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ABSTRACT
In this paper analytical solutions are derived to predict the static response of thin circular clamped GLARE
fibre-metal laminated plates under the action of a lateral hemispherical indentor. The load-indentation curve is
calculated along with the first failure load and deflection due to glass-epoxy tensile fracture. The Ritz method
is employed with one, two and three-parameter Ritz approximation functions. The derived formulas are applied
to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates with various diameters. The results converge
satisfactorily in all examined cases. The calculated load-indentation curve and the first failure agree well with
published experimental data for the case of a GLARE 2-2/1-0.3 plate with a radius of 40 mm (failure load
within 7% and failure deflection within 3%). The same load-indentation curves are also calculated using AN-
SYS and by comparison to FEM results the validity of the analytical model is further verified. No analytical

solution of this problem is known to the authors.

Keywords: GLARE, load-indentation response, tensile fracture.

1. INTRODUCTION

GLARE is a Fibre-Metal Laminated material used in
aerospace structures which are frequently subjected
to various impact damages [1-5]. A high percentage
of the total energy absorbed by GLARE plates dur-
ing impacts is due to the static deformation of the
plate [1, 6-7]. Hence, response of GLARE plates
subjected to lateral indentation is very important as
far as their overall impact behaviour is concerned.

This paper deals with the static response of thin cir-
cular clamped GLARE fibre-metal laminated plates
under the action of a lateral hemispherical indentor
located at the centre of the plate. In reference [1]
Vlot used an elastic-plastic impact model to solve
this problem numerically assuming a deformation
profile based on experimental data. Hoo Fatt et al.
[6] used the principle of minimum potential energy
to model analytically the response of fully clamped
square GLARE panels assuming a deformation pro-
file which resembles that of a stretched membrane.
They also calculated the first failure load due to
glass-epoxy tensile fracture.

The objective of this paper is to develop an analyti-
cal model for the calculation of static load-inden-
tation curve and the first failure due to glass-ep-

oxy tensile fracture applicable to circular plates.
The Ritz method is employed in order to solve the
problem in association with suitable approximation
functions. Formulas corresponding to one, two and
three-parameter Ritz approximations have been de-
rived. These formulas provide a means to verify the
convergence of the results when applied for a spe-
cific GLARE grade. In this work the load-indenta-
tion curve and the first failure are calculated apply-
ing the derived formulas to GLARE 2-2/1-0.3 and to
GLARE 3-3/2-0.4 plates with various diameters and
the results converge satisfactorily in all examined
cases. For the case of a GLARE 2-2/1-0.3 plate with
a radius of 40 mm, the results are in good agree-
ment with experimental data from reference [1]. The
same load-indentation curves are also calculated us-
ing ANSYS and by comparison to FEM results the
validity of our analytical model is further verified.
No analytical solution of this problem is known to
the authors.

2. PROBLEM DEFINITION

We consider a thin clamped circular GLARE plate
with radius a and thickness t as shown in Fig. 1. The
plate is loaded statically by an indentor with a hemi-
spherical tip of radius R acting at the centre. The
plate consists of alternating layers of aluminum and
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Fig. 1 Circular plate problem geometry and coordinate

system

glass-epoxy. The aspect ratio o/t is assumed very
high so that shear deformation and local indentation
are negligible.

A polar coordinate system (7,6,z) with the origin at
the centre of the plate is employed as illustrated in
Fig. 1. The lateral displacements, w, of the plate sat-
isfy the following boundary conditions:

w=0 (r=a) (1)
%W:o (r=a) @)

As the indentor progresses the load P applied on the
plate and the corresponding central deflection wo
increase. We will derive analytical expressions for
the calculation of the (P, w ) curve. We will also
calculate the first failure load and deflection due to
glass-epoxy tensile fracture.

