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ABSTRACT

Food allergies, which are T helper cell Type 2 aberrant responses of the immune system to food proteins, 
are increasing. Environmental factors, including food contaminants, are often mentioned to explain this 
increase. Heat treatment of food induces the Maillard reaction, a non-enzymatic reaction between reducing 
sugars and free amino groups of proteins or free amino acids. This leads to the genesis of neoformed 
compounds, including advanced Maillard reaction products (also called dietary advanced glycation  
end-products [AGEs]). Infant formulas are very sensitive to the Maillard reaction because of their high  
content of lactose and proteins and their long shelf life. The dietary AGEs content is particularly high 
in hydrolysed infant milk. Among dietary AGEs, Nε-carboxymethyllysine is the main form in milk. An 
increasing number of studies show potentially deleterious effects of dietary AGEs, including inflammation  
genesis. These effects seem to be in a great part dependent on the receptor of AGEs (RAGE). RAGE 
is present on immune cells and studies have shown that RAGE is involved in T helper cell priming,  
proliferation, and differentiation. Moreover, there is increasing evidence that the Maillard reaction 
enhances the allergenicity of proteins. All these data indicate a potential role of dietary AGEs in allergies.  
Nevertheless, the impact of dietary AGEs on the immune system favouring the T helper cell Type 2 profile 
and consequently predisposition to develop allergy is poorly documented and needs further investigation. 
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INTRODUCTION

The incidence and prevalence of food allergies have 
dramatically increased in recent decades, especially 
in children. The prevalence varies from one country 
to another but is particularly high in countries  
with Western lifestyles.1-4

Allergy is a hypersensitivity reaction with specific 
immunologic mechanisms inducing objectively 
reproducible symptoms initiated by exposure to a 
substance, the so-called allergen, at a dose tolerated 
by a healthy person.5 There are two distinct phases. 
The first phase, without clinical manifestations, 
is the allergen sensitisation phase. This leads to 
the activation and proliferation of a particular  
population of lymphocytes, the T helper Type 2  
(Th2) cells. Th2-cytokines (interleukin [IL]-4, IL-5,  

etc.), will promote the production of allergen-
specific immunoglobulin (Ig)Es and the recruitment 
of inflammatory cells (eosinophils, mast cells, 
or basophils).6 The second phase is the effector 
phase. Upon further contact with the allergen, the 
interaction between the allergen and IgEs on target 
cells, such as mast cells, results in the release of 
mediators, such as histamine. Induced symptoms 
vary from moderate reactions, such as eczema,  
to severe reactions, such as oedema or anaphylactic 
shock. Atopy is an individual and/or familial genetic 
predisposition to develop allergies with enhanced 
IgE-mediated responses to common allergens.5

Breastfeeding is often recommended up to the 
age of 6 months to reduce the risk of developing 
an allergy. However, beyond the child’s sixth month, 
the majority of parents use infant formulas made 
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from cow’s milk. As a consequence, one of the first 
allergies in children is cow’s milk allergy (CMA).  
Thus, many parents use hypoallergenic infant 
formulas with partially hydrolysed proteins or 
extensively hydrolysed proteins, especially in  
atopic families, in order to limit the risk of 
developing CMA.7,8 However, their preventive 
action on the development of other allergies is not 
clearly demonstrated since the literature presents 
contradictory evidence.9-13 

CMA is often only the first step in the ‘atopic march’  
(or allergic career). If CMA is often relieved before  
the age of 10 years, the atopic child may become 
sensitised to other allergens and may develop new  
allergies, which will, most often, persist into 
adulthood. For example, 50% of children who have  
had CMA will develop another food allergy and 50– 
80% of them will develop allergy against inhalants.10,14

While the predisposition to develop an allergy is 
partly determined genetically, environmental factors  
(including diet) seem to play a very important 
role in the onset and development of allergies, 
especially in young children whose biological 
functions are immature.15 Several hypotheses have 

been proposed to explain the increased incidence 
of allergies, including the reduction of viral or 
bacterial exposure (hygiene hypothesis), changes 
in the composition of the gastrointestinal flora, 
or the presence in the food matrix of compounds 
that could modify susceptibility to develop an 
allergy.16 Since the industrial preparation of infant 
formula can generate neoformed compounds by 
glycation of milk proteins, formula-fed babies could 
be exposed to them, and in particular to advanced 
Maillard reaction products (advanced glycation  
end-products [AGEs]). 

