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A neural network-based model
predictive controller for displacement
tracking of piezoelectric actuator
with feedback delays
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Abstract
Piezoelectric actuators are widely used in micro/nanoscale robotic manipulators. Due to its hysteresis and dynamic-
related nonlinearity, accurate displacement tracking control of piezoelectric actuator is challenging. Besides, in some
low-cost practical systems with low sampling rate, transmission delay causes mismatches between feedback and real
displacement, further increasing the challenge in tracking control. In this article, a neural network-based model pre-
dictive controller (MPC) is proposed for precise tracking control of piezoelectric actuator’s displacement in situation
where feedback is slow and delayed. The prediction model is based on a nonlinear-autoregressive-moving-average-
with-exogenous-inputs framework, which outputs entire prediction horizon of future displacement in a single time, and
is fulfilled by a multilayer feedforward neural network. An extended Kalman filter-based estimation for displacement is
introduced to relieve the influence of feedback delays so as to improve dynamic performance of the controller. Another
neural network is trained to provide initial values for MPC to reduce computation costs and improve performance in
dynamic tracking. In a series of tracking experiments, the effectiveness of proposed controller is verified.
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Introduction

Manipulating objects in nanoscale is a fast growing

demand in research of nanotechnology, and robotic nano-

manipulators are developed to serve this goal. With excel-

lent performance in precise positioning and capability of

generating large forces, piezoelectric actuators (PEAs)

have been widely used as motion components of robotic

micro/nano-manipulators.1,2 However, driven by inverse

piezoelectric effect,3 the displacement of a PEA is greatly

influenced by its nonlinear characteristics, such as
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hysteresis and creep.4,5 Hysteresis is a phenomenon that the

displacement of an actuator depends not only on current

input signal but also on memories of past signals. Creep is a

delayed deformation which slowly changes displacement

after input signal is unchanged. In practice, the frequency

of motion also greatly influence the voltage–displacement

relationship, that is, the dynamic nonlinearity of PEAs.6

Dealing with the aforementioned nonlinear characteris-

tics is crucial to the control quality of piezoelectric displa-

cement. Traditional feedback strategies like proportional–

integral–derivative (PID) can easily deal with creeps but

have poor performance handling other nonlinearity, espe-

cially in dynamic occasions.7 So feedforward mechanisms

which determine control signals according to prior knowl-

edges are introduced to combine with feedback control for

improvement in tracking performance.

The model describing nonlinear characteristics of PEAs

is the base of feedforwarding, for which a number of mod-

eling methods have been proposed, generally including

physics-based models and phenomenon models. Models

in former group try to establish model through inherent

relationship of physical variables. Jiles–Atherton model is

an example of such kind of models.8 Physics-based models

are difficult to build and lacks generality to be applied in

different system. The latter group, namely phenomenon-

based models, includes three subgroups: differential equa-

tion models, operator models, and others. The first two

subgroups include Duhem model,9 Bouc–Wen model,10

Preisach hysteresis model,11 and Prandtl–Ishlinskii (PI)

hysteresis model.12 These models try to extract a mathe-

matical law from phenomenon without involving physical

principles. Similar to physics-based models, these mathe-

matical hysteresis models usually have complicated struc-

tures and cost much to compute, also have to be appended

with additional models of creep and dynamic.13,14 The last

group of models are totally data-driven approaches and

have relatively simple forms. Examples include

autoregressive-moving-average (ARMA) models, fuzzy

models, and neural network-based models. Cao et al.15 pro-

posed a linear ARMA model for hysteresis. Cheng et al.14

proposed an adaptive Takagi–Sugeno fuzzy model to

describe the nonlinear behaviors of PEAs. Wen and

Cheng16 proposed a recurrent fuzzy model. Liaw et al.17

designed a radial basis function neural network model.

Nonlinear ARMA with exogenous input (NARMAX) form

is combined with two neural networks to separately obtain

hysteresis submodel and dynamic submodel by Cheng

et al.18 As phenomenon-based models are easier to obtain

and have better generality, they’re more popular in actual

application.