3. ANALYSIS

In order to obtain analytical expressions for the
load-indentation curve we idealize the material be-
haviour of aluminum as rigid-perfectly plastic and
the unidirectional glass-epoxy as linear elastic. We
assume stress distributions corresponding to fully
plastic bending and membrane states for alumi-
num layers. This assumption was also made for the
stresses in reference [6]. From the experimental data
in reference [1] it is concluded that GLARE plates
will undergo very large deflections, several times
the plate thickness, before tensile fracture of glass-
epoxy occurs. Although bending resistance governs
the plate’s response for small deflections, membrane
resistance plays the governing role when deflections

become large as referred also in [7, 8]. Furthermore,
in the case of very thin plates that may have deflec-
tions many times larger than their thickness, the re-
sistance of the plate to bending can be neglected.
We will first consider the case of membrane only
resistance and then the case of both bending and
membrane resistance of the GLARE plates.

3.1. Strain Energy Equations

We assume that deflections are large, in-plane defor-
mations are negligible compared with the transverse
deflections and that the strains are finite. The Carte-
sian strain components for large deflections of plates
and negligible in-plane deformations are given by:

1[6w : 1{ow ’
E. =—|—|> E === >
AN 720 oy

The membrane strain energy of the plate is [8]:

_oww
yxy - ax 6}/ (3)

U, = %“T (ngx +Ne, +N, 7, }1xdy (4)

where N, N and N, are the in-plane forces acting
on the plate and T is the integration domain defined
by the plate’s boundary. The assumed stress distri-
bution corresponds to the fully plastic membrane
state and leads to the following expressions for the
in-plane forces of the aluminum layers:

N, = Ny =moyt, ny = m%tm (5)
where m is the number of aluminum layers, o is the

yield stress of aluminum and 7, is the thickness of
each aluminum layer.

Static indentations tests presented in reference [ 1] re-
vealed that during loading the fibre-metal laminates
have a virtually axisymmetrical deflection shape.
Such a deflection shape was employed by Vlot for
his elastic-plastic impact model. We will consider
axisymmetrical deflection shape so that:

g:Ecose’ %V=%:Vsin0’ (6)
In order to obtain an expression for the membrane
strain energy of aluminum layers we take into ac-
count that N, N, and N, do not depend on (x,y) co-
ordinates. Substitution of equations (3) in equation

12
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(4) and transformation in polar coordinates using
expressions (6) yields:

[—cos@j rdrd9+—” [—smﬂ)z

N, ow ? .
rdrd@ + —= j j 2V cos@sin Grdrdd
2 2 or

(7

For a symmetric laminate with specially orthotropic
layers the in-plane forces are [9]:

N,=4,¢ + A128y > N, = ApE, + Azzgy 4 ny = Ag) (8)
where Al,j are the extensional stiffnesses of the
laminate. Substitution of equations (3) and (8) into
equation (4) yields the following expression for the
membrane strain energy of the prepreg layers:

4
ow

. ow ow Y[ ow)
U’ 5 H{A”{ax} +4,, o +(2Alz+4A65](gj ((’ﬁy] }dxdy 9)

Since A, do not depend on (x,y) coordinates, equa-
tion (9) is transformed in polar coordinates using
expressions (6) as follows:

o=y [fcose] rarao+ 2 [ [fsmaj

(10)
rdrd + 2t 24 I} (iwj cos’ Osin’ Grdrd 0
4 T\ or
The bending strain energy of the plate is [10]:
o’w w o’w
,7”[ 87 67+2MX‘V%JJXdy (11)

where M, My and Mxy are the bending and twisting
moments acting on the plate. The assumed stress
distribution corresponds to the fully plastic bend-
ing state and leads to the following expressions for
the moments of the aluminum layers (for m=1/ or
m=24...

or m=3,5... respectively in equation 12):

) ° 4 =
(12)
m—-1 t2
Mx _O—otAlzZz +60f1
i=1
Mx
M, =M, = (13)

where Z is the geometric distance of each alu-
minum layer from the neutral surface of the plate.

