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The walking and running control
of a human musculoskeletal model using
a low-power consumption hardware
central pattern generator model
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Abstract
Applying a control system with low energy consumption and low load of motion control to robots, similar to living
organisms, is considered to be one of the most important issues in robot development. We have been studying systems
that use pulse-type hardware neural networks to control robotic motion with a small number of control signals, as is the
case in living organisms. In particular, it has been mimicking the function of the central pattern generator localized in the
spinal cord of living organisms to generate motion patterns. In the present article, a new biomimetic control system using
pulse-type hardware neural networks for biped gait control is reported.
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Introduction

Computationally, expensive control algorithms for a

robotic system can result in high power consumption, ulti-

mately leading to the inability to operate the system con-

tinuously. Reducing the control load and power

consumption is considered to be one of the most important

issues in developing robots.

However, humans and animals can reduce the control

load by distributing the functions of intelligence and

motion with the central nervous system. In addition, the

central nervous system operates with very low energy con-

sumption for both intelligence and motion control.

Mimicking the control system of a living organism, which

has a system that controls locomotion with a lower control

load and lower power consumption, has the potential to be

applied to robots.

Focusing on motor control in humans and animals, a

central pattern generator (CPG), which is localized in the

spinal cord, creates patterns for movement to reduce the

control load.1 The CPG generates control signals to induce

basic locomotion, that is, walking or running. The CPG is

Graduate School of Science and Technology, Nihon University, Funabashi,

Chiba, Japan

Corresponding author:

Fumio Uchikoba, College of Science and Technology, Nihon University,

Funabashi, Chiba 1018308, Japan.

Email: uchikoba.fumio@nihon-u.ac.jp

International Journal of Advanced
Robotic Systems

January-February 2022: 1–10
ª The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions

DOI: 10.1177/17298806221080633
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).



considered to have a two-layered structure: rhythm gener-

ation (RG) that generates basic rhythms and pattern forma-

tion (PF) that forms muscle activity patterns.2 This suggests

that the rhythm of the gait and the muscle activity of the

legs are independently controlled. When the PF of the mus-

cle is activated, it has a muscle synergy structure that coor-

dinates the muscles required for the motion.3

Focusing on human gait locomotion, Ivanenko et al.

showed that human gait locomotion can be reconstructed

with only five signals, based on an analysis of muscle

activity during walking.4 They also showed that the walk-

ing and running can be switched between simply by chang-

ing the position of the second signal.5 In addition, Aoi et al.

and Ivanenko et al. mathematically analyzed a CPG model

that induces muscle synergy and simulated walking and

running using the musculoskeletal model.6

Artificial neural networks, such as the CPG, have been

studied. Moreover, studies have also examined hardware

neural networks,7–9 which mimic biological neural net-

works by means of electronic circuits. Since circuit con-

stants are incorporated into the network, parameter

adjustment is difficult. However, such a network can be

processed at high speed, even for complex or large-scale

networks. In addition, such networks can operate with low

power consumption because they handle electrical signals

directly. We focused on the pulse-type hardware neural

networks (P-HNNs)10 proposed by Sekine et al., which can

generate bio-like pulsed signals. P-HNNs can generate a

variety of pulse patterns, making it easy to reproduce bio-

logical motion patterns.

Previously, we studied the motion control and imple-

mentation of robots using the CPG model with P-HNNs.

We developed a CPG model that can change its gait pattern

and controlled the gait of a quadruped robot.11 The gait

locomotion of a microrobot with link legs of less than

5 mm in length was realized by controlling the CPG model

fabricated by an Integrated circuit (IC).12 The CPG model

for biped gait control was proposed using P-HNNs, and the

switching between the walking and running patterns was

investigated as muscle synergy signals. From the output

simulation of the walking and running patterns, the walking

and running locomotion of the biped model were geome-

trically simulated.13 In addition, the IC chip for biped gait

control was designed and the walking and running control

by the output of the IC chip was shown.14 However, the

control of the walking and running motions of a musculos-

keletal robot using the output of the proposed CPG model

for biped gait control has not been investigated.

In the present article, a method of biped gait control for

the musculoskeletal robot using the CPG model with

P-HNNs was investigated. Using the inputs of the walking

and running patterns of the previously proposed CPG

model for biped gait control as the timing of muscle con-

traction, the walking and running locomotion of the mus-

culoskeletal model were geometrically simulated. From

simulations of walking and running locomotion in the

musculoskeletal model, muscle groups that contract in

coordination were classified. Based on the proposed CPG

model and the results of muscle coordination analysis of the

musculoskeletal model, we report on the consideration of

biped gait control for a musculoskeletal robot with low

power consumption and low motor load.