DIETARY ADVANCED GLYCATION 
END-PRODUCTS IN INFANT FORMULAS

Heat treatment of food ensures its safety and 
extended shelf life. However, due to this treatment, 
several reactions occur and give rise to neoformed  
compounds genesis. In dairy products, the Maillard 
reaction is predominant among these reactions.  
This non-enzymatic reaction occurs between  
reducing sugars and free amino groups of protein  
or free amino acids. This reaction takes place in  
three steps (Figure 1). The initial step (Early) 
leads to the formation of Amadori products.  

Figure 1: Main steps and pathways of the Maillard reaction. 
CML: Nε-carboxymethyllysine; HMF: 5-hydroxymethylfurfural. 
Adapted from Hodge.17
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This intermediate product (Advanced) can be 
then transformed into advanced Maillard reaction 
products (MRPs), also called AGEs, which are 
chemically more stable. The final step of the Maillard 
reaction (Final) can lead to the formation of brown 
polymers, called melanoidins.17

Dairy products contain very few free amino acids,18 
with the exception of hydrolysed infant formulas. 
The Maillard reaction is favoured in milk because 
of its high content of lactose and proteins, such as 
caseins or serum proteins, that are rich in lysine. 
They carry amine functions that are involved in 
the Maillard reaction. The most predominant form 
of Amadori products is lactulosyllysine, which 
results from reactions between lactose and lysine.19  
During prolonged heating, these Amadori products 
are transformed to several types of MRPs, whose 
main form is Nε-carboxymethyllysine (CML).19

Among the different forms of milk, infant 
formulas are those with the highest levels of CML  
(Table 1).20-22 CML levels of infant formula 
are ≤45-times higher than in highly sterilised  
(ultra high temperature) milks and ≤83-times higher 
than breast milk.23 The amount of CML in breast 
milk is dependent on the diet of the breastfeeding 
mothers, since CML does pass through breast 
milk, but is usually low.23 By contrast, the long 

shelf life of infant milk, and the often high iron and 
lactose content, makes it particularly sensitive to 
the Maillard reactin.24 Moreover, the highest CML 
content is measured in hydrolysed infant milk.21  
This partial or total hydrolysis of these milk 
proteins leads to an increased proportion of free 
lysines and other amino acids, which will then 
actively participate in the Maillard reaction during  
heat treatment.

DIETARY ADVANCED GLYCATION 
END-PRODUCTS AND HEALTH

AGEs were first described as endogenous 
compounds whose concentration increases with 
age. They form through an in vivo process, referred 
to as ‘non-enzymatic glycosylation’ or ‘glycation’. 
Their presence in excess has been described in 
age-related diseases, such as metabolic disorders, 
atherosclerosis, and Alzheimer’s disease.25 It has 
been shown that dietary AGEs, also called MRPs, 
contribute significantly to the systemic burden of 
AGEs.26 These compounds are chemically the same 
and mainly come from glycation. Furthermore, 
an increasing number of studies show potentially 
deleterious effects of dietary AGEs, although the 
results may be divergent due to the great variability 
of the forms and contents of AGEs depending on  
the food.27,28

Table 1: Comparison of measurements of CML in different milks. 

n=number of samples tested. CML levels are expressed in ng/mg protein.
UHT: ultra high temperature (highly sterilised); IF: infant formula; HA: hypoallergenic; CML:  
Nε-carboxymethyllysine. 

Fenaille et al.20 Delatour et al.21 Assar et al.22

n ng/mg protein n ng/mg protein n ng/mg protein

Liquid  

Human -- 27 6.32±4.22 --

Raw -- 2 1.76±0.61 -- 9.3

Pasteurised 1 16.3±3.3 2 1.30±0.72 -- 10.4

UHT 3 38.2±8.6 2 8.88±7.04 --

IF 2 62.9±13 3 153±40 --

Hydrolysed -- 3 405±195 --

Hydrolysed lactose free -- 5 58.6±70.6 --

Powder       

HA 5 225±68 9 184±131 --

Hydrolysed lactose free -- 2 50.9±52.1 --

 IF 8 71±40 7 76±48  --
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Dietary Advanced Glycation  
End-Products and Gut Homeostasis