Based on model of PEAs, many control algorithms are

proposed for PEAs positioning. Inversion-based methods

are most widely used. Usually, an inverse model of hyster-

esis is cascaded with control plant to carry out feedforward

compensation, then feedback approaches are used to deal

with dynamic and other minor nonlinearity. Ge and

Jouaneh19 designed a PID controller combined with a feed-

forward compensator based on numerical inverse Preisach

model. Al Janaideh et al.20 used an analytical generalized

PI model inversion as compensation in micropositioning

control. Song at al.21 proposed an inverse extended unpar-

allel PI hysteresis model along with an inverse dynamic

model to alter the PEA into highly linearity, then a non-

vector space approach is proposed to control PEA-driven

scanning probe microscope. Li et al.22 designed an adaptive

internal model control (IMC) scheme with a fuzzy hyster-

esis model and its inversion working together. Jian et al.23

combined iterative learning control with direct-inverse-

compensated PID approach to reduce the tracking errors

caused by incompletely compensated hysteresis. However,

accuracy inverse models are hard to acquire whereas the

computation costs are usually high, which is a significant

drawback for online tracking. Some inversion-free methods

are then proposed. Al Janaideh et al.24 designed a control

scheme, in which a PI model acts in a feedback fashion

rather than an inversion as a feedforward compensation,

with another equivalent linear model derived as internal

model of the compensated plant so as to form feedfor-

ward–feedback control in an IMC scheme. However, this

kind of controller have complex structure and lack the flex-

ibility for practical applications. Different from aforemen-

tioned approaches that use model to compensate

nonlinearity, model predictive control (MPC) is a more

straightforward method, widely used in practical applica-

tions.25,26 Nonlinear model predicts future displacement

based on input of model, and actual control signal applied

on PEA is determined according to predicted displace-

ment.18,27 MPC usually takes consecutive predicted future

outputs over a certain prediction horizon for optimization,

which demands repeated running of the model, thus

increases computational burden. A popular solution is lin-

earizing the prediction model to simplify calculation.28,27

In addition, the accuracy of model greatly influences the

performance of MPC.

Besides the nonlinearity, imperfect feedbacks from sen-

sors can also cause problems, inefficient sampling rate with

delays or even data losses exist in practice, especially for

low-cost hardware systems. As changing voltage directly

acts on PEA’s displacement in extremely short time, delay

of sensors can cause large mismatches between feedback

and real displacement when PEA deforms rapidly, increas-

ing the challenge in dynamic tracking control. The perfor-

mances of many typical controllers significantly deteriorate

in such situation. The simplest solution for this problem is

improving the sensors by updating hardwares to increase

the sampling/transmission rate which however can be

costly and difficult in some actual applications. Hence,

some soft methods are proposed to solve similar problems,

usually based on estimation of delay and additional model

of corresponding states, combined with multiple controllers

under switching rules.29,30 However, few has been adopted
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in tracking control of PEA, which has special nonlinear

characteristics as aforementioned.

In this article, aiming to improve tracking performance

of PEA control systems where low-rate sensor is used, a

neural network-based model predictive controller is intro-

duced, which works well when feedback is very inefficient

and delayed. The proposed method also requires less com-

putational resources than traditional neural MPC (NMPC),

make it easier to be applied in practical systems. First, a

NARMAX structure is adopted for nonlinear modeling of

PEA, implemented by a multilayer feedforward neural net-

work (MFNN). To ease the computation, the model is

designed to output an entire prediction horizon of future

displacement altogether when called, avoiding repeated

calculation in sequential prediction. Then the control issue

is transformed into an optimization problem that iteratively

adjusts the control signals to minimize the errors between

predicted displacement and reference. Another MFNN is

trained as a feedforward controller, outputting an initial

control signal for the optimization. In addition, an

accumulated-error compensation term is embedded into

controller, to reduce steady-state error caused by model

mismatches. To relieve the influence of delayed feedbacks,

an extended Kalman filter (EKF)-based method is adopted

to fuse sensor feedbacks with the predicted displacement,

providing controller with better state estimation so as to

accordingly modify the control signal. To evaluate the per-

formance of proposed controller, a series of experiments

have been conducted versus PID and a typical NMPC, and

the result verifies effectiveness of proposed controller.

Neural model of PEAs based on NARMAX

The main nonlinear characteristics to be modeled are hyster-

esis and rate-dependent dynamic property. As aforemen-

tioned, hysteresis is a kind of memory phenomenon, which

relates displacement of PEA to states and signals in the past.