CPG model for biped gait control using
P-HNNs

Based on physiological and anatomical findings, the CPG

model was proposed to generate five temporally continuous

myoelectric potential patterns that activate the muscles

required for walking and running.5 In the present study, the

CPG model that outputs the five spatiotemporal patterns for

walking and running was constructed using an electronic

circuit to control the gait locomotion of the robot. Figure 1

shows an overview of the output of the CPG model. The

voltage output is used to operate the actuators of the robot

according to the five spatiotemporal patterns.

Figure 1. Overview of the output of the CPG model. (a) Walking
pattern and (b) running pattern. CPG: central pattern generator.
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In order to switch between walking and running pat-

terns, a circuit that resembles an input from a higher center

was incorporated into the CPG model. Although the CPG

can generate rhythmic movements without input from the

higher centers, the possibility of adjusting the gait speed

based on the input intensity of the higher center and sensory

information was suggested.15 Figure 2 shows an overview

of the CPG model that switches between the walking and

running patterns depending on external inputs.

Components of the CPG model

Cell body model and synaptic model

The cell body model generates pulses periodically, just like

a biological neuron. The cell body model consists of N-type

and P-type MOSFETs, resistors RG, RL, R1, and R2, capa-

citors CG and CM, and supply voltage VA. The cell body

model can be switched between the self-excited oscillating

mode and the separately excited oscillation mode by adjust-

ing the supply voltage. By varying the supply voltage VA

and the capacitors CG and CM, the pulse width and period

can be varied as desired. Figure 3 shows a circuit diagram

of the cell body model.

Neurons in living organisms transmit pulses through

synapses. The transmitter released by the synapse changes

the membrane potential of the receiving neuron. Synapses

that raise the membrane potential are called excitatory

synapses. Synapses that lower the membrane potential are

called inhibitory synapses.

The synaptic model mimics the function of excitatory

and inhibitory synaptic models. The output of the cell body

model through the excitatory synaptic model oscillates by

in-phase synchronization. The output of the cell body

model through the inhibitory synaptic model oscillates in

anti-phase synchronization. Figure 4(a) shows the excita-

tory synaptic model, and Figure 4(b) shows the inhibitory

synaptic model.

CPG model

The developed CPG model generated patterns with 6 spa-

tiotemporal pulses from the mutual inhibitory connections

of 6 cell body models and 30 inhibitory synaptic models.

Since the five consecutive spatiotemporal patterns of the

CPG model correspond to the leg postures of walking

and running, respectively, the output order must be fixed.

Therefore, the trigger circuit shown in Figure 6(a) was

connected to the six-cell body, models and trigger pulses

Figure 2. Overview of the proposed CPG model. CPG: central
pattern generator.

Figure 3. Cell body model.

Figure 4. Synaptic model. (a) Excitatory synaptic model and
(b) inhibitory synaptic model.
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were input. Each cell body model that receives trigger

pulses in the order of C1 to C6 is suppressed from firing

by mutually inhibitory connections. Since the cell body

model requires a charge to the capacitor before it fires, the

capacitor is charged and fires in the order in which the

trigger pulses are input. Therefore, once the trigger pulse

is input, the output of the CPG model is fixed.

To switch between the second pulse in the walking and

running patterns, the C2 and C3 pulses were input through

the excitatory synaptic model to the C20 and C30 cell body

models in separately excited oscillation mode. This allows

us to take the output of C2 and C3 without affecting the

output of the six cell body models that are mutually inhib-

ited and connected.

As mentioned above, it has been suggested that CPG

regulates gait speed by input from higher centers as well

as sensory information. Therefore, the switching circuit

that pseudo-reproduces the external input was incorporated

into the CPG model. Figure 6(b) shows the switching cir-

cuit. The switching circuit was connected to C20 and C30.

The switching circuit is connected to the GND when the

switch is ON and drops the output of the cell body model to

the GND. In other words, the C20 switch can be turned on in

order to generate the walking pattern, and the C30 switch

can be turned on in order to generate the running pattern.