The host microbiota is a key component of gut 
homeostasis since it contributes to its physical 
protection, metabolism of food (e.g. short chain 
fatty acids production), and synthesis of new 
compounds (e.g. vitamins, neurotransmitters) but 
also exerts strong interactions with the mucosal 
and immune cells.29 This interaction with the host 
is a long process that starts mainly at birth and 
necessitates some training from either side to 
reach an almost perfect regulation. However, under 
some conditions, by modifying the Th balance, this 
cross communication is altered and the microbiota 
profile becomes altered. One of the conditions at 
the origin of such modifications is the food matrix. 
The composition of the food matrix conditions 
the gut microbiota profile, which adapts to it.  
This changes the type of interaction between the  
host and microbiota, which has two main 
consequences: the production of potentially  
antigenic substances and/or facilitation of increased 
numbers of potentially pathogen micro-organisms, 
including gammaproteobacteria, which are 
detrimental for lactobacilli and bifidobacteria.30

As stated above, the Maillard reaction results in 
increasingly complex compounds whose effects 
on health are equivocal. This also applies for their 
interaction with the intestinal microbiota. From 
the literature, it has been indicated that Amadori 
products (e.g. fructoselysine) are poorly absorbed 
but metabolised by some bacteria.31 As they are 
generally ingested in high quantities, we may 
then suggest that they influence the composition 
(density and diversity) of the gut microbiota. By 
contrast, as CML is known to be rapidly absorbed 
and transported into the blood circulation,  
it will not be used by the intestinal microbiota.  
At last, due to their chemical composition, most of 
high molecular weight MRPs (e.g. melanoidins) are 
likely to escape the upper gastrointestinal tract  
and may be more susceptible to be metabolised by 
the microbiota32 as they behave as prebiotic fibres.

Formula-fed infants present 46% higher plasma  
CML levels and higher CML (60-fold) urinary  
excretion than breast-fed infants.33 This is as CML  
absorption and urinary excretion are mostly  
linked to the level of CML in the food matrix  
(dietary intake), which is higher in formula than in 
breast milk, in which low levels of CML are detected.23 

Free MRPs are not substrates for the intestinal 
lysine transporters.34 However, when bound to small 

peptides, some MRPs may translocate into epithelial 
cells via di and tri-peptides transporters (PEPT1).  
In general, the longer MRPs are peptide-bound 
during intestinal digestion, the more hydrophobic 
they are and there is a higher chance of their 
appearance in the circulation. Then, once they 
have translocated into the epithelial intestinal cell, 
they are submitted to intracellular proteolysis.  
While glycated amino acids with polar or charged 
chains (e.g. CML) remain trapped inside the cell, 
glycated amino acids with unipolar side chains 
(e.g. maltosine, pyrraline) can pass through the 
membrane.34-36 Their outcome is not clearly 
established and needs further investigation.

However, it is well understood that biologically 
formed AGEs bind to a plasma membrane receptor 
of AGEs (RAGE). This receptor is highly expressed 
by several types of cells, including immune, neuron, 
lung, and heart cells. Because it belongs to the 
immunoglobulin superfamily, once activated, 
it may initiate intracellular pro-inflammatory 
pathways, such as Ras/MAPK and JAK/STAT. These 
pathways often converge to nuclear factor-kappa B  
(NF-κB) activation and correlate to tissue 
damage by activating pro-inflammatory cytokines  
secretion.37-39 It is not clear whether these  
pro-inflammatory pathways are also involved in 
intestinal epithelial cells. From our preliminary  
in vitro data, we observed that, in physiologic doses 
(amount possibly found in food) CML seems not 
to alter the Caco-2 epithelial monolayer, since the 
trans-epithelial electric resistance (an indicator of 
intestinal permeability) is maintained after 24 hours 
of exposure. Moreover, from these data we did not 
measure any expression of RAGE in the absence,  
as well as in the presence, of CML at the dose 
used. However, we have not measured the amount 
of intracellular CML in the Caco-2 cells after their 
exposure to MRPs (unpublished data).

Dietary Advanced Glycation  
End-Products and Inflammation

Dietary AGEs may predispose individuals to 
inflammation, which plays a major role in the 
development of chronic diseases (for review40). 
Thus, dietary AGEs such as CML are suggested 
to participate in metabolic disorders41 and  
cardiovascular dysfunctions.42 As mentioned above, 
consumption of dietary CML is correlated with 
circulating CML levels but also with an increased 
release of biomarkers of the inflammatory reaction 
and/or oxidative stress in both humans and 
animals.43-45 By contrast, it has been shown that 
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