Meanwhile, frequency can be estimated by extracting differ-

ential values from discrete signal sequence, so rate-dependent

property can also be viewed as a behavior determined by

historical signals and states. Hence, the input–output relation-

ship of PEAs can be concluded as following function

ŷðkÞ ¼ f ½yðk � 1Þ; ::yðk � nyÞ; uðk � 1Þ; ::uðk � nuÞ� (1)

where yðiÞ and uðiÞ separately indicate the displacement

and control signal of a PEA at operating point i. And inte-

gers ny and nu are the sizes of historical memory of yðiÞ and

uðiÞ, respectively. This is exactly the same form of NAR-

MAX, which has powerful capability of modeling for time

series prediction problems with complex, nonlinear, and

dynamic nature.31

To achieve smoother performance of MPC, a series of

predicted outputs ½ŷðk þ 1Þ; ::; ŷðk þ npÞ� within prediction

horizon np are demanded at instant k. Usually, they are

successively outputted by the model, provided previous

predictions as a part of historical states, that is, using

ŷðk þ iÞ as yðk þ iÞ when predicting ŷðk þ iþ 1Þ. This

repeated process are computational costly. To relieve this

problem, the model (1) is modified to output all np future

predictions in a single time. Then the NARMAX model is

rewritten as

½ŷðk þ 1Þ; ::ŷðk þ npÞ�
¼ f ½yðkÞ; ::yðk � nyÞ; uðk þ np � 1Þ; ::uðkÞ; ::uðk � nuÞ�

(2)

where ½uðk þ np � 1Þ; ::uðkÞ� are presumed output signals

of controller. This model is only effective when prediction

horizon is short, otherwise the predictive accuracy may be

poor and the training of MFNN will become difficult. In

our case, np is set to 3.

NARMAX is a framework of input–output representa-

tion, whereas obtaining specific model, that is, determining

the function f ½�� in (2), is the main challenge. In theory,

neural networks are able to approximate any continuous

function with an arbitrary degree of accuracy, provided that

the number of hidden nods is sufficient enough.32 In prac-

tice, neural networks often use fewer parameters and

achieve better precision than other approaches in approx-

imation tasks.25 In this article, an MFNN is adopted to

approximate the function f ½�� in (2).

Neural model of PEAs

An MFNN with single hidden layer is used as approximator

for NARMAX representation f ½��. It acts as the model of

PEA after sufficiently trained, outputting displacement pre-

diction if provided valid input. As Figure 1 shows, ny his-

torical displacements ½yðk � 1Þ; ::yðk � nyÞ� and nu

historical control signals ½uðk � 1Þ; ::uðk � nuÞ� together

with current states yðkÞ and presumed control signal

½uðk þ np � 1Þ; ::uðkÞ� are inputted into neural network.

½ŷðk þ 1Þ; ::ŷðk þ npÞ� indicates the output of the network,

that is, the predicted displacements of PEA. wh
ji indicates

connection weight from ith nods in input layer to the jth

nods in hidden layer, and bh
j indicates the bias of jth nods

in hidden layer. Similarly, wo
lj indicates the connection

weight between jth nods in hidden layer and the lth nods

in output layer, whereas bo
l is the corresponding output bias.

Hyperbolic tangent is used as activation function s in hid-

den layer

sðxÞ ¼ tan hðxÞ ¼ e2x � 1

e2x þ 1
(3)

And the activation function in output layer is set linear.

Identification of model

Let X ¼ ½yðkÞ; ::yðk � nyÞ; uðk þ np � 1Þ; ::uðk � nuÞ�T

indicates the input of neural network and Ŷ ¼
½ŷðk þ 1Þ; ::ŷðk þ npÞ�T indicates corresponding outputs,
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then the neural model can be concluded as following

function

Ŷ ¼ f ðX Þ ¼ W osðW hX þ BhÞ þ Bo (4)

where W o 2 Rnp�nh and W h 2 Rnh�ð1þnpþnuþnyÞ are weight

matrices for output layer and hidden layer, respectively. nh

is the number of hidden nods. Bh 2 Rnh�1 and Bo 2 Rnp�1

are bias matrices of hidden layer and output layer. sð�Þ
indicates running sðxÞ for every element x in corresponding

matrix.

Then the problem becomes determining the parameter

matrices Wo, Wh, Bh, and Bo. Provided sufficient input–

output data pairs sampled in experiment measuring displa-

cement of PEAs, supervised training can be conducted to

solve following optimization problem

min
W h;W o;Bh;Bo

X
i

ðŶ X ðiÞ � Y ðiÞÞT ðŶ X ðiÞ � Y ðiÞÞ (5)

where Ŷ X ðiÞ is the output of model for input X in ith sam-

ple, and Y ðiÞ is the corresponding real PEA displacement

series. In addition, all aforementioned inputs and desired

outputs of model should be separately normalized accord-

ing to their scales, to ensure properly training of neural

network.