Simulation of the CPG model

Two cell body models, self-excited oscillating mode and

separately excited oscillation mode, were used. The

circuit constants for the self-excited oscillating mode were

RG ¼ 560 kO , RL ¼ 10 kO , R1 ¼ 15 kO , R2 ¼ 20 kO ,

CG ¼ 0.22 m:, CM¼ 320 pF, M1: AO6408, M2: FDS6875,

and VA ¼ 2.4 V. The circuit constant for the separately

excited oscillation mode was set to the supply voltage,

VA ¼ 0.5 V, for the cell body model in the self-excited

oscillating mode.

Two types of synaptic models were used: excitatory and

inhibitory. The circuit constants for the excitatory synaptic

model were CES ¼ 1.0 pF, MES1: AO6408, MES2; 3:

FDS6875, and V ESDD ¼ 4.0 V. The circuit constants for

the inhibitory synaptic model were CIS ¼ 1.0 pF, MIS1; 4; 5:

AO6408, MIS2; 3: FDS6875, V ISDD ¼ 2.0 V.

The circuit constants of the cell body model and the

synaptic model described above were adjusted by changing

the circuit constants in the circuit simulation. The pulse

pattern of the CPG model is determined by the pulse period

and pulse width of the cell body model. The main oscillat-

ing element of the cell body model is the charging and

discharging of the capacitor. Therefore, the pulse period

and width can be adjusted by adjusting CG and CM.

Figures 7 and 8 show the output results of the walking

and running patterns. In Figure 7, out of the six pulses, the

switching circuit connected to C20 turned on and the output

of C20 dropped to GND, confirming the generation of the

walking pattern. In Figure 8, out of the six pulses, the

switching circuit connected to C30 turned on, and the output

Output
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Cell Body model

Excitatory synaptic model

Inhibitory synaptic model

Mutual inhibitory connection

Figure 5. Diagram of the CPG model. CPG: central pattern
generator.

Figure 6. Diagram of (a) the trigger generation circuit and (b) the
switching circuit.
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of C30 dropped to GND, confirming the generation of the

running pattern. The gait cycle of the walking pattern and

the running pattern were both approximately 1.0s because

the circuit constants used were the same. Five spatiotem-

poral patterns of walking and running were reproduced, as

revealed by the analysis of muscle activity. In addition, the

timing of the second pulse of the running pattern was found

to be changing.

Muscle coordination analysis
by the musculoskeletal model

Components of the musculoskeletal model

Physiological findings indicate that 25 muscles are

involved in gait locomotion. The musculoskeletal model

used in this experiment was a lower body model, focusing

on leg movements of the lower limbs. The model has 18

muscles on one side and 36 muscles in total. The muscu-

loskeletal model was fixed in the sagittal plane in order to

focus on the gait locomotion. In addition, one gait cycle is

defined as two steps of one leg in gait analysis.16 Therefore,

the initial state of the musculoskeletal model was set as the

right leg in front of the body.

Figure 9 shows the constructed musculoskeletal model.

Table 1 shows the abbreviations used for 18 muscles. In

Figure 9, the area shown in red is the muscle. A linear

actuator was placed on the muscle, and only the muscle

displacement in each posture during walking and running

was handled. Therefore, no dynamic action or characteristics

as an actuator are applied. As a preliminary step in the

dynamic simulation, the fabricated musculoskeletal model

was used to classify the muscles that contract in coordination

according to the walking and running patterns of the CPG

model. Therefore, the skeleton and muscles are assumed to

be rigid bodies with no physical properties applied.

Muscle coordination by gait motion simulation

The walking and running motions were referenced from

existing human walking and running joint angle data. The

extracted joint angles were divided by the cycles of the

walking and running patterns generated by the CPG model.

By inputting segmented joint angles to the musculoskeletal

model in advance, the timing of muscle contraction was

reproduced by inputting the walking and running patterns,

and the transition of coordinated muscle groups was shown.

In this case, the right leg was focused on classifying the

muscle groups that contract in a coordinated manner.

Figure 11 shows the joint angles input to each joint of the

right leg. The joint angles were set for one gait cycle.

When each of the five patterns of pulses was input, the

muscle groups were classified in coordinated groups by

focusing on contracting muscles. The fact that muscles in

principle only operate in a one-dimensional direction was

considered. Figure 10 shows the walking and running

simulations.

Pelvis

Thigh

Shank

Foot

Red parts are muscles White parts are bones

Muscles

Figure 9. Musculoskeletal model.

Table 1. Abbreviations of 18 muscles.