In order to transform equation (11) in polar coordi-
nates, we use the following expressions:

Tw_Dwgog 0 Py Pw L oo
o’ o or r 6y2_6 or r
2 2

ow szmﬁco 0_@sm600s9 (14)
6x6y or or r

In order to obtain an expression for the bending
strain energy of aluminum layers we take into ac-
count that M, M and M, do not depend on (x,y) co-
ordinates. Transformation of equation (11) in polar
coordinates using expressions (14) yields:

U = H(gvf $ 0+ ?:smra}dd9+2”[ysin 6+
2

(Qwoos'd rdrd+ M., ([ O Ginfeosg - 20100 | g
Y or? 0

(15)

or r r r

For a symmetric laminate with specially orthotropic
layers the moments are [9]:

2 2 2 2
MX:D”(;TZV+D12(’;J}—ZV’ My:DlzzT‘;V"'Dzzgyil;v’
2
v —ap, (16)
¥ 0Ox0y

where D, are the bending stiffnesses of the laminate.
Since D, do not depend on (x,y) coordinates, equa-
tion (11) is transformed in polar coordinates using
expressions (14) and (16) as follows:

awsm g

e =D ] Zeos 02 2050

] rdrd0+

17)

8wcos 4

or? roor

’w  , . owsin*@\d*w . ,
+D12Jl.|.r[arZCOS 9+E B

2
2D, H ow 2 ¥ Sin@cosd — %M rdrd 6
\ or’ or r

J rdrd 6 +

3.2. Ritz Method Application

We consider the following approximation function
for the deformation profile of the plate which satis-
fies boundary conditions (1) and (2):

r)= Zi:lj[l—sin(“jz_ﬁ

), 0<r<a, i=123.. (8)
= a

where /11, are the Ritz coefficients. This deformation
profile has not zero slope at the centre of the plate.
It is noted that the same boundary conditions and
non zero slope at the centre are satisfied by the ex-
perimental deformation profile employed by Vlot in

reference [1].
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Using the above deformation profile strain energy
components can be calculated from equations (7),
(10), (15) and (17). As already mentioned, we con-
sider the case of membrane only resistance and the
case of both bending and membrane resistance by
adding the membrane only and both bending and
membrane components for the calculation of the to-
tal strain energy U.

The total potential energy functional is:
O=U-Pw, (19)

where Pwo is the work done by the indentation load.
From equation (18) we have:

i=123,..

O)ZWa :zlﬂj’ (20)
Minimization of the functional IT yields:
oUu . .
= _p, =123,...,
o, / ’ 1)

Equation (21) gives an (ixi) non-linear system of al-
gebraic equations from which the Ritz coefficients
lj. can be determined for each specific value of load
P. Substitution of 4, into equation (20) gives the cor-
responding value of wo. In this way (P, w ) curve
can be calculated. Obviously, for /=1 an algebraic
expression of P as a function of w_is directly ob-
tained. In appendix A we present the derived formu-
las corresponding to one, two and three-parameter
Ritz approximations.

3.3. Glass-Epoxy Tensile Fracture

We follow the reasoning of reference [6]. First
failure would occur when the tensile strain in the
glass-epoxy reaches the tensile failure strain ¢
Since deflections are very large, we ignore bending
strains and assume that all glass-epoxy layers break
at the same time when the membrane strain reaches
the limit value of the prepreg. The radial membrane
strain ¢_in the plate is given by:

(%)
&

" or
The maximum value of ¢, for =0, is obtained by
combination of equations (18) and (22):

crit’

(22)

2

(4 -3)r )
~ L] = 1,2,3,...
I 23)
Glass-epoxy tensile fracture occurs whene  =e¢
or equivalently, when:
Zﬂ 4] 3 \/? i:1,2,3,... (24)

Using equations (21), we start increasing the inden-
tation load P, until the corresponding values of /lj
satisfy condition (24). When this happens, the in-
dentation load P has reached the critical value P,
and the corresponding first failure displacement
w . 1s then calculated from equation (20) for those
ij values.

For i=1, equation (20) gives w
rectly obtained from equation (24), while the cor-
responding P__ is calculated by substituting w_ to
equation (21).

