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1. INTRODUCTION
Energy loss caused by flow friction is a concern in 
many types of fluid transportation application. Nu-
merous technologies have been investigated to de-
crease friction and energy loss, such as changing 
the inner surface finish, improving fluid rheologi-
cal properties and adding surfactants or polymers, 
etc. For the crude oil and oil products transporta-
tion, adding trace quantities of drag reduction agents 
(DRA) can not only improve capacity by 20%-60%, 
but also can reduce pressure loss. Currently, the 
most popular DRA for oil is poly-α-olefin, which 
is characterized by a long main chain with short 
side chains and may be several millions in mo-
lecular weight (MW). After dissolution in the oil, 
the poly-α-olefin molecule is oriented by the shear 
stress within the fluid. Radial pulsations in the fluid 
are inhibited by elastic deformation of the polymer 
chain, which reduces the flow resistance and fric-
tion energy loss[1-4]. However, poly-α-olefins with 
high MW are easy to be irreversibly degraded by 
shear stress. Hence, after intensive shearing, such as 
at laminar boundary layers, pumps, pipeline elbows 
and other large velocity gradient locations[5,6], the 

DRA should be re-supplied to maintain its drag re-
duction performance. Optimizing this procedure is a 
practical problem for DRA research and application.

Nano materials are widely used in the materi-
als field because of their special properties, which 
originate from their structure and size in nanometer 
range. Nanocomposites fabricated with base mate-
rials, with nano materials as promoters, have been 
the subject of increasing attention [7-9]. With their 
nanometer size, large surface area and high surface 
energy, it is easy for nanomaterials to lose their 
character because of self-agglomeration. However, 
poly-α-olefin is a typical non-polar material. In con-
sequence, therefore, nano particles do not disperse 
well in poly-α-olefin.

Coupling agents commonly are used for surface 
modification in order to increase the dispersibility of 
nano silica in polymers[10], and have been applied 
successfully into poly-acrylate, polyurethane, poly-
ethylene, plastic, rubber and other polymers[11-16]. 
These polymers show improved application perfor-
mance and some functionalization properties. Ac-

ENHANCED DRAG REDUCTION PERFORMANCE OF NANOCOMPOSITES: 
THE EFFECTS OF SURFACE MODIFICATION OF NANO SILICA

Xiaodong Dai1,2*, Guicai Zhang2, Bing Li3, Jijiang Ge2, Xuewu Wang1, Shuming Yin1

1Shengli College China University of Petroleum, Dongying, Shandong, 257061, China;
2Post-Doctoral Working Station of University Science Park, China University of Petroleum, Donying, Shandong, 

China, 257000
3Advanced Materials Institute, Shandong Academy of Science, Jinan, Shandong, China, 250014

*Author to whom correspondence should be addressed: Email: xiaodongdai1980@163.com

Received 25 April 2017; accepted 15 June 2017

ABSTRACT
In this paper, nanocomposite was synthesized with nano silica and poly-α-olefin, and the effects of surface 
modification to the nano silica on its drag reduction performance were investigated. The dosage coupling 
agent, Y-aminopropyltriethoxysilane, and the modification temperature were studied intensively through sur-
face hydroxyl and oil adsorption analysis. The test results indicated that the hydroxyl number of the silica 
was decreased by Y-aminopropyltriethoxysilane modification, with improved lipophilicity and oil adsorption. 
At 50oC, the optimum Y-aminopropyltriethoxysilane dosages were 15% for Nano-Si-10, 5% for Nano-Si-20, 
and 10% for Degussa-R972. The modification significantly changed the nano silica surface properties and en-
hanced the interaction with poly-α-olefin. Through drag reduction and shear resistance tests by rotating disk 40 
mins degradation and testing loop 2 times shearing, it was shown that the nanocomposite possessed good drag 
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cording to the requirements for the application of 
the nanocomposite, the surface of the nano silica 
particles was modified to prepare the nanocompos-
ited DRA[17,18]. In the present study, the modifica-
tion conditions and consequent drag reduction per-
formance were investigated.

