: Cosmin Copot

Introduction

Visual control is a hot topic in the rotor unmanned helicopter

field.1,2 Visual servoing control (VSC) is a key approach

to control the rotor unmanned helicopter from the initial

position to the desired position by vision-based feed-

back.3,4 A rotor unmanned helicopter is driven by the

feedback of perceptual signals acquired from different

visual sensors during visual control. Some advantages of

rotor unmanned helicopters are operating flexibility, fast

movement, and so on.

There are three types of visual servoing (VS) methods

for rotor unmanned helicopters, which are 2D VS control-

ler,5 3D VS controller,6 and 2.5D VS controller.7,8 The 3D

visual methods define the feature errors in the Cartesian

coordinate system. It depends on the geometric model of

the target, the depth estimation of red, green, and blue

(RGB) images, and the camera’s internal parameters.9 A

point cloud model is an excellent approach to constructing

a geometric model.10 In practice, the performance of the 3D

visual methods is greatly affected by the geometric model,

camera parameters, system noise, and so on. Compared

with 3D methods, the 2D visual methods directly use the
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position of feature points on the image plane as feedback

for driving the rotor unmanned helicopter toward the

desired position. One of the biggest advantages of this

method is that it does not estimate the geometric model

and camera parameters. The 2.5D VS controller can change

between 2D VS and 3D VS. However, different environ-

ments require different switching rules, and the 2.5D con-

troller is difficult to generalize. The proportional–integral–

derivative (PID) controller is an excellent visual controller.

The previous work demonstrated that the VS controller

performs better than the PID controller in the hovering

control task of the rotor unmanned helicopter. VS control-

ler is an essential tool to achieve visual control.11,12 How-

ever, some unavoidable factors should be considered,

which may be the direct cause of the failure of a 2D visual

controller, such as the singularity of matrix estimation. This

brings unprecedented opportunities and challenges to the

research of VSC.12–15 Control parameters of VS are key to

addressing these challenges. But empirical parameters

often cost a lot of time and labor costs. This work leverages

deep reinforcement learning (DRL) tools to develop an

adaptive VS controller for the VS of the rotor unmanned

helicopter. The developed controller does not need to

manually adjust the interaction matrix parameter.

Reinforcement learning (RL) is a potential approach to

develop advanced VS controllers, and it has been demon-

strated to have great potential to develop more advanced

intelligent robotic systems.16,17 Mannucci et al.18 proposed

a new RL approach to the visual controller for practical

exploration. Then, two specific algorithms with this

approach are presented to handle a dynamically complex

control task for a mobile robot. In Xi et al.,19 an adaptive

model with RL is developed to achieve stable gait behavior

planning for a humanoid robot on a rotating platform. An

optimization strategy is proposed to avoid overfitting prob-

lems. Besides, RL has been used to develop VS systems,

and some interesting works have been proposed. Meng

Kang et al. proposed an integrated VS method with the

extreme learning machine and Q-learning to address the

control gain that is heuristically a constant.20 This control

gain is adjusted adaptively by a determined policy. How-

ever, these adaptive visual control methods encounter bot-

tlenecks because they are defined in the low-dimensional

space.

Recently, achievements in deep learning provide an

opportunity to achieve more advanced feature extraction

to obtain high-dimensional features from perceptual

data.21,22 DRL uses the computational power of deep learn-

ing models to address the curse of dimensionality, and it

can learn a mapping in an end-to-end way. In Sampedro

et al.,23 the authors developed a VS controller with DRL to

achieve direct mapping from state space to velocities for

the mobile robot. Gazebo-based simulation has demon-

strated the outstanding performance of this DRL controller.

Deep Q-network (DQN) is a popular DRL algorithm for

robotic control. Some previous works have used DQN to

address the visual tracking control task. Most of these

methods are implemented in an end-to-end manner. In

Chen et al.,24 an end-to-end DQN controller is designed

for the pursuer and evader problem of unmanned aerial

vehicle (UAV). The end-to-end DQN control scheme is

verified in simulation experiments. In Liu et al.,25 the track-

ing control problem of UAV is investigated, and the trajec-

tory of UAV is designed adaptively by DQN. Villanueva

and Fajardo26 develop a DQN-based approach to the path

planning and navigation of UAV, and the method’s effec-

tiveness is demonstrated by simulation. The end-to-end

DQN controller is used to achieve the tracking control, and

it has been proved to have good control performance in

simulation. However, the end-to-end DRL method is not

well interpretable. There is still no literature to use DRL to

design a VS controller for rotor unmanned helicopter.27

In addition to DRL, deep learning has also been a hot

tool for VSC systems. The previous work uses a deep learn-

ing network to achieve image processing in servoing sys-

tem to achieve reactive control. In Bateux et al.,28 the

author uses a deep neural network (DNN) to estimate the

relative pose between the current image and the desired

image. Meanwhile, the DNN can also handle the distur-

bance and lighting variations in the image. In Tran and

Lin,29 a convolution neural network model is designed to

realize semantic segmentation on RGB images and pose

estimation. The object information is used to realize VSC.