=), ; and w
ocr

ocrit

s di-
it

4. RESULTS

We apply the derived formulas in order to calculate
the load-indentation curve and the first failure of
GLARE 2-2/1-0.3 plates. GLARE 2-2/1-0.3 fibre-
metal laminate consists of two external 2024-T3
aluminum layers and two R-glass UD fibre prepregs
in the middle. Each aluminum layer has a thickness
of 0.3 mm and each prepreg has a thickness of 0.1
mm. Prepregs have the same orientation. The ma-
terial properties considered for our calculations are
given in Table 1. All available properties of refer-
ence [1] have been used. Remaining material prop-
erties have been taken from reference [6] apart from
v,, which has been calculated based on the recipro-
cal relations.

We also apply the derived formulas in order to cal-
culate the load-indentation curve and the first fail-
ure of GLARE 3-3/2-0.4 plates. GLARE 3-3/2-0.4
fibre-metal laminate consists of the following lay-

up:

[2024-T3 / 0° glass / 90° glass / 2024-T3 / 90° glass
/ 0° glass / 2024-T3]

Each 2024-T3 aluminum layer has a thickness of

14
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Table 1: GLARE 2-2/1-0.3 material properties.

E;; =47.3 GPa (long. prepreg stiffness) vip=0.25 (prepreg Poisson’s ratio)
Ey =17 GPa (transverse prepreg | &..; = 0.055 (prepreg tensile failure
stiffness) strain)

G;,=7 GPa (prepreg shear modulus) | g, = 340 MPa (aluminum yield strength)

0.4 mm. Each prepreg ply has a thickness of 0.125
mm and consists of S2-glass UD fibre prepregs. The
material properties considered for our calculations
are those given in Table 1, apart from ecrit which,
according to our correspondence with the manufac-
turer of GLARE 3, is equal to 0.047.

In Figs 2 and 3 the static (P, w ) curves correspond-
ing to the membrane strain energy of a GLARE 2-
2/1-0.3 plate with 40 mm radius and of a GLARE
3-3/2-0.4 plate with 75 mm radius are depicted. In
Fig.s 4 and 5 the static (P, w ) curves correspond-
ing to both bending and membrane strain energy are
depicted for the same GLARE plates. Each curve
stops at the point of the predicted first failure. It can
be seen that the results have converged satisfactorily
in all cases. It is noted that the rigid-perfectly plastic
assumption for the aluminum yields the existence of
constant bending terms in (P, w,) expressions. Due
to these terms the plate does not deflect until the
load reaches a finite value that causes plastic flow.
This is clearly illustrated in Fig.s 4 and 5. In Fig.
s 6 and 7 the three-parameter membrane only and
both membrane and bending (P, w ) curves are com-
pared for the aforementioned GLARE plates. The
expected small contribution of bending stiffness in
comparison with the membrane stiffness to the re-
sponse of the plate can be observed.

79 ------ 1 Ritz parameter

2 Ritz parameters

5 1 — — — 3 Ritz parameters

P [KN]

0 1 2 3 4 5 6 7 8 9
Wo [mm]

Fig. 2: Membrane load-indentation curves for GLARE 2

plate with 40 mm radius

------ 1 Ritz parameter

2 Ritz parameters

.

— — — 3 Ritz parameters ,"

P [KN]
N

0O 2 4 6 8 10 12
Wo [mm]

14 16

Fig. 3: Membrane load-indentation curves for GLARE 3
plate with 75 mm radius

75 e 1 Ritz parameter
6 2 Ritz parameters
5 — — — 3 Ritz parameters

Wo [mm]

Fig. 4: Membrane and Bending load-indentation curves
for GLARE 2 plate with 40 mm radius

%‘21 1------ 1 Ritz parameter
20 4 2 Ritz parameters e
]g | — — — 3Ritz parameters

P [KN]

0O 2 4 6 8 10 12 14 16
Wo [mm]