There are plenty of proven optimization approaches for

neural network training. In this article, adaptive moment

estimation algorithm (ADAM) is chosen to play the role.

As a gradient-descent-based optimization, ADAM com-

putes individual adaptive learning rates for different para-

meters according to estimations of both first and second

moments of gradients.33 As a result, ADAM shows good

convergence in MFNN training and can still work well

when samples are with heavy noises. In our case, ADAM

excels other approaches both in quality and speed of train-

ing. Coordinated with ADAM, l2-regularization is also

applied to all weights, which effectively prevents over-

fitting problem. l2-regularization introduces a l2-norm of

weights as penalty to the original loss function, limiting the

scale of average weights, which enhances generalization

performance of neural model. Let EðiÞ ¼ Ŷ X ðiÞ � Y ðiÞ indi-

cates prediction errors, then the loss function in (5) to be

minimized is rewritten as

loss ¼
X

i

ðEðiÞT EðiÞ þ a1TrðW hW hT Þ þ a2TrðW oW oT Þ

(6)

where a1 and a2 are weighting coefficients of regulariza-

tion, function Trð�Þ calculates the trace of a matrix.

Tracking control of displacement of PEA

With aforementioned model of piezoelectric displacement,

the model predictive controller repeatedly tests virtual con-

trol signals on the model and adjusts outputs according to

the corresponding predictions. As the MFNN model is dif-

ferentiable, such adjustment can utilize the gradients of

predicted errors with respect to control signals, hence turns

the control issue into an optimization problem. Besides, a

term of static error compensation, a neural feedforward

controller, and a feedback estimation are supplemented to

the MPC controller to improve tracking performance with

feedback delays. The block diagram of the whole control

scheme is shown in Figure 2.

Model predictive control scheme

Most elements in neural model’s inputting vector

X ¼ ½yðkÞ; ::yðk � nyÞ; uðk þ np � 1Þ; ::uðkÞ; ::uðk � nuÞ�T
are known and fixed at current operating point, only

UðkÞ ¼ ½uðk þ np � 1Þ; ::uðkÞ�T is a manipulatable vari-

able. Thus, the predicted displacement can be rewritten as

Ŷ ðkÞ ¼ f ðUðkÞÞ (7)

The goal is to minimize the error of predicted

displacement

JðUðkÞÞ ¼
Xnp

i¼1

ðŷðk þ iÞ � rðk þ iÞÞ2

¼ ðŶ ðkÞ � RðkÞÞT ðŶ ðkÞ � RðkÞÞ
¼ ðf ðUðkÞÞ � RðkÞÞT ðf ðUðkÞÞ � RðkÞÞ (8)

where RðkÞ is the set-point of desired displacement

RðkÞ ¼ ½rðk þ 1Þ; ::rðk þ npÞ�T . However, at instant k,

except next reference point rðk þ 1Þ, we cannot exactly

know rðk þ iÞ when i > 1. Usually, all rðk þ iÞ s are set

equal to rðk þ 1Þ, in this case however, we use an

Figure 1. MFNN approximator for NARMAX-based model of
PEAs. MFNN: multilayer feedforward neural network; NARMAX:
nonlinear-autoregressive-moving-average-with-exogenous-input;
PEA: piezoelectric actuator.
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interpolated reference trajectory that can improve response

speed of MPC

RðkÞ ¼ ½rðkÞ; . . . ; rðkÞ

þ i � 2 rðk þ 1Þ � rðkÞ
np � 1

; . . . ; 2rðk þ 1Þ

� rðkÞ�; i ¼ 0; 1::; np � 1 (9)

To reduce excessive changes of control signal, a penalty

term is added to (8), then the objective function to be mini-

mized becomes

JðUðkÞÞ ¼ ðf ðUðkÞÞ � RðkÞÞT ðf ðUðkÞÞ � RðkÞÞ
þbðDUðkÞÞT ðDUðkÞÞ (10)

where b is a penalty coefficient determining the intensity of

effort in restraining excessive change of control signal, and

dUðkÞ indicates the increment of UðkÞ

DUðkÞ ¼

1 �1 0 . . . 0

0 1 �1 . . . 0

..

. . .
. ..

.

0 . . . 1

2
66664

3
77775UðkÞ þ

0

..

.

0

uðk � 1Þ

2
66664

3
77775

(11)

As uðk � 1Þ is a known constant at instant k, so JðUðkÞÞ
in (10) is still determined only by UðkÞ. Then the control

issue is transformed into a optimization problem that find

an optimal vector UðkÞ to minimize JðUðkÞÞ. Levenberg–

Marquardt (LM) algorithm is adopted to solve this

optimization.