Deep learning-based methods play an essential role in

visual processing. Deep learning is mainly used in visual

processing, which can be used in controller design com-

bined with RL. The issues encountered by VS methods

mainly focus on controller optimization and image process-

ing to reduce the probability of the target being lost. Con-

ventional VS controllers fail when there is a wide gap

between the current pose and the desired pose. Practical

matrix estimation may address this dilemma. Traditional

methods often used the empirical value for the control

parameter to approximate the interaction matrix.7 It is

appropriate to give a bigger control parameter value to

ensure stable convergence when a rotor unmanned helicop-

ter is close to the desired position. Instead, faster conver-

gence is achieved with a small control parameter when the

robot is far away from the target.30 Therefore, a bigger

parameter ensures stable convergence but not fast motion.

Small parameter guarantees fast motion but cannot guaran-

tee stable convergence. Previous work31 has used the fuzzy

method to estimate the parameter for the interaction matrix

to achieve stable visual tracking control but the perfor-

mance of this method is limited due to the empirical rules

for the fuzzy method.

Previous work applied DRL to learn VS end-to-end

directly. This kind of method directly learns the linear velo-

city and angular velocity in 3D space from the raw observa-

tion, which not only needs to handle the high-dimensional

state and action space but also the reward function is diffi-

cult to design. Meanwhile, the high-dimensional continuous
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observation and action space make it easier for DRL to

encounter low sample efficiency, thus requiring a longer

learning time. In this article, we use DRL to learn the

empirical parameter of the interaction matrix in VS, instead

of end-to-end learning. DRL is used as an auxiliary control

method to improve the performance of the existing control-

ler, which does not require learning an end-to-end control

policy directly from raw observations. Therefore, a rela-

tively low-dimensional observation and discrete action

space can achieve a good VS effect. Two neural networks

characterize the DQN algorithm, and the current and the

target networks produce control actions when performing

a task. Then, appropriate action is selected using the trained

policy to improve the performance of the VSC system.

Faster learning ensures that rotor unmanned helicopters

accomplish a task in time. Faster movement means that the

rotor unmanned helicopter will be more efficient in com-

pleting the defined task. This work has made the following

contributions.

� An intelligent VSC method using DRL is proposed.

This method selects the time-varying interaction

matrix in the VS controller.

� The adaptive VS with a DQN is used for visual

control of rotor unmanned helicopter. The advan-

tages of the DQN are employed to learn a mapping

from the image features into the interaction matrix.

The velocities of UAVs are obtained through the

interaction matrix.

� The experimental results demonstrate that the pro-

posed method obtains a VS controller with faster

convergence. The improved VS controller also

achieves a lower target loss probability during a

visual tracking process.

This article is organized as follows. The second section

presents details of the proposed method. The third section

demonstrates the experimental results. In the last section,

the conclusions are presented.

Methodology

In this section, we first show the framework of the proposed

method. Secondly, we show the VS controller for rotor

unmanned helicopter. Next, we show the DQN and the

training method. The DQN will train the VS controller to

select the time-varying control parameter for the interac-

tion matrix.

The framework for the proposed method

This work develops an adaptive VS controller integrating

DRL for rotor unmanned helicopters. A DQN algorithm is

used to determine the parameter of the interaction matrix

for VS. This method can ensure the fast convergence of the

VS controller, thereby ensuring that the target can be

quickly kept in the camera’s field of view. The proposed

method is based on the DNNs that progressively learn the

control behavior of the previous tasks. The framework for

the proposed method is shown in Figure 1.

Rotor unmanned helicopter captures the image informa-

tion for the objects via an RGB camera. The current image

features SðtÞ and the desired image features ŜðtÞ are

extracted by a feature extraction algorithm, respectively.