Fig. 5: Membrane and Bending load-indentation curves
for GLARE 3 plate with 75 mm radius
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5 5
------ Membrane
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Fig. 6: Three Ritz parameters load-indentation curves
for GLARE 2 plate with 40 mm radius

------ Membrane
Membrane & Bending

0 2 4 6 8 10 12 14

Wo [mm]

Fig. 7: Three Ritz parameters load-indentation curves
for GLARE 3 plate with 75 mm radius

We have also calculated the (P, w,) curves of GLARE
2-2/1-0.3 plates with 35 mm and 45 mm radius and
of GLARE 3-3/2-0.4 plates with 65 mm and 70 mm
radius. The obtained results lead to the same con-
clusions. By careful examination of all results we
have obtained, it is concluded that the (P, w ) curve
of a GLARE plate under lateral indentation can be
well approximated up to the point of first failure,
considering only one Ritz parameter and only the
membrane components of the strain energy. This
conclusion is very useful in cases where the predic-
tion of first failure is not mandatory, since it reduces
the required calculations dramatically.

5. COMPARISON
AND FEM RESULTS
In reference [1], an experimental (P, w ) curve is

WITH EXPERIMENT

published for a GLARE 2-2/1-0.3 plate with 40
mm radius. In Fig. 8, the analytically calculated
three-parameter (P, w ) curves corresponding to the
membrane strain energy only and to both bending
and membrane strain energy of a GLARE 2-2/1-
0.3 plate with 40 mm radius are compared with the
above experimental curve. Both analytical and ex-
perimental curves stop at the point of the predicted
first failure. The good agreement of analytical cal-
culations with the experimental data is illustrated in
Fig. 8. The predicted first failure load and deflection
compare well with their experimental values from
reference [1]. The best prediction (failure load with-
in 7% and failure deflection within 3%) corresponds
to the three-parameter Ritz approximation that takes
into account both bending and membrane stiffness
of the plate.

In order to further verify the validity of our ana-
lytical model, we implement a 3-D solid modelling
procedure with ANSYS. We employ an isotropic
non-linear elastoplastic material model which obeys
a true stress-strain relation for aluminum. An ortho-
tropic linear elastic material model is used for the
glass-epoxy. The contact between the indentor and
the plate is simulated by contact elements. We use
non-linear analysis with geometric and material
non-linearities. The indentor is forced to move and
deform the plate incrementally. Analysis stops when
first failure due to glass-epoxy tensile fracture oc-
curs. The convergence of FEM results is checked by
implementing models with increasing mesh density.
This FEM procedure is applied to GLARE 2-2/1-0.3
plates with 35 mm, 40 mm and 45 mm radius and to
GLARE 3-3/2-0.4 plates with 65 mm, 70 mm and 75
mm radius. In Fig. 8, the numerically calculated (P,
w ) curve is compared with the corresponding ex-
perimental curve. Both numerical and experimental
curves stop at the point of the predicted first failure.
The close agreement of FEM calculations with the
experimental data is illustrated in Fig. 8. The nu-
merically predicted first failure load and deflection
compare well with their experimental values from
reference [1] (failure load within 2% and failure de-
flection within 5%).

In Figs 8 and 9 the analytically calculated three-pa-
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7+ Experiment
61 — — — 3Ritz parameters
5 membrane & bending
1 —--—FEM
Z 4
X | - 3 Ritz parameters A
o 3 membrane S
£
24 <
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0 === ‘ ‘
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Fig. 8: Experimental versus calculated load-indentation
curves for GLARE 2 plate with 40 mm radius

20 4 — — — 3 Ritz parameters
18 4 membrane & bending
16 FEM
14 A
124 Tttt 3 Ritz parameters 7
Z membrane -
X 104 7
= .
o g v
6 d
=
4 —
-7
4 - 2
i
01 2 3 45 6 7 8 9 10 11 12 13
Wo [mm]

Fig. 9: Analytical versus numerical load-indentation
curves for GLARE 3 plate with 75 mm radius

rameter (P, w ) curves corresponding to the mem-
brane strain energy only and to both bending and
membrane strain energy of a GLARE 2-2/1-0.3
plate with 40 mm radius and of a GLARE 3-3/2-0.4
plate with 75 mm radius are compared with the cor-
responding numerical curves. Both analytical and
numerical curves stop at the point of the predicted
first failure.