Optimization by LM algorithm. LM algorithm is a combina-

tion of Gauss–Newton and trust region method, useful in

solving optimization problems with quadratic forms. In our

case, objective function (10) is in quadratic forms

JðUðkÞÞ ¼ hTh (12)

where

h ¼
f ðUðkÞÞ � RðkÞ

bDUðkÞ

� �
2 R2np�1 (13)

Then the basic update rule of LM algorithm goes as

following way

Û iþ1ðkÞ ¼ Û iðkÞ þ mi (14)

mi ¼ �ðH h þ lIÞ�1
GT
h ðUiðkÞÞh (15)

where mi is the update vector of û in ith iteration.

GhðUiðkÞÞ ¼ @h=@UiðkÞ (simplified as G) is the gradient

matrix of h with respect to UðkÞ in ith iteration, that is,

Jacobian matrix of h. H h originally refers to Hessian matrix

of h. However, because of its heavy computational burden,

H h is approximately replaced by Gauss–Newton Hessian

matrix: H h ¼ GT G. I is a identity matrix and l is a adaptive

coefficient. The term lI adjusts the rate of convergence and

ensures the positive definiteness of ðH h þ lIÞ to guarantee

convergence. l is updated in each iteration according to

gain ratio

r ¼ JðÛ iðkÞÞ � JðÛ iðkÞ þ miÞ
DL

(16)

If r is too big, then decrease l and vice versa. The

numerator in (16) is the actual decrement of objective func-

tion whereas DL is an estimated decrement

DL ¼ �mT
i GThþ 1

2
mT H hm (17)

Figure 2. Neural MPC-based tracking control system of PEA. PEA: piezoelectric actuator.
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The complete LM algorithm is summarized in

Algorithm 1:

UðkÞ outputted by the algorithm is a vector composed of

series of signals for future np instants. But only uðkÞ will be

actually outputted at current operating point, and the pro-

cess will be re-run when next instant comes.

Model error compensation. The model can never be totally

accurate for real plant. Actually, there always exist mis-

matches between model predictions and actual PEA displa-

cement. As a result, static errors will be accumulated in

control progress. Hence, a compensation term is added to

controller outputs, functioning the same way as the integral

term in PID a controller

cðkÞ ¼ g
Xk

i

ðrðiÞ � yðiÞÞ (18)

uoutðkÞ ¼ uðkÞ þ cðkÞ (19)

where g is the compensative factor, uout is the formal output

signal.

Neural feedforward controller

MPC optimizes predictive errors at every operating points

but this repeated process is time-costly and the resulted

signals will not help to improve control quality when sim-

ilar situation occurs. Warm-start technique25 is proposed to

lessen the iterative optimization calculation, usually by set-

ting initial value u0ðkÞ equal to last output uðk � 1Þ. How-

ever, this simple trick may not works well when reference

trajectory changes too fast. Hence, we introduce another

MFNN as feedforward controller (MFNN2), providing ini-

tial value for MPC, as Figure 3 shows.

The set-point reference rðk þ 1Þ indicates the desired

displacement, and historical displacements ½yðkÞ; ::
yðk � n 0yÞ� contain information of current displacement

and rate. Thus, the inputs provide enough information for

the controller to determine proper guess about ûðkÞ.
MFNN2 has a single hidden layer, whose activation

function s1ð�Þ is hyperbolic tangent illustrated in (3). The

activation function s2ð�Þ of output layer is linear.

ADAM optimizer is chosen again to train MFNN2. The

training can be both conducted off-line and online along

with control progress, with small batch of training sets

which are updated over time, absorbing newly proven sam-

ples and dropping outdated one. In this way, the perfor-

mance of neural controller will be gradually improved

over time before deployment.

With a well-trained neural feedforward controller, the

original value of control signal can be close to the optimal

one, which decreases iterations in optimizing MPC objec-

tive function to only one iteration. Combined with the pro-

posed model which prevents repeating predictions, the

computational cost is largely lowered from traditional

NMPC. Assuming a traditional NMPC requires nt iteration,

then ðnt � np � 1Þ calls of model and ðnt � 1Þ optimiza-

tions are cut down by proposed method at a small cost of

computing a slightly larger neural model and an additional

feedforward output.