In the feature extraction algorithm, the center point of the

target’s contour is extracted as the feature for VS. The

DQN agent perceives the feature errors to form the state

space. Then, an action for timing the interaction matrix is

selected by estimating the appropriate behavior policy. The

proposed method calculates the motion velocities. The

dynamics of the rotor unmanned helicopter gives the angular

velocities ð!1; !2; !3; !4ÞT for four rotors in 4 degrees of

freedom. Then, the rotor unmanned helicopter moves and

Figure 1. The framework for the proposed method.
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obtains new observations to form a closed-loop feedback

control process.

VS for rotor unmanned helicopter

In this subsection, we show VS for rotor unmanned

helicopters.

Figure 2 describes an imaging model, which maps the

coordinate for the origin O on the Cartesian coordinate

system into the coordinates for the origin O1 on the image

plane. dx and dy are scaling constants from the camera plane

to the image plane in the x-axis and y-axis directions,

respectively. X UAV � Y UAV � ZUAV is the body coordinate

system of the rotor unmanned helicopter.

If a point Pðxp; yp; zpÞ is on the Cartesian system, the

concerning point on the image plane is pðx; yÞ. The trans-

formation from a point in the Cartesian system to the con-

cerning point in the image plane is given by

xzp ¼ f xp

zpy ¼ f yp

(
(1)

where f is the focal length of the camera. The rotor

unmanned helicopter gets an image from the environment

using a camera. The vector DSðtÞ ¼
�
DS1ðtÞ;DS2ðtÞ; . . . ;

DSN ðtÞ
�T

represents the vector for the feature error for the

current feature SðtÞ and desired feature ŜðtÞ on the image

plane. Both the current feature and the desired feature are

extracted from the current image and the desired image

through a feature extraction algorithm. These feature points

are the center points of the contours of targets on the image.

The number of features is N. Kp;Ki;Kd are proportional

constant, integral constant, and differential constant,

respectively. The feature error ejðtÞ is derived to drive the

rotor unmanned helicopter to the desired position, which is

given by

ejðtÞ ¼ ðKp þ Ki þ KdÞDSjðtÞ�
ð2Kd þ KpÞDSjðt � 1Þ þ KdDSjðt � 2Þ

(2)

Then, the errors eðtÞ between the current feature and the

desired feature are calculated, which is given by

eðtÞ ¼ ½e1ðtÞ; e2ðtÞ; . . . ; eN ðtÞ�T 2 R
2N�1 (3)

The feature error eðtÞ is a time-varying vector and its

change depends on the motion of the rotor unmanned heli-

copter. The velocities for the rotor unmanned helicopter are

derived from the time derivative for the vector eðtÞ and it is

given by

½!x
t !y

t !z
t vx

t v
y
t vz

t �
T ¼ M̂

þð Þ deðtÞ
dt

0
@

1
A

¼ M̂
þð Þ de1ðtÞ

dt
;

de2ðtÞ
dt

; . . . ;
deN ðtÞ

dt

2
4

3
5

T

;Mð Þ 2 R2N�6

(4)

where Mð Þ is the interaction matrix. Mð Þ varies with the

change of  , and the range of the variable  is (0, 1). Then,

the interaction matrix can be reduced to a universal form

Mð Þ ¼  MðSðtÞÞ þ ð1�  ÞMðŜðtÞÞ.32 This universal

Figure 2. An imaging model.
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form integrates the current matrix and the desired matrix.

M̂
þð Þ is a pseudo inverse matrix for Mð Þ. The previous

works33 used �eðtÞ ¼ �deðtÞ=dt to ensure an exponential

decoupled decrease for the error vector eðtÞ. Equation (5)

maps the feature error to the velocities ½!x
t !y

t!
z
t v

x
t v

y
t vz

t �
of the rotor unmanned helicopter

Mð Þ
�

0
@

1
A½!x

t !
y
t !z

t vx
t v

y
t vz

t �
T

¼ �eðtÞ;Mð Þ 2 R2N�6

(5)

where  is the servoing gain, which is a constant.33 Mð Þ is

the interaction matrix derived from the current state and

Mð̂sðtÞÞ is derived from the desired state. When  is a small

value, the rotor unmanned helicopter will approach the

desired position as soon as possible. Otherwise, when  
is a small value, the convergence is guaranteed as soon as

possible.33

Considering the dynamic characteristics of the rotor

unmanned helicopter, when the rotor unmanned helicopter

flies nearly straight with the ground, the influence of pitch

angle and roll angle can be removed by attitude adjustment.