2. EXPERIMENTAL
2.1 Materials
Nano silica particles with a size of 10 nm (denoted 
as Nano-Si-10 and nano silica with a particle size of 
20 nm (denoted as Nano-Si-20) were obtained from 
the Sichuan Jicai Science and Technology Com-
pany. Nano silica(Degusssa-R972, Aerosil) was ob-
tained from the Degussa Company, Germany. The 
silane coupling agent, Y-aminopropyltriethoxysi-
lane, (KH550, an industrial product) was obtained 
from the Chenguang Reagent Company. The drag 
reducing agent (poly-α-olefin, slurry) was obtained 
from the Langfang Weipu Pipeline Technology Cor-
poration. Dioctyl phthalate (an analytical reagent), 
was obtained from the Wuxi Yatai Lianhe Chemical 
Company. 

2.2 Methodology
2.2.1 Surface modification
The nano silica was dispersed in 95% ethanol with a 
1% mass ratio, as ‘Solution 1’. KH550 was dissolved 
in 95% ethanol with 5% mass ratio, designated as 
‘Solution 2’. Solution 1 tjem was further dispersed 
using an ultrasonic treatment at 40kHz and 180w for 
10 min. The pH of Solution 2 was regulated to pH 
3~4 using dilute hydrochloric acid and the solution 
then was hydrolysed for 30 min. Solutions 1 and 2 
then were mixed together and were reacted under 
ultrasonification at 25oC for 60min. The mixed solu-
tion was dried in the atmosphere at 40oC for 4 h, and 
dried under vacuum at 80oC for 24 h. Finally, it was 
washed 5 times with 95% ethanol and dried under 
vacuum at 80oC for 24 h. 

2.2.2 Preparation of Nanocomposited DRA
The as-modified nano silica samples were added 
in the DRA suspension of poly-α-olefin at a weight 
concentration 2%(w/w). A 20% mass ratio of com-
patibilizer[19] then was added. The suspension was 
stirred at 50oC and 60 rpm for 6 h in order to obtain a 
nano silica/poly-α-olefin composited DRA suspen-
sion.

2.3 Characterization
2.3.1 SBET, TEM and TGA 
Surface area (SBET) and pore size were calculated 

on the basis of the low-temperature N2 adsorption 
isotherm measured by a Tristar 3020 automatic 
adsorption instrument (USA). Transmission elec-
tron microscopy (TEM) images were taken using 
a JEOL JEM-2100 (Japan), with accelerating volt-
age of 200 kV. The samples for TEM observation 
were prepared by deposition of an ultrasonically 
dispersed suspension of a SiO2 particles in ethanol 
on a carbon-coated copper grid. Thermal gravimet-
ric analysis (TGA) was conducted using a TG Q50 
instrument (TA company, USA.). Approximately 
4.0mg of the sample was weighed and placed in Pt 
sample pan, then heated under a 60ml/min N2 flow 
from 40 to 900oC at a rate of 20oC/min. 

2.3.2 Measurement of the hydroxyl number on the 
nano silica surface[20]
Each nano silica sample of 2 g was placed in a coni-
cal flask and 25 mL ethanol and 20% 75 ml NaCl 
solution were added respectively. After stirring to 
disperse the particles, 0.l mol/L HCl or 0.1 mol/L 
NaOH was used to adjust solution pH to 4. Then, 
the pH was adjusted to 9 with 0.1 mol/L NaOH until 
the pH value remained unchanged for 20 s. The hy-
droxyl number on the nano silica surface (per square 
nanometer) was calculated as per Equation 1:

 N = (CVNA *10-3)/(S*m)	 (1)

where:
C: Concentration of NaOH (mol/L)
V: consumed volume of 0.1 mol/L NaOH when pH 
from 4 to 9
NA:  Avogadro’s constant
S: Specific surface area of nano silica (nm2/g)
m: Mass of nano silica (g)

2.3.3 Oil adsorption value
An empty beaker and rod were weighted to obtain 
the value of m1. Nano silica in the beaker with the 
rod was weighed as m2. Then, dioctyl phthalate was 
gradually added in and stirred to cluster until no ex-
cessive dioctyl phthalate leaching was evident, an 
weighted to obtain the m3value. The oil adsorption 
value,[21,22] was calculated as Equation 2: 

 (2)
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2.4 Drag reduction test 
Several references[23-25] reported a the use of a rotating disk device for drag reduction testing, and one 
was set up in the laboratory as shown in Fig. 1. The stainless steel rotating disk was 13 cm in diameter 
and 0.3 cm in thickness. A stainless steel container with a diameter of 17 cm and a height of 7.5 cm, 
had a volume of 1701.5 cm3. The container (with a cover) was placed in a water bath to maintain a 
constant temperature.  
 