Modification against feedback delays

The feedbacks in inefficient rate with delay causes mis-

matches between feedbacks and real displacement can

greatly affect the control accuracy and stability, especially

in dynamic tracking. When reference changes rapidly, the

controlled displacement should also follows quickly, but

delayed feedbacks fail to return correct displacement of

PEA in time, making control errors larger than reality,

which misleads controller to adjusting output even harder.

As a result, large overshoot occurs when reference/displa-

cement changes rapidly. All kinds of feedback controllers

Algorithm 1. Calculate MPC output by LM algorithm.

When at instant k (In following expression, all ðkÞ s are ignored,
Hh is simplified as H, subscript i indicates iterations):

Given reference RðkÞ
Initialize: Acquire initial Û0;G0 and H0, set maximal iterations

n and tolerance e > 0, initialize l ¼ t � maxðH0Þ, i¼0;
0: Calculate h0 and JðÛ0Þ;
While i < n do

1: Calculate mi by formula (15) and then Ûiþ1 by (14); Regulate
Ûiþ1 into output range;

2: if jjmijj ¼¼ 0: end loop
3: Acquire output Ŷ ðÛiþ1Þ of MFNN model with Ûiþ1 and

calculate hiþ1 and JðÛiþ1Þ;
4: Calculate DL by (17) and then the gain ratio r by (16);
5: if r < 0:25: do l ¼ l � 2;
else if r > 0:75: do l ¼ l=3;
6: i ¼ iþ 1. Update Gi from model and recalculate Hi;
7: if jjŶ ðÛiÞ � RðkÞjj < e: end loop

8: output Ûi as control voltage signal UðkÞ.

Figure 3. MFNN of neural controller. MFNN: multilayer feed-
forward neural network.
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are affected by this effect, where MPC is influenced in the

prediction process, as NARMAX model requires current

displacement as one of inputs. So if current displacement

can be better estimated despite of mismatched feedback,

the control can be improved based on better prediction. As

we have a ready prediction ŷðkÞ ¼ f ðuðk � 1ÞÞ from MPC

at previous instant, an estimation can be made according to

both ŷðkÞ and ysðkÞ from sensor. Hence, an EKF34 is intro-

duced for this purpose.

The states functions of prediction and measurement are

respectively written as

ŷ�ðkÞ ¼ f ðŷðk � 1Þ; uðk � 1ÞÞ þ wðkÞ (20)

ysðkÞ ¼ h � yðkÞ þ vðkÞ (21)

where f ðŷðk � 1Þ; uðk � 1ÞÞ is simplified from (2), as only

ŷðk � 1Þ and uðk � 1Þ matter now. h is the gain from real

displacement yðkÞ to sampled feedback. wðkÞ and vðkÞ are

included errors for prediction and measurement, with cov-

ariance matrices as Q and R, respectively

pðwðkÞÞ*Nð0;QÞ
pðvðkÞÞ*Nð0;RÞ

�
(22)

From Jacobian Gh, the gradient of ŷ�ðkÞ with respect to

ŷðk � 1Þ and uðk � 1Þ can be extracted as g 2 R1�2. Then

the Kalman filtering process can be updated as following

P�ðkÞ ¼ gPðk � 1ÞgT þ Q (23)

KðkÞ ¼ P�ðkÞhT ðhP�ðkÞhT þ RÞ�1
(24)

PðkÞ ¼ ðI � KðkÞhÞP�ðkÞ (25)

P is estimation covariance matrix, I is identity matrix, K

is Kalman gain. In this case, however, Q;R;P;K; h are all

in 1� 1 dimension. Finally, the estimated displacement

will be outputted as

ŷðkÞ ¼ ŷ�ðkÞ þ KðkÞðysðkÞ � h � ŷ�ðkÞÞ (26)

Although the Q and R are defined as covariances of

errors, they are not directly related to true errors in our

case. They act as two adjustable parameters controlling this

fusion process. As (26) shows, the estimation ŷðkÞ is actu-

ally a weighted mean of sensor feedback and model pre-

diction. The purpose of this filter is increasing the weight of

prediction, that is, increasing R=Q ratio, when measured

displacement changes significantly slower than it should

be, which is judged according to

rðkÞ ¼ Du2

Dy2 þ 0:1
¼ ðuðk � 1Þ � uðk � 2ÞÞ2

ðysðkÞ � ysðk � 1ÞÞ2 þ 0:1
(27)