In a low-speed state, the influence of a small attitude tilt

angle on vision can be ignored, and the pitching angle and

roll angle will not be generated due to visual calculation. So,

we can ignore the influence of the roll and pitch angles and

only consider the linear velocity and yaw angles. The 6D

velocity vector can be simplified to a 4D velocity vector.

The expression for the interaction matrix concerning the

jth feature ðxj; yjÞ is given by

Mj ¼
f =ðZjdxÞ 0 x=ðZjdxÞ y=dx

0 �f =ðZjdyÞ y=ðZjdyÞ �x=dy

� �
(6)

The expression for the interaction matrix of the N fea-

tures is M ¼ ½M1;M2; . . . ;MN �T 2 R2N�6. To compute the

interaction matrix, the point cloud model has been applied

to estimate the depth Zi of the images. The 4D velocity can

be extended to 6D velocity through the dynamics expan-

sion of rotor unmanned helicopters.33 The 6D velocity can

be converted into the four rotors’ angular velocity to drive

the rotor unmanned helicopter.

Deep Q-network

The DQN has two kinds of neural networks: the target

neural network and the current neural network. The two

kinds of neural networks have the same three-layer struc-

ture. The parameters of the current neural network are

updated through the back-propagation. The parameters of

the target neural network are updated each t time step with

the parameters of the current neural network. The environ-

ment model in four tuples hst; pt;R; ptþ1i is stored in the

experience pool. Mini-batch technology is applied to sam-

ple the experience from the experience pool to update the

current neural network. The framework for the DQN algo-

rithm is given in Figure 3.

The DQN network is trained with the state action reward

state action (SARSA) algorithm. SARSA algorithm is an

improved Q-learning algorithm, and it is an on-policy RL

algorithm, which iterates the value function in a strict Time

Difference form.34 Different from the classical Q-learning,

SARSA still adopts a greedy strategy to select actions in

the next state. The SARSA algorithm has a faster conver-

gence rate in some specific control tasks than the classical

Q-learning algorithm.

The SARSA algorithm selects the action with the cur-

rent state st according to the greedy strategy. After the

action pt is executed, it will be transferred to the state

stþ1 and get the reward R. When in the state stþ1, the next

action ptþ1 is selected according to the greedy strategy.

Finally, the action value function Qðst; ptÞ is updated

according to equation (7)

Qðst; ptÞ  Qðst; ptÞ þ a½Rþ gQðstþ1; ptþ1Þ � Qðst; ptÞ�
(7)

We set Tar ¼ Rþ gQðstþ1; ptþ1Þ as the target Q value,

set Qðst; ptÞ as the current Q value, and set

D ¼ Rþ gQðstþ1; ptþ1Þ � Qðst; ptÞ as the TD error. In this

article, an experience pool is used to store the four tuples

hS;P; S 0;Ri to describe the experience, and the value func-

tion can be updated via the experience replay to accelerate

the convergence rate of the SARSA algorithm. hS;P; S 0;Ri
is stored in the experience pool after obtaining the next

action ptþ1.

The neural network used in this article has a three-layer

structure. The first layer is the input layer, the second layer

is the hidden layer, and the third layer is the output layer.

The classical RL algorithm stores the value function in the

form of a table, but this method cannot solve the large-scale

state space problem. The neural network has a strong gen-

eralization ability, which can approximate the value func-

tion Qðs; a; !Þ in the SARSA algorithm. ! represents the

parameters of the neural network, and the neural network

Figure 3. The framework for the DQN algorithm. DQN: deep
Q-network.
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updates the parameters using the way of back-propagation,

and finally maximizes the loss function Lð!Þ using

equation (8)

Lð!Þ ¼ E

��
Rþ gQðstþ1; ptþ1;!Þ � Qðst; pt;!Þ

�2
�

(8)

where ! is the parameters of the target neural network. We

use a reward-driven approach to train the DQN network to

learn the mapping from feature observations into the con-

trol parameter of the interaction matrix.