The good agreement between analytical and FEM
calculations is illustrated in Fig.s 8 and 9. The analyt-
ically predicted first failure load and deflection com-
pare well with their numerical values from ANSYS.
The best prediction (failure load within 5% and 6%
, failure deflection within 3% and 5%) corresponds
to the three-parameter Ritz approximation that takes
into account both bending and membrane stiffness
of the plate. A good agreement between analytical

and FEM calculations has also been found for the
cases of GLARE 2-2/1-0.3 plates with 35 mm and
45 mm radius and of GLARE 3-3/2-0.4 plates with
65 mm and 70 mm radius.

6. CONCLUSIONS

In this work we have developed an analytical model
for the prediction of the static load-indentation curve
of thin circular clamped GLARE fibre-metal lami-
nated plates that deflect under the action of a lateral
hemispherical indentor located at their centre. The
model also predicts the first failure load and deflec-
tion due to the glass-epoxy tensile fracture.

The model is used to predict the response of circular
GLARE 2-2/1-0.3 plates with 35 mm, 40 mm and
45 mm radius and the response of circular GLARE
3-3/2-0.4 plates with 65 mm, 70 mm and 75 mm ra-
dius. The results based on the three-parameter Ritz
approximation functions converge satisfactorily
in all examined cases. Also, the expected govern-
ing role of the membrane in comparison with the
bending stiffness for these problems is found. For
the case of a circular GLARE 2-2/1-0.3 plate with
40 mm radius, the predicted static load-indentation
curve agrees well with the corresponding experi-
mental curve. The first failure load and deflection
are within 7% and 3% of their experimental values
respectively.

For all of the examined cases, the analytically cal-
culated static load-indentation curves and first fail-
ures agree well with the corresponding numerical
results calculated with FEM using ANSYS. In this
regard, we further verify the validity of our analyti-
cal model. The validity of our FEM modelling pro-
cedure is also demonstrated by the close agreement
between numerical results and the aforementioned
experimental data for the case of a circular GLARE
2-2/1-0.3 plate with 40 mm radius.

Our analytical model can be used for the design of
circular GLARE plates under lateral indentation and
for the evaluation of the impact properties of dif-
ferent GLARE grades. Furthermore, this analytical
model is expected to predict satisfactorily the lateral
indentation response of circular plates consisting of
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other advanced hybrid material systems of alternat-
ing metal layers bonded to fibre-reinforced polymer
layers, provided that our assumptions remain valid.
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APPENDIX A. ONE, TWO AND THREE-PA-
RAMETER RITZ APPROXIMATIONS

For i=1, considering both bending and membrane
components of strain energy we obtain the follow-
ing expression:

P=[0576(N, + N, )+0.734N v, +[0.62(4, + 4,,)+

3
+0.412(A,, + 25 |2 +4M | + (25)
. :
+[(3.318+2.906Ina)D,, + D, )+(~8.124+1.938Ina)D,, +
+(14.758+3.8761na)D66]%

For i=1, considering only the membrane compo-

nents of strain energy, P is calculated from expres-
sion (25) where M_ . and all D, terms are now equal
to zero.