ADDL Adductor longus RF Rectus femoris

ADDM Adductor magnus SART Sartorius
BF Biceps femoris SOL Soleus
EDL Extensor digitorum longus ST Semitendinosus
GM Gluteus maximus TA Tibialis anterior
Gmed Gluteus medius TFL Tensor fascia latae
LG Gastrocnemius lateralis VL Vastus lateralis
MG Gastrocnemius medialis VM Vastus medialis
PERB Peroneus brevis PERL Peroneus longus
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Tables 2 and 3 show the coordinated muscle groups

during walking and running, respectively. The muscles

commonly used for walking and running were confirmed.

These are indicated by cells shaded with a dotted pattern

in Tables 2 and 3. We considered the muscles indicated

by dots to be agonist muscles that act primarily during

walking and running. In this case, the input timing of

signals 1, 3, 4, and 5 of the CPG models is the same for

both walking and running. The above results are in close

agreement with those shown in the analysis of muscle

activity during walking and running in physiological

findings, where the muscles operated during walking and

running by four signals other than the second signal are

mostly common.6

On the other hand, the muscles that were changed to

stretch were confirmed. These muscles are indicated by

cells shaded with a vertical striped pattern in Tables 2 and

3. We considered these muscles to be antagonistic, that is,

acting in opposition to the agonist. The muscles with little

or no change in displacement were also confirmed. These

muscles are indicated by cells shaded with a diagonal

striped pattern in Tables 2 and 3.
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Figure 10. Walking and running simulation. (a) Simulation of the walking locomotion and (b) simulation of the running locomotion.
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To control the walking and running of a musculoskeletal

robot from an engineering point of view, it is considered

possible to switch between walking and running by input-

ting the five spatiotemporal patterns of the previously pro-

posed CPG model13 to the corresponding muscle actuators.

To operate the muscles commonly used for walking and

running, the locomotion is generated by inputting signals

1, 3, 4, and 5, which have the same input timing. The main

difference between the walking and running is that the input

timing of the second signal changes. Therefore, when gen-

erating the walking, the second signal with a later timing

should be input to the muscle group in the third line of

Table 2. When generating running, the second signal with

an early timing should be input to the muscle group in the

Table 2. Coordination group of muscles in walking.a

1 Null 2 3 4 5

ADDL

ADDM

BF

EDL

GM

Gmed

LG

MG

PERB

PERL

RF

SART

SOL

ST

TA

TFL

VL

VM

a represents muscles commonly used for walking and running,

represents muscles stretched while walking and running, and

represents muscle with little or no extension or contraction.

Table 3. Coordination group of muscles in running.a

1 2 Null 3 4 5

ADDL

ADDM

BF

EDL

GM

Gmed

LG

MG

PERB

PERL

RF

SART

SOL

ST

TA

TFL

VL

VM

a represents muscles commonly used for walking and running,

represents muscles stretched while walking and running, and

represents muscle with little or no extension or contraction.
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second line of Table 3. Therefore, it is considered to be

possible to control the walking and running of musculoske-

letal robots by means of periodic spatiotemporal patterns.

Discussion

Evaluation of the musculoskeletal model

The musculoskeletal model was made to walk geometri-

cally without adding any physical characteristics. Then,

muscle groups that contracted in coordination were classi-

fied. However, it is important to consider the physical prop-

erties and to conduct dynamics simulations close to the

actual environment in order to develop the actual robots.

In particular, the elastic element of the muscle has a sig-

nificant influence on the gait locomotion of the musculos-

keletal model and its control by P-HNNs.

Biological muscles have been suggested to have char-

acteristics that stabilize body joints during movement due

to their elastic properties.17 In addition, it is considered that

humans perform gait locomotion passively due to the phys-

ical interaction between body structure and gravity.18 By

mimicking the anatomical structure in addition to the elas-

tic properties of the muscle, the musculoskeletal model is

thought to assist in various forms of locomotion, including

gait. By adding the physical properties and anatomical

structure of the muscle to the musculoskeletal model, the

model is expected to generate stable walking motion. The

pulse pattern in the proposed CPG model is the input that

causes the muscle to contract. In order to use the elastic

properties of the muscle to control the assistance of move-

ment with the CPG model, it would be necessary to con-

sider a circuit configuration that can change the strength of

the pulse input to the muscle.

The joint angles input to the musculoskeletal model

were based on the measured human joint angles available

on OpenSim.19 Therefore, the gait motion was almost the

same motion. Compared to the simulation motion, the

period of time when the angle was fixed at a certain level

without the input of the CPG model was confirmed. In

Figure 11, the period was approximately 0.2s to 0.3s.