The drive motor shown in Fig. 1, which had a PLC speed control, had a range of 0~3000 rpm. A 
torque sensor with range a range of 0~5 N▪m and an accuracy of 0.0001 N▪m was installed between 
the motor and the rotary shaft. The torque of a test fluid was measured and collected from the rotating 
disk device. Ts was resistance torque of diesel at 25oC. Tp was the resistance torque after adding DRA. 
Then, the drag reduction rate (DR%) was calculated using Equation 3: 
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weight than did the Nano-Si-10. Degussa-R972 ex-
hibited higher hydrophily than theNano-Si-10. 
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KH550. After organic groups grafting, the silica sur-
face could eliminate the hydroxyl radicals and en-
hance its hydrophobicity[20,22], as shown in Fig. 
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Some hydroxyl groups on unmodified silica surface exhibited high surface energy and hydrophilic 
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Fig. 5. 
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3.2 Influence of coupling agent modification
The influence of KH550 dosage was studied initially 
for nano silica modification (at 50oC). The hydroxyl 
number and oil absorption value were measured. As 
evident in Table 2, with an increase in KH550, the 
hydroxyl number of the silica gradually decreased for 
Nano-Si-10. At 15% KH550 dosage, the minimum 
hydroxyl number occurred, which meant the best hy-
drophobic surface property had been achieved. For 
Nano-Si-20, the lowest hydroxyl number occurred 
at 5% KH550 and for the Degussa-R972 the opti-
mum KH550 dosage was 10%. Combining the N2 
adsorption and TGA analysis, it is straightforward 
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to conclude that Nano-Si-20, with smallest surface 
area but the most weight loss, needed the lowest 
KH550 dosage. With increase in KH550 dose rate, 
more silanol was produced by KH550 hydrolysis. 
In that case, the condensation reaction to siloxane 
amongst the silanol would increase, which reduced 
or hindered the interaction between silanol and the 
nano silica. In consequence, the hydroxyl number of 
the silica surface increased when KH550 was above 
optimum dose ratio.

For the oil adsorption values shown in Table 2, the 
effect of KH550 on modification was further con-
firmed. At the optimum KH550 ratio, more oil was 
adsorbed due to the decrease in hydroxyl number 
on the nano silica surface, with increase in the con-
centration of KH550. Additionally, the greatest oil 
absorption values were 15% KH550 for Nano-Si-
10, 5% for Nano-Si-20, and 10% for Degussa-R972, 
respectively. Beyond that, the oil absorption values 
decreased with increase in the KH550 dosage. Be-
cause of replacement of the hydroxyl on the silica 
surface and the steric effect there were no obvi-

ous modification effects. In addition, more KH550 
might cause particle agglomeration and decrease the 
oil adsorption value.

3.3 Influence of modification temperature
System temperature could affect the modification. 
Behavior at five temperatures between 20 and 60oC 
was investigated for the Nano-Si-10 modified with 
15% KH550, Nano-Si-20 with 5%, and Degussa-
R972 with 10% KS550. It can be observed from 
Table 3 that the oil adsorption value increased with 
increasing temperature. Inversely, the hydroxyl 
number gradually decreased with increasing tem-
perature. High modification temperature favoured 
surface lipophilicity. The reason was that silanol 
from the hydrolysis stage was apt to adsorb on silica 
surfaces and maintain a balance between adsorbing 
and desorbing, but not silicon hydroxyl replacement, 
at low temperature. At higher temperatures, silanol 
with enough energy could replace silicon hydroxyl, 
while when the temperature was above 50oC there 
was no distinct improvement by the modification 
mechanism. This was attributed to high temperature 

were no obvious modification effects. In addition, more KH550 might cause particle agglomeration 
and decrease the oil adsorption value. 
 

Table 2: Influence of KH550 dosage 
 

Nano silica 10 nm 20 nm Degussa-R972 
KH550 
dosage 

（%） 

Hydroxyl 
number 
(/nm2) 

Oil 
adsorption

（ml/g） 

Hydroxyl 
number 
(/nm2) 

Oil 
adsorption

（ml/g） 
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affecting the replacement balance between the silan-
ol and the silicon hydroxyl. Therefore, the optimal 
modification temperature was 50oC.