For i=2, considering both bending and membrane
components of strain energy we obtain the follow-
ing (2x2) non-linear system of algebraic equations,
from which 4, and 4, can be determined for specific
values of load P:

P=2NA, - N4 +4M 2 - M 2, +

26
+2M 425 =3M A2y + 4AM | +2C 2, + Cy, (26)
P=-NA, +2N, A, —M L +4M, 2 -3M A2 + 27
+2M 232y + 4M  +2C, 2, +C3 4,
where:
N, =0.288(N, + N,)+0.367N,
N, =11.916(N, + N))+15.17IN, 28)
N, =0218(N,+N,)+0.278N,
1
M, =[0.155(4, + 4,) +0.103(4,, + 24, )| >
o
M, =[205.585(4,, + Ay,) +137.056(4,, + ZA“)]% (29)
o
M, =[19.449(4,, + A4,,) +12.966(4,, + 2 A, )]i2 ,
[04
M, =[1.211(4, + Ay,) +0.807(4,, + 24, )]i2 (30)
o

M, =[8.033(4,, + 4,,) +5.356(4, +24,)] 12

a (31)
C, =[(1.659 +1.453Ina)(D,, + D,, )+

p (32)
+(—4.062+0.969In @)D, +(7.379 +1.938 In)Dys |—
o
C, =[(1114.758 +36.335Ina)(D,, + D,, )+ (613.985 + (33)
+24.224Ina)D,, +(1615.549 + 48.447 In ) D, ]i2
o
C, =[-5.826(D,, + D,,)—55.56D,, + 43.908D66]i2 (34)
o

For i=2, considering only the membrane compo-
nents of strain energy, P is calculated from expres-
sions (26) and (27) where Mxy and all C, terms are
now equal to zero.

For i=3, considering both bending and membrane
components of strain energy we obtain the follow-
ing (3x3) non-linear system of algebraic equations,
from which 4, 4, and 4, can be determined for spe-
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cific values of load P:

P=2N A —N,A, —NA, +4M L -~ M1, —
~M A +2M A0 -3M A, +

F2M AN =3M A Ay — M A, A0+ M A3, —
=2M A +4AM |, +2C 2, + C4, + Cody

P=-N,A +2N,A, - N, - M 2 +

+AM 2 — M A = 3M AL +2M A, —

~M A =M A+ 2M A, —3M A2, +
+2M 4 2,4 +4M , + Ci A4, +2C,4, + C 4y

P=-NA — N, +2N, A, — M, — M2 +
+AM B+ M AL~ M A, —

—3M A+ 2M LA Ay —3M A A+ 2M A, —
—2M A 2025 +4M |+ C oAy + CsAy +2C, A,

where:

N, =39.046(N, + N,)+49.715N _,
Ny =0361(N, + N,)+0.459N_,
N, =0.141(N, + N,)+0.18N |

M, =[2191.104(4,, + 4y,) +1460.737(4,, + 24, )]iz,
o
1

a2

M, =[64.237(A,, + Ay,) +42.825(4,, + 24, )]

2

M, =[2665.467(4,, + Ay,) +1776.976(4,, +2 A, )]i,
(04

1

2
a

M, =[35.223(4,, + A,)) +23.482(4,, + 24, )]

M,y =[46.016(A4, + A,)) +30.678(4, + 24, )] = -
[04
1

2
[24

M, =[16.677(A, + Ap) +11.118(4,, + 24, )|

1

—
aZ

M,, =[0.378(4,, + Ay) +0.252(4,, + 24, )]

M,, =[168.625(4,, + Ay,) +112.416(A4,, + 2 A4, )]i2
[04

—

M,, =[28.253(4,, + A4,,) +18.835(4,, + 24, )]

2

EE

M, =[55.382(4, + Ay,) +36.921(4, +24,,)]

2

R

C, =[(11744.949 +117.727 na \D,, + D,, )+
+(7411.381+78.485In @)D, + ‘

2

+ (16078 .518 +156 .97 In @)D, ]‘—
(24

C, =[-29.824(D,, + D,,) - 484.976D,, + 425-32906(,]%
a

C, =[-12.788(D,, + D,,)-101.545D,, + 75.9670“]i2
a

(35)

(36)

(37

(3%)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

For i=3, considering only the membrane compo-
nents of strain energy, P is calculated from expres-
sions (35), (36) and (37) where M and all C, terms
are now equal to zero. y

It is noted that the singular terms of the integral in
equation (17) are calculated in a finite part sense.
Singular terms in the strain energy calculation ap-
pear also in reference [1].
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