Training model

State space partition is the key component of developing

the DRL model. The state space is given by

St ¼ ðex; eyÞ (9)

where ex; ey are the feature errors on the x-axis and y-axis,

respectively. To estimate interaction matrix, we choose the

difference of the control parameter x as the action. If the

size of the action set is set to 2 � na þ 1, then the action set

constitutes an arithmetic sequence. If the tolerance is set to

da, then the action set A ¼ aiji ¼ 1; 2; 3 . . . 2naf g will be

expanded to

A ¼f�nada � ðna � 1Þda; . . . ;

� da; 0; da; 2da; . . . ; ðna � 1Þda; nadag
(10)

The action is given by

 tþ1 �  t ¼ D t ¼ at (11)

The updating law for the control parameter is given by

 tþ1 ¼  t þ at (12)

where  tþ1 is the updated control parameter and  t is the

current parameter.

The reward function is divided into three parts: reaching

the desired position, missing the target, and other situa-

tions. If the feature errors are less than the threshold value

d, that is, jS�i � Sij < d i ¼ 1; 2; 3 . . . ;N , then it is con-

sidered that the rotor unmanned helicopter has reached the

desired position and can be given the highest reward. If the

features of the real-time image are missing, then the rotor

unmanned helicopter has begun to lose the target, and the

reward will be negative. If the UAV loses the features of

the target, the VSC process is a failure. In other cases,

rewards will be given according to the distance between

the current and desired features. Therefore, the reward

function is given by

R ¼

100; Reaching the target

�100; Losing the target

�100

��XN
i¼1

jS�i � Sij
��

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
row2 þ col2

p �
; Others

8>>><
>>>:

(13)

where row and col are the length and width of the image,

respectively.

Experiments and analysis

In this section, we first introduce the experimental prepara-

tion, including the testing platform and experimental

arrangement. Second, we introduce the training of DRL.

Third, we compare the proposed VS controller and the

fixed-parameter VS controller. Fourth, we show the trans-

ferability of the proposed controller with DRL. The pro-

posed VS controller can perform well on other tasks

through fine-tuning. Finally, we apply the proposed VS

controller to visual tracking and show the relevant results.

Experimental configuration

The rotor unmanned helicopter learns the action policy

using the DQN algorithm. Based on the feature errors, the

learned policy can be the transition to complex task scenar-

ios with a modicum of works on tuning the parameters. In

the experiments, the difference between the proposed

method and the conventional VS controllers to estimate the

interaction matrix is determined to test whether the pro-

posed method allows better performance. Conventional

visual control methods usually set the parameter of the

interaction matrix manually. Therefore, the conventional

methods use fixed parameters in the interaction matrix for

VS. We intend to verify that DRL can improve the perfor-

mance of the visual controller by automatically adjusting

the parameter of the interaction matrix.

Simulation experiments are conducted on commercial

robotic software, Gazebo 7.0. Inspired by the previous

work,35,36 we design the relevant simulation experiments.

Figure 4 shows the simulation environment. The renowned

robot operation system (ROS) is used for rotor unmanned

helicopters.37 The targets are four circles with different

colors on the ground. The experiment is performed on a

laptop, using only the CPU.

The experiment is divided into three parts. The first part

shows the training rules and training process of DRL. The

second part shows the comparison between the proposed

VS controller and the controller with fixed parameters and

demonstrates that the proposed controller can be general-

ized to different scenarios through fine-tuning. The second

part is to verify the effect of the proposed method by hover-

ing control experiment. The third part shows the perfor-

mance of the proposed controller and the controller with

fixed parameters in a visual tracking task.

Training for RL agent

We show here the experimental parameter configuration,

training rules, and training results. The training process is

conducted on the simulation platform. An episodic RL set-

ting is used to train the RL agent. In each episode, the desired

6 International Journal of Advanced Robotic Systems



position is ð5:717 m;�0:212 m; 0:823 m; 120�Þ and the ini-

tial position for the RL agent is randomly selected. The

servoing gain  is set to 0.35. In this experiment, the range

of roll angle and pitch angle is �5� to 5�, which is very

small. The hyperparameters for the DQN agent are shown

in Table 1.

The rules for the DQN agent are as follows. (1) This

episode is considered terminated if the rotor unmanned

helicopter loses some features. (2) This episode is consid-

ered terminated if the errors between the current features

and the desired features remain a certain pixel for a certain

time. (3) This episode is considered terminated if the rotor

unmanned helicopter does not arrive at the desired position

after the maximum number of steps per episode. (4) After

the DQN agent selects a new action, the interaction matrix

is updated by equation (7). (5) If a new episode starts, the

rotor unmanned helicopter returns to the starting position.

