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ABSTRACT
The aim of this study is the determination of the overall elastic tensor of two 3D composites.
These materials have a multiscale architecture. The representative volume element of the composite
architecture (symbolised by a unit-cell) is composed of three bundles in three orthogonal directions
and two matrix pockets. Each bundle is a unidirectional composite formed by a juxtaposition of
long fibres surrounded by the matrix. Due to their symmetry, the bundles are considered transversally
isotropic according to the fibres axis, whereas the pockets are macroscopically isotropic. The
analytical computation is produced in two steps. The first step consists of determining the elastic
tensor of the bundles. The second step is the calculation of the elastic tensor of the whole composite.
The most part of the used equations comes from bibliography, excepted the determination of shear
coefficients of the composite. The last part of this study devoted to the influence of material
parameters presents the relative role of the fibres, the matrix and their volume fraction.

KEYWORDS: 3D composites, homogenisation, mechanical properties, carbon or polymer
matrix.

1.INTRODUCTION
Numerous high performance applications have
led to the development of composite with three-
dimensional architecture. These materials named
�3D composites� satisfy the requirement of mul-
tidirectional loading and their high delamination
resistance are serviceable. Due to their spatial
and inhomogeneous structure, these composites
are complex compared to laminated composites.
As a result, the application of the classical 2D
laminate theory for design and analysis is not
possible.

The purpose of this study is the determination of
the elastic rigidity tensor [C

ij
] of 3D composites.

In order to build a precise relation between the
elastic behaviour at the microscale (scale of the
fibres and matrix) and at the macroscale (scale
of the composite structure) the calculation is
performed by an analytical model, also involving
the mesoscale of the composite (constitutive
yarns, matrix pocket). This model was previously
developed on 2D and 3D textile composites in
very complex architecture due to yarn waving
[1, 2, 3]. 3D composites are periodic architectures

which can be modelled from representative
volumes elements (RVE) called « the unit cell ».
Numerical codes are often used for 3D periodic
materials and they require complex refine mesh
for an available three-dimensional stress-strain
analysis [4]. The 3D composites possess an
orthotropic symmetry. Hence, nine independent
elastic coefficients are sufficient to determine the
overall elastic tensor. Our objective is to compute
the six coefficients in the orthotropic axis called
« normal coefficients » by the model of Kuo and
Pon [2]. The three shear coefficients were
determined by a parallel computation, which
constitutes an extension of the previous work.
These analytical methods are most convenient
at first to guide the choice of the composite
architecture and to optimise it. Another advantage
of this general analytical approach is that the
calculation time is short and so, a parametric
study of the reinforcement structure can easily
be produced.

This paper starts with a geometrical description
and characterisation of the fabric architecture.
Then follows the presentation of the analytical
model and finally the parametrical study is in-
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2.ANALYTICAL METHOD FOR
PREDICTION OF THE ELASTIC TENSOR
In this section, the architecture of 3D composites
and the two steps of elastic tensor calculation
are presented.
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Fig. 1 : Representative volume element of the 3D composites
(Dimensions are depending on the composite considered)

size and their volume fraction can vary from one
direction to another. The tri-orthogonal
composites are naturally periodic.

In the bundles, the main constituents are the fibres
and the matrix. They are of different nature
according to the composite considered. That can
suggest that the matrix in the bundles and in the
pockets could also be different. Practically, it has
been observed that for the same chemical
constitution, the matrix in the bundles and in the
pockets can show different morphological
aspects, as different porosity or different
properties due to change of matrix texture [5].
These differences experimentally observed in 3D
composites can be considered in the model.

Consequently, the elastic tensor of composites
which have multiscale architecture, will be
naturally determined in two steps by the
analytical model (Fig. 2). The first step consists
of determining the elastic tensor of each bundle
from their constituents properties (fibre and
matrix). The second one is performed in order to
achieve the calculation of the elastic tensor of

the 3D composite considering that the three
bundles (X, Y and Z) and the matrix pockets are
now the basic constituents.