When simulating under gravity, it is expected that the

gait locomotion will be assisted by the muscles due to the

physical interaction and muscle properties as described

above. The musculoskeletal model, upon input of the walk-

ing pattern, steps forward with the leg. The model then

moves to fall forward, which is considered to be a

human-like walking motion. By replacing the period during

which the hip angle is fixed with the period during which it

falls forward, gait locomotion is considered to be possible

in the dynamic simulation.

However, the amount of muscle contraction in the mus-

culoskeletal model would need to be adjusted. Therefore,

we will proceed with the experiment to reproduce the gait

locomotion by inputting the amount of contraction of the

muscle groups shown in this experiment into the muscu-

loskeletal model.

In the present study, the musculoskeletal model was

fixed in the sagittal plane, and the focus was on the muscle

groups that contract in coordination, prompting leg move-

ments in gait locomotion. Therefore, the musculoskeletal

model focuses on leg movements and simplifies the human

walking motion. However, in gait analysis and pathology, it

has been suggested that human gait locomotion is not only

leg movement, but also pelvic movement is an important

factor.16,20 In order to study bipedal gait control by muscu-

loskeletal robots, it is important to simulate the motion in

3D space considering the motion of the pelvis.

Evaluation of the control system

Based on the results of the muscle coordination analysis,

biped gait control of the musculoskeletal robot is consid-

ered to be possible by inputting the timing of the proposed

CPG model13 to the muscles common to walking and run-

ning. In addition, it is considered possible to control the

switching between walking and running of the musculos-

keletal robot by varying the input timing of the second

signal. In gait locomotion, the leg movement needs to

change in accordance with the order in which the CPG

outputs. The order in which the legs move can be adjusted

using the trigger circuit of the CPG model. It was consid-

ered that the gait locomotion of the musculoskeletal robot

could be controlled by fixing the output order of the CPG

model with the trigger circuit and inputting each signal to

the corresponding muscle. The walking and running require

changing the position of the second signal among the five

signals. The switching circuit of the CPG model could be

used to change the timing. By switching the switching cir-

cuit, walking and running can be controlled by outputting a

signal with a slower timing for walking and a signal with an

earlier timing for running.

The intelligence and locomotion of conventional robots

are controlled by the CPU. However, it is inferred from the

power consumption, which will be high because the CPU

performs all processes. Focusing on motion control, it is

likely that further power will be required from the use of

actuators and sensors.

The HRP-420 developed by Kawada Industries, Inc. uses

Intel Pentium M 1.6 [GHz] as the control CPU. The rated

power consumption of the Intel Pentium M 1.6 [GHz] is

listed as 24.5 W.21,22 However, it is inferred that control-

ling intelligence and motion as described above will result

in a power consumption of approximately tens to hundreds

of watts higher than rated.

The purpose of the proposed hardware CPG model is to

control locomotion as in living organisms. The main fea-

ture of this system is that the system controls a musculos-

keletal robot like a biological body and operates with low

power consumption using analog electronic circuits. In the

simulation, the power consumption of the proposed CPG

8 International Journal of Advanced Robotic Systems



model was approximately 9.5 mW. The proposed CPG

model is shown to operate with lower power consumption,

as compared to the CPUs mentioned above. The proposed

CPG model is assumed to use the same actuators and sen-

sors as the CPU-controlled robot. It is assumed that the

same actuators and sensors as those used in the CPU-

controlled robot can be used for motion control with low

power consumption.

Based on these results, a method for coordinated control

of multiple muscles indicated by physiological findings

was proposed by the CPG model for biped gait control

using P-HNNs. It was shown that a small number of control

signals from the CPG model could reduce the load of

motion control of the robot. It was confirmed that the pro-

posed CPG model can generate nonlinear pulse patterns

with low power consumption by using electronic circuits.

Therefore, it is possible to develop a system that can con-

trol complex motions, such as those of living organisms

with low power consumption.

Conclusion

In the present article, a method for bipedal gait control of a

musculoskeletal robot using the CPG model with P-HNNs

was investigated. The walking and running motions of the

musculoskeletal model were geometrically simulated using

the input of the walking and running patterns of a previ-

ously proposed CPG model for biped gait control for the

muscle contraction timing. From these simulated walking

and running motions, muscle groups that contracted in

coordination were classified. From the results of the muscle

coordination analysis of the proposed CPG model and the

musculoskeletal model, we discussed the bipedal gait con-

trol of the musculoskeletal robot with low power consump-

tion and low motor load.
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