When this episode is terminated negatively, the reward of

�100 is given to the DQN agent. In other episodes, the DQN

agent is rewarded using the reward function. With this con-

figuration, the learning process for the proposed method

took about 6 h, and the agent learned a control behavior after

episode 2000. The reward is a negative value per episode.

Because the time for each episode is different, the average

value of the control time for the learning process is recorded.

The change in the control time for every 80 episodes is

shown in Figure 5. Meanwhile, we compare an end-to-end

VS controller based on deep deterministic policy gradient

(DDPG).23 DDPG maps image feature errors to the linear

and angular velocities of the robot in the X, Y, and Z direc-

tions, respectively. VS can be achieved in an end-to-end

manner. At the beginning of the training process, the DQN

agent spends more time to complete the control task, and

then the control time decreases with the number of episodes.

Finally, after 2000 episodes, the average control time of the

proposed method remained almost stable. However, the

DDPG method converges at 2500 episodes. The DDPG

method directly learns end-to-end linear and angular velo-

cities from raw observations, which face a high-dimensional

observation and action space. The proposed method learns

in a relatively low observation and action space, thus requir-

ing less training time. The proposed method converges

faster than the end-to-end DDPG method.

Experiment on VSC

Hovering control requires rotor unmanned helicopters to

fly from an initial position to the desired position and then

Figure 4. Experimental scene. (a) Visual servoing and (b) tracking. On the left is the hovering control for a rotor unmanned helicopter.
The desired position is above the target. The rotor unmanned helicopter takes off from the initial position, flies above the target, and
hovers there. On the right is the tracking task for a rotor unmanned helicopter.

Table 1. Parameters for the DQN agent.

Parameters Value

Learning rate 0.1
Discount factor 0.90
Scaling constant 551.70
The maximum time step 1800
Scaling constant 550.69
The size for the action space 7

DQN: deep Q-network.

Figure 5. The curve for the control time of every 80 episodes.

Hu et al. 7



hover at the desired position. Hovering control is used to

test the convergence of the proposed method. The rotor

unmanned helicopter always flies almost parallel to the

ground. During the experiment, the range of roll angle and

pitch angle of the rotor unmanned helicopter is within 5�,
indicating that the roll and pitch angles can be ignored.

We set an initial position and a desired position on the

ground for the hovering control. The rotor unmanned heli-

copter will not start to hover until 1.5 m away from the

ground. There is a wide gap between the current position

and the desired position in practice. When the rotor

unmanned helicopter reaches the predetermined position

and completes a control process, the current image is close

to the desired image. The rotor unmanned helicopter per-

ceives the object via the contour feature extraction algo-

rithm in the experiment. It then achieves the closed-loop

feedback and finally achieves effective tracking control.

This subsection will demonstrate that the proposed method

achieves faster convergence and smoother motion trajec-

tory than the conventional methods with fixed parameters.

Meanwhile, the proposed method achieves similar results

as the end-to-end method, but less training time is required.

In this test, to verify the effectiveness of the proposed

method, the proposed method and five competitors were

run on the platform using a rotor unmanned helicopter. The

initial position is ð5:512 m; 0:602 m; 0:001 m; 0�Þ and the

desired position is ð5:717 m; � 0:212 m; 0:823 m; 120�Þ.
Four competitors include the VS method using the interac-

tion matrix with parameter 0.1 (IM-0.1), the VS method

using the interaction matrix with parameter 0.3 (IM-0.3),

the interaction matrix with parameter 0.6 (IM-0.6), and the

interaction matrix with parameter 0.8 (IM-0.8). The six

methods were tested 50 times, and the average values for

these 50 times are shown in Figures 6 and 7. We compute

the 2D Euler distance between the current feature point and

the desired feature point in the pixel plane as the error of the

feature point. The VS controller converges if the error

between the current feature point and the desired feature

point is less than a threshold, 20 pixels, and keeps it for

20 time steps.

Figure 6 shows the feature trajectories for the six meth-

ods. Conventional methods cause one dimension to reach

the desired position while others do not. So there are many

fluctuations in the feature trajectory. The proposed method

has the least fluctuation compared with the VS methods

with fixed parameters. The proposed method enables the

learning agent to learn a policy to produce the best solution

to reduce fluctuation. Figure 7 shows the curve of the velo-

city for the six different methods. In Figure 7, the y-axes

show the comparison results for six different methods, and

the x-axes donate the control cycles. The trajectories for the

four feature points are represented by the blue curve, the

green curve, the red curve, and the wathet curve, respec-

tively. Experimental results show that the IM-0.1 method

converges in around 148 control cycles. The IM-0.3

method converges in around 179 control cycles, and the

IM-0.6 method converges in around 250 control cycles.