To ensure the coverage and smooth the shifts, the most

recent nr ratios will be recorded as Pr ¼ ½rðkÞ; ::rðk � nrÞ�,
and if one of them is large enough, the situation should be

regarded as a significant mismatch caused by feedback

delay. Thus, the Q is fixed as a constant cQ, and R is deter-

mined by maxðPrÞ
R ¼ cR1 þ cR2 � SðmaxðPrÞÞ (28)

cQ, cR1, and cR2 are nonnegative constants, Sð�Þ is a sigmoid

function

SðxÞ ¼ 1

1þ e�aðx�bÞ (29)

where a and b are nonnegative constants. To make it func-

tion well, cQ, cR1, cR2, a, and b should be properly set. cR1

and cR2 roughly define the range of R as ðcR1; cR1 þ cR2Þ,
which, cooperated with cQ, decides the range of R=Q ratio.

b is a threshold to tell whether a maxðPrÞ is big enough for

the situation to be regarded as a significant mismatch, that

larger b means higher tolerance. a decides the sensitivity of

(28), that is, larger a leads to quicker reactions to the

changes of maxðPrÞ. With suitable parameters, the ŷðkÞ
after modification (26) will be close to model prediction

when significant mismatch happens and be close to sensor

feedback when mismatch is slight. The modified ŷðkÞ is

more close to real yðkÞ in dynamic occasion, thus when

inputted to PEA model, it helps to get a better prediction

of ŷðk þ 1Þ.

Experiments and discussion

Experiment setup

As shown in Figure 4, the experiment system are config-

ured as following: a stack PEA produced by Thorlab is

driven by a 0–60 V voltage driver with peak-to-peak ripples

less than 10 mV. The output voltage can be regarded as

linear to control signals. A self-sensing method-based

device is used as displacement sensor for feedbacks. It has

two channels. One is serially connected between PEA and

Figure 4. Experiment system. Note that one channel of self-
sensing sensor is serially connected between the negative elec-
trodes of PEA and driver. The driving loop is marked with arrows.
PEA: piezoelectric actuator.
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negative end of power, measuring the charges on negative

electrode of PEA; another is parallel connected with PEA

measuring its voltage. With self-sensing principle derived

from piezoelectric formula, the device can acquire displa-

cement of PEA indirectly from quantity of electric charges

and driving voltage.35 The control algorithm runs in a PC as

controller, communicating with driver and sensor both

through COM connections. The sampling rate of the sensor

is about 250 Hz whereas the driver has higher maximal

output rate. The feedbacks received by controller usually

have a delay of one sampling period, which causes mis-

matches between feedbacks and reality, worsening the con-

trol performance in tracking task. In such condition the

proposed method is tested and its effectiveness is verified.

Verification of proposed control method

A series of experiments are conducted to evaluate the effec-

tiveness of proposed method, compared with PID and a

basic NMPC.18 For MPC and PID both, there are tradeoffs

between performances in tracking of high and low frequen-

cies. Thus, before following experiments, parameters of all

controllers are adjusted to achieve balanced performances

in sinusoidal tracking of multiple frequencies and in step

response. Then all following experiments are conducted

under a same set of parameters, which may not make the

best performance for specific tasks, but focus on the overall

performance.

Firstly, tracking experiments under sinusoidal reference

trajectory of different frequencies (0:5, 1, 2, and 5 Hz) are

conducted. The results are shown in Table 1 with mean

absolute error (MAE) and root mean square error (RMSE)

indicating accuracy. Figure 5 also shows performance com-

parisons in 1, 2, and 5 Hz. The time-displacement charts

present zoomed waveforms of displacement changing, and

time-error charts show the error recordings during the same

periods. When the frequency of desired trajectory goes

high, as the amount of control steps for each sinusoidal

period decreases, accuracy is deteriorating for all three

methods, but proposed controller excels PID/basic NMPC

in all tested cases. When sinusoidal trajectory of preference

has frequency lower than 2 Hz, control accuracy of pro-

posed controller only slightly deteriorates when desired

frequency doubles. However, when desired frequency

reaches 5 Hz, the accuracy suffers a dramatic deterioration

as control steps become very sparse for each period, but

proposed controller still have much better accuracy than

PID and basic NMPC. In Figure 5, we can find out different

error characteristics between the methods: errors of PID are

mainly caused by lag, and the basic NMPC reacts poorly

against sudden changes of delay, which causes oscillations,

although it has smaller errors than PID when not oscillat-

ing, whereas the proposed controller only has large errors

around peaks and bottoms of sinusoid, mostly because the

sparse and rapidly varying feedbacks become less predict-

able for model to provide accurate predictions, on which

the effective control is based. It can be noticed in error

charts that some large errors occur. This is caused when

feedbacks suddenly change the duration of delays which

results in large mismatches (at the arrowhead in (e) and (f)

of Figure 5) and then makes controllers overreact. The

proposed controller achieves much better performance than

basic NMPC in quelling aftereffects and restrains maximal

errors to a smaller extent than PID does. This characteristic

is more obvious in step response comparison, as shown in

Figure 6.