3.4 Drag reduction performance of the nanocom-
posite
Silica/poly-α-olefin nanocompositewas prepared 
with the modified SiO2, interface phase solvent and 
DRA slurry of poly-α-olefin[20-21]. At 25oC, with die-
sel as the solvent and a DRA concentration of 50 
ppm, the torque of test fluid was measured and col-
lected from the rotating disk device.

The influence of KH550 dosage on the drag reduc-
tion and shear resistance of the nanocomposite were 
investigated, as shown in Fig. 6. As the preparation 
process could improve dispersion of the nanocom-
posite DRA, so all three nanocomposites exhibited 
a slightly higher drag reduction rate than the poly-α-
olefin. For Nano-Si-10, with increase in the KH550 
dosage, the drag reduction rate improved until a con-
centration of 15% KH550. The equivalent readings 
were 5% KH550 for Nano-Si-20 and 10% KH550 
for Degussa-R972, which agreed with silica modifi-
cation results presented in Section 3.2.
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Degussa-R972, leaving 11.7%, 7.9% and 9.6% drag reduction rates, respectively, after 40 min of shear 
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 Shear resistance can be reflected in the residue drag 
reduction rate after shear degradation. It could be ob-
served that all of the nanocomposites showed better 
shear resistance than the poly-α-olefin. The modifi-
cation had an influence on the shear resistance of the 
nanocomposites, where nanocomposites with well-
modified nano silica would show excellent shear 
resistance performance. The best shear resistance 
samples were 15%, 5% and 10% KH550 modified 
for the Nano-Si-10, Nano-Si-20 and Degussa-R972, 
leaving 11.7%, 7.9% and 9.6% drag reduction rates, 
respectively, after 40 min of shear degradation by 
the rotating disk.

The influence of modification temperature on drag 
reduction and shear resistance was investigated for 
the three nanocomposite samples. It can be observed 
from Fig. 7 that higher temperature was helpful in 
generating a better drag reduction and shear resis-
tance performance, though modification tempera-
ture had less influence than KH550 dosage. The 
optimum performance was 50oC for all three nano 
silica types, as discussed in Section 3.3. After 40 
mins of the shear degradation procedure, it left an 
11.7% drag reduction rate for the best nanocompos-
ite of Nano-Si-10.
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In this investigation, the test loop also was used 
to evaluate the performance of DRA in laboratory. 
The nanocomposites (50oC, 15% KH550 for Nano-
Si-10, 5% KH550 for Nano-Si-20, 10% KH550 for 
Degussa-R972) with the best performance in the 
rotating disk rig were tested. At 25oC, the DRAs 
were sheared twice by a centrifugal pump in the test 
system. The test loop results are shown in Fig. 8. 
The nanocomposites had better drag reduction rates 
than the poly-α-olefin. This was because DRA dis-
persion in the diesel was accelerated by the stirring 
procedure during nanocomposite preparation. After 
being sheared the first time by the centrifugal pump, 
the drag reduction rate of the poly-α-olefin had de-
creased from 40% to 4.2%. This result indicates that 
most of the poly-α-olefin had degraded. However, 
when sheared for a second time, there was just 2.3% 
drag reduction rate. Nevertheless, the nanocom-
positestill had 23.6% drag reduction rate after the 
same procedure, nearly 60% drag reduction capac-
ity remained for 15% KH550 Nano-Si-10, and 38% 
drag reduction capacity for 5% KH550 Nano-Si-20, 
and 46% drag reduction capacity for 10% KH550 
Degussa-R972. Additionally, a 16.8% rate remained 
(more than 40% drag reduction capacity) after two 
times cycles of shearing for 15% KH550 Nano-
Si-10, 27% for 5% KH550 Nano-Si-20, and 37% 

degradation by the rotating disk. 
 
The influence of modification temperature on drag reduction and shear resistance was investigated for 
the three nanocomposite samples. It can be observed from Fig. 7 that higher temperature was helpful 
in generating a better drag reduction and shear resistance performance, though modification 
temperature had less influence than KH550 dosage. The optimum performance was 50oC for all three 
nano silica types, as discussed in Section 3.3. After 40 mins of the shear degradation procedure, it left 
an 11.7% drag reduction rate for the best nanocomposite of Nano-Si-10. 
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for 10% KH550 Degussa-R972. Therefore, it could 
conclude that the nanocomposites possessed good 
shear resistance characteristics.
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