The IM-0.8 method converges in around 150 control

cycles. The convergence time for the proposed method is

around 120 control cycles. The DDPG method converges at

Figure 6. Comparison of the feature trajectories for the six VS schemes. (a) IM-0.1, (b) IM-0.3, (c) IM-0.6, (d) IM-0.8, (e) the proposed
method, and (f) DDPG. VS: visual servoing; DDPG: deep deterministic policy gradient.

8 International Journal of Advanced Robotic Systems



125 control cycles. Although the four conventional com-

petitors reach the desired position, the convergence rates

for the four competitors are slower than the time for the

proposed method. Different methods estimate different

interaction matrix, which results in different behavior for

the control method for the rotor unmanned helicopter. The

proposed method performs similarly to DDPG but requires

less training time. In Figure 7, at the beginning of the

control process, the VS system using the DQN algorithm

chooses a larger velocity, which drives the rotor unmanned

helicopter to reach the target position faster.

Experiment on the generalization of the proposed
method

We added some Gaussian noise to the image. These Gaus-

sian noises have a certain adverse impact on the feature

extraction process, which increases the difficulty of the

control task for the proposed method. In this work, to test

the generalization of the proposed method, a knowledge

transfer with fine-tuning is used to transfer the learning

experience to more complex scenarios. The hovering task

with a certain noise is configured as the complex scenes.

Then, the learned experience of the previous task is utilized

in the current task. Previous works investigate the applica-

tion of the RL method on robots and combine it with a

direct transfer method to achieve the knowledge transfer

from a task domain to a similar task domain.38,39 This work

tests the effect of the DQN-based scheme with a fine-tuning

and the DQN-based scheme with a direct transfer method

(Direct Transfer).38,39

Experimental results are shown in Figures 8 and 9. Fig-

ure 8 shows the feature trajectories for the two DQN-based

schemes in a noisy environment. Noises affect the motion

process of the DQN-based VS methods. The feature trajec-

tories for two controllers with RL exhibit less fluctuation.

The smoothest trajectory is achieved for the proposed

method with fine-tuning. The experimental results demon-

strate that the fine-tuning can better exploit transfer when

the proposed method controller encounters more complex

tasks. Figure 9 shows that the proposed method with a fine-

tuning converges in around 170 control cycles and the pro-

posed method with Direct Transfer converges after 200

control cycles. The results for velocities further demon-

strate that the proposed method with a fine-tuning outper-

forms the conventional Direct Transfer method.

Although the noise has caused some adverse impacts on

these six methods, the proposed method still has a good

result. Figure 10 shows the flying trajectories for the two

schemes. The proposed method with Fine-tuning flies

directly to the desired position after taking off and experi-

ences little fluctuation. However, the proposed method

with Direct Transfer has more fluctuation after take-off,

not a longer flight path. The experimental results show

that the proposed method can be well transferred through

fine-tuning. The designed model can be generalized by

fine-tuning, which means that the learning model can be

transferred to other task scenarios. Next, we transfer the

learning model to a visual tracking control task scene.

Figure 7. The curve of the velocities for the six VS schemes. (a) IM-0.1, (b) IM-0.3, (c) IM-0.6, (d) IM-0.8, (e) the proposed method, and
(f) DDPG. VS: visual servoing; DDPG: deep deterministic policy gradient.
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Experiment on the tracking control

This section applies the control variable method to sepa-

rately control the car’s linear velocity and angular velocity.

With the increasing linear velocity and angular velocity,

tracking becomes more and more difficult. We recorded

the probability of the car being lost to compare the perfor-

mance of different controllers in tracking.

In this experiment, the wheeled robot is used as the

tracked target, and the tracking effect of the rotor

Figure 8. The curve of the feature trajectories for the two proposed method schemes. (a) Fine-tuning and (b) Direct Transfer.

Figure 9. The curve of the velocities for the two proposed method schemes. (a) Fine-tuning and (b) Direct Transfer.