In Figure 6, a 2 mm step trajectory is set. Proposed

controller is compared with PID, basic NMPC and the pro-

posed NMPC without aforementioned delay modification.

All the controllers get one-step delayed feedbacks, which

means, at the first sampling instant after controllers react-

ing to the steeply rising reference, the controllers get the

feedback showing displacement does not change, although

the real displacement has been hugely increased. This mis-

match between feedback and reality misleads controllers to

continuing to steeply raise output voltage, which causes big

overshoots. The overshoot of proposed controller is much

smaller than other three controllers, due to the EKF-based

modification against feedback delays.

Tracking of mixed sinusoidal reference with random

frequency (0.5–5 Hz) and random amplitude are also

tested, presented by Figure 7, which shows the proposed

controller is effective in random reference tracking. And

Figure 8 shows its performance in linear tracking, tested by

1 Hz triangular reference trajectory. Though proposed con-

troller suffers some slight oscillation right after the change

of motion direction, it still achieves smaller MAE and

RMSE than other two controllers. The results shows that

proposed method is less affected by low feedback rate

which makes pure-feedback controllers produce large lags.

Table 1. Tracking performance comparison.

Reference Controller
MAE
(nm)

RMSE
(nm)

0.5 Hz Sinusoid � 500 points/
period

Proposed NMPC 3.8 5.3
Basic NMPC 7.8 11.2
PID 6.6 8.2

1 Hz Sinusoid � 250 points/
period

Proposed NMPC 5.5 7.8
Basic NMPC 12.3 18.5
PID 13.4 15.7

2 Hz Sinusoid � 125 points/
period

Proposed NMPC 9.8 15.0
Basic NMPC 26.3 39.0
PID 27.6 32.2

5 Hz Sinusoid � 50 points/
period

Proposed NMPC 44.3 52.7
Basic NMPC 74.5 102.8
PID 74.5 88.2

1 Hz Triangular wave (linear
test)

Proposed NMPC 5.6 8.4
Basic NMPC 8.5 12.3
PID 8.5 9.7

PID: proportional–integral–derivative; MAE: mean absolute error; RMSE:
root mean square error.
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Figure 5. Sinusoidal tracking performance comparison: (a), (c), and (e) show control performance of proposed controller in 1, 2, and 5
Hz sinusoidal tracking, respectively, compared by PID and basic NMPC in (b), (d), and (f) with same reference trajectories. Arrowheads
in (e) and (f) indicate the influence of duration changes of feedback delay. Note that MAEs and RMSEs marked in figures are statistics of
the entire experiment containing many sinusoidal periods. PID: proportional–integral–derivative; MAE: mean absolute error; RMSE:
root mean square error.
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As the results of above experiments show, with sparse

control points, the basic NMPC losses its advantage over

PID. The effectiveness of proposed controller in displace-

ment tracking is verified with generally significant advan-

tages over PID and basic NMPC. And the approaches taken

to relieve the feedback delay problem have also been vali-

dated as effective.

Conclusion

Hysteresis and dynamic-related nonlinearity are challen-

ging problems in displacement tracking control of PEA.

The displacement feedback with delay and low frequency

causes mismatch between feedback and real state, increas-

ing the difficulty of precise tracking control for pure feed-

back approaches. In this article, a neural network-based

model predictive controller is introduced for tracking con-

trol, combined with neural feedforward controller and

EKF-based feedback estimation. The proposed method

achieves much better performances than basic NMPC and

PID controller in tracking experiments, proving its effec-

tiveness in handling the nonlinearity and feedback delay.

To achieve further improvements in tracking performance,

especially for high-frequency trajectory, more studies are

to be conducted. Potential solutions include combining cur-

rent NARMAX model with more explicit expression of

motion trend, which may improve model’s ability of pro-

viding better prediction and gradient estimation. The pro-

posed controller is also to be applied to systems with higher

feedback rate so that tracking the trajectory of higher fre-

quency can be possible. Furthermore, with MPC’s ability of

multi-goal optimization, current controller has potential to

be developed into a space trajectory tracking controller for

multi-axis piezoelectric positioning system.
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