Step 1 - elastic tensor of the bundles

Case of straight bundles

As it was mentioned in the previous section, the
elastic tensor of the bundle depends on the geo-
metrical and the mechanical symmetry of its con-
stituents. In this work, simple methods with ana-
lytical expression were examined. The Hashin�s
study [6] based on an analytical periodic ap-
proach was considered. Hashin has developed
different models for unidirectional composites
respectively reinforced by isotropic and
transversally isotropic constituents. The effective
moduli of the 1D are calculated from a RVE com-
posed of cylindrical fibres randomly dispersed
in the cylinder cross section and arranged in regu-
lar hexagonal array. This description corresponds
to a theoretical periodic 1D structure but consti-
tutes a pertinent assumption for our composites.
Assuming that the axis of the transversal isot-

The unit cell is composed of three bundles, each
one is on a main axis of the composite (X, Y and
Z). The last constituent is idealised by two matrix
pockets. The three bundles can be of different

tended.

Textile architecture
The 3D composites studied are tri orthogonal
materials. The unit cell is described on fig. 1.
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ropy is the fibres axis, the elastic moduli of
bundles from the expression of Hashin�s bounds
[6] were compared to values obtained by the clas-
sical rule of mixture approach.
Then, elastic moduli were used to calculate the
compliance and stiffness tensors of the bundles.
For the transversal isotropy according to the fi-
bres axis, only five independent coefficients are
useful to model the elastic behaviour of the
bundles.

Case of twisted bundles

In some case, one or several bundles can be com-
posed of numerous (2, 3 or 4) sub-yarns twisted
together. One of the studied material contains this
type of bundle. To get the bundles elastic prop-
erties, the straight bundle data from Hashin are
used as properties of sub-bundles and the effect
of twisting on elastic property of the bundle is
taken into account by a model developed by Byun
and Chou [7].

The geometry of the twisted bundles depends on
the number of sub-bundles twisted together. In
the more current case, this number can vary from
2 to 5. The twist angle (è see fig.4) is calculated
by idealised geometric considerations, where p
is the twist period and D the overall bundle di-
ameter :
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Fig. 2 : Scheme of the multiscale homogenisation procedure

Then the ideal circular size of sub-bundles de-

pends on their number and on the global diam-

eter of the bundle (D) as mentioned in fig. 3.

We note that the coefficients r
3
 and r

4
 (fig. 3)

correct the one given in [7] which were not cor-

rect and could have produce anomalous results.

Finally, the fraction of fibres in the sub-bundles

is used to conduct the Hashin approach [6] on

the sub-bundles. This fraction is called fibre

packing fraction (K) and is obtained by (Eq. 2)

where n and r
n
 is given by the geometry (fig.

3), ë is linear density of twisted bundle (kg/m)

and ñ the fibre density (kg/m3).
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The model of Buyn and Chou [7] makes the

hypothesis of iso-stress in each sub-bundle, so

the compliance is averaged through one period.

The compliance tensor, produced by Hashin ap-

proach [6] (fibre fraction taken as K), is ori-

ented with a first angle equal to è between the

bundle and sub-bundle axis through the classic

transformation matrix (Eqn.5 see after). Then,

the averaging process consists of calculating the

average of the compliance tensor through one

turn (the second orientation angle Ö vary from

0 to 2ð).
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Fig. 3 : a) Schematic view of a twisted bundle with 4 sub-bundles.
b) Idealised geometric parameter for the sub-bundles diameter (d) function of n.

This approach was found to produce good cor-

relation with experimental data [7], and so it

will be used in one of the 3D composite model.

Step 2 - Elastic tensor of the composite

Normal coefficients: [ ]F

LM&   for i, j = 1,2,3.

The determination of the elastic tensor of the

composite is based on the analytical model re-

ported by Kuo and Pon [2]. The following sec-

tion is a condensed explanation of this model.

For the calculation of Normal coefficients, the

unit-cell used is a periodic cell : the smallest

volume, which can be infinitely multiplied to

have the bulk composite architecture (fig. 1).

Kuo and Pon�s equations were applied on this

cell to have normal coefficients. In the case of

Shear coefficients, the above unit-cell is divided

into sub-cells for intermediate calculations. This

last approach is similar to the well-known
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Fig. 4 : Three dimensional rotation for transformation of co-ordinates in (1,2,3) to (x,y,z).
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« method of cell » approaches [8, 9].