Figure 10. The curve of the flying trajectories for the two proposed method schemes. (a) Fine-tuning and (b) Direct Transfer.
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unmanned helicopter under different methods is tested. To

ensure that the rotor unmanned helicopter can get all the

features of the target in the tracking control process, it is set

that the rotor unmanned helicopter takes off to fly directly

above the target 1.5 m before starting the tracking control

experiment. This tracking scene has a certain noise. Each

round of experiments has the same initial position and the

desired position. The car starts from the initial position in

each round and moves to the desired position at a constant

speed. This will be recorded as a failed tracking when the

car deviates from the helicopter’s camera field of view.

The tracking path of the rotor unmanned helicopter is

shown in Figure 11. The rotor unmanned helicopter follows

the car on the ground, from O1 to O4. In Figure 11, red

indicates a rotor unmanned helicopter, and purple indicates

a ground target. When the rotor unmanned helicopter loses

the target, that is, the feature points deviate from the cam-

era field of view, this episode is a failure. We record the

number of failures every 10 episodes and calculate the

probability of failure in the 10 episodes.

In the experiment, the control variable method is used to

control the target to move at different linear velocities, with

the linear velocity range from 0.2 m/s to 0.65 m/s. The rotor

unmanned helicopter takes off tracking to ensure that the

target’s angular velocity is the same, and the target moves

at a different linear velocity. To avoid the contingency of

the experiment, for each different linear velocity movement

of the target, the rotor unmanned helicopter tracks for 10

times, which is calculated as the probability of not losing

the target (keeping the target). With the increase of the

velocity of the target, the probability of not losing the target

using three different methods becomes smaller and smaller.

Similarly, the linear velocity is fixed, and a certain range of

angular velocity is used to test. The angular velocity ranges

from 1.35 rad/s to 2.00 rad/s.

According to previous experimental results, the control

effect of IM-0.8, IM-0.1, and the proposed method is better

than other methods. Therefore, this experiment uses these

three methods as a comparative method. In Figure 12, when

the angular velocity is fixed, the probability that the three

methods keeping the target will gradually decrease with the

increase of linear velocity. However, the probabilities of the

three methods are different for the same linear velocity. The

proposed method has the maximum probability of keeping

the target. Similarly, when the linear velocity is fixed, the

probability of losing the target in the three methods will

increase gradually with the increase of angular velocity. With

the increase of angular velocity and linear velocity, tracking

control becomes more difficult. Therefore, these three meth-

ods will lose targets. The proposed method has the least prob-

ability of losing the target, that is to say, the tracking effect is

the best. The self-learning ability of DRL gives better tracking

control performance. Experimental results show that the pro-

posed method has a better tracking control effect.

Time delay is a key issue in visual control systems. The

time delay is often caused by the speed mismatch of image

processing and command execution. In the actual experi-

ment, the system delay is usually unavoidable, which

causes some difficulties to the physical experiment. Espe-

cially when a RL model is transferred from the simulator to

the real device, the physical system delay will make the

DRL model difficult to be applied. The system delay will

be investigated in the next research.

Conclusions

VS systems often encounter performance bottlenecks, such

as converging slowly or target loss. RL holds the promise

Figure 11. The motion paths for the rotor unmanned helicopter.

Figure 12. The curve of the tracking results for the three
methods. (a) Linear velocity and (b) angular velocity.
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of enabling rotor unmanned helicopters to learn large reper-

toires of behavior manipulations with minimal human

knowledge. This work developed a new adaptive VSC

method that integrates DRL to control a rotor unmanned

helicopter using only the image features. The DRL model

is extended to more complex tasks using fine-tuning in

the presence of more disturbances. To effectively handle

the VSC challenges of the rotor unmanned helicopters, this

work proposed a DQN-based RL scheme to estimate the

interaction matrix with additional learning capability adap-

tively. The DQN networks are got using considerable train-

ing, and then these networks can automatically calculate an

interaction matrix to achieve a robust control performance

of the rotor unmanned helicopters. The proposed method

has been extensively compared with four conventional

methods, revealing the good capabilities of the adaptive

control method.

RL has been a popular method to design the reactive

control system for rotor unmanned helicopters, from the

original tabular policy RL to DRL.40 However, it still lacks

an effective solution for the knowledge transfer from simu-

lation to the real world. Meanwhile, there is a lot of noise

and illumination in the physical environment, which inter-

feres with training in the physical environment. Secondly,

the system delay is more obvious in the physical equipment

than in the simulator, which is an uncontrollable factor. The

system delay will be more serious when dealing with high-

speed moving targets. Many factors make it very difficult

to complete visual control in the physical environment.

Besides, the knowledge transfer of DRL from the simula-

tion to the real world will be investigated.
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