As shown on the figs 1 and 4, the composite co-

ordinates and the bundles co-ordinates are re-

spectively noted (x,y,z) and (1,2,3). To deter-

mine the elastic tensor of the bundles in (x,y,z)

we need a three dimensional rotation of the

(1,2,3) co-ordinates. Due to their symmetry,

the bundles are transversally isotropic. Axis 1

being the fibres axis, any rotation with respect

to this axis not modifies the properties of these

bundles. Accordingly, two angles are sufficient

to represent the three dimensional rotation (q
and F fig.5). As [ ]&  refers to the elastic tensor

of the bundles in (1,2,3) system, [ ]&  is calcu-

lated in (x,y,z) system by the Eqn 5.

[ ]( ) [ ] [ ]( )[ ][ ][ ] �
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            (5)

where [T] is the transformation matrix depend-

ing on angles (q, f) and [R] is 6-by-6 diagonal

matrix with diagonal terms being {1,1,1,2,2,2}.

The three dimensional elastic law is written in
Eqn 6. The Poisson�s effects are taken into ac-
count in an average manner and the normal-shear
coupling is neglected [2].
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where (k) is an index for the composite con-

stituents (x, y and z bundles plus matrix pock-

ets). The [ ]&LM
N

 are the rigidity tensor of the kth

constituents in the (x,y,z) co-ordinates. The

barred strains are the average values of strains.

Combining the relation between the local stress

in each constituent element to the externally ap-

plied stress at far-field, the detailed expression

for coefficient in x direction given in [2] is writ-

ten as follow :

where the superscripts (c) stands for compos-

ite, (j) is an index ranging from 1 to 3 and

$ [[
N � �  is the area of the kth  constituent normal

to the x direction. The & M
F
�  and & M

F
�  coefficients

are determined by Eqn 7 in changing respec-

tively in & M
N
�  and &N

�� the superscript (1) by (2)

and (3), in changing respectively in $ [[
N � �  and

L
x
 the superscript (x) by (y) and (z) and in ex-

changing respectively the product (L
y 
L

z
)
 
with

(L
x 
L

y
) and (L

x 
L

z
).

Shear coefficients: [ ]&LL
F  for i  = 4, 5, 6.

To complete the elastic tensor with the shear

coefficients, we offer to decompose the unit cell

in small components. The case of a shear load

in the plane (y, z) is detailed here after. The

two other shear cases are similar and the shear

coefficients are obtained by index permutation.

To calculate G
yz
 = [ ]&

L

F

��
, we suppose that the

cell is fixed at his lower side and loaded by a

shear force in the y axis (Fy see fig. 5).

The cell is divided in half-cells (A and B see

fig. 5). We suppose that the shear strain (ã) is

the same on these two half cells, then the global

load applied (Fy) is the sum of the load applied

on the two half cells A and B. These half cells

are divided to produce quarter cells noted A-1,

A-2, B-1 and B-2 (fig.5). All these parts contain

a maximum of two materials and it is possible

to calculate their shear modulus with the iso-

stress assumption. Hence the same assumption

is made to predict the A and B parts shear

modulus.

Finally, the global shear modulus can be

obtained by summing the A and B parts.

Considering the iso strain assumption, we obtain

the Eqn 8 where VA and VB are the volume

fraction of the two half cells (fig. 6).
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Fig. 5 : Schematic view of the load case used to determine G
yz

and decomposition of the unit cell.

3.MATERIALS AND EXPERIMENTS

In this section, we give a short description of

the two composites studied and of the

characterisation methods used to produce

experimental elastic tensor of two materials

called M1 and M2. The constituents (fibre and

matrix) and the volume fraction of each bundle

is presented in table 1.

The experimental data are produce by classic

tensile or compressive mechanical tests and by

ultrasonic wave velocity measurements [10].

The scattering of the experimental results is

about 10 to 20 percents.

7DEOH�����'HVFULSWLRQ�RI�PDWHULDOV�0��DQG�0��
9ROXPH�IUDFWLRQ�LQ�HDFK�EXQGOH����

0DWHULDO�UHI� )LEUHV 0DWUL[ ; < =
0� VLOLFD 3RO\PHULF�UHVLQ ����VWUDLJKW� ����VWUDLJKW� ���WZLVWHG�
0� FDUERQ FDUERQ ����VWUDLJKW� ����VWUDLJKW� ����VWUDLJKW�

4.RESULTS AND DISCUSSION

Correlation experimental and model

The description of the structure and the

properties of the basic constituents are used to

implement the model described above. The

computation of step 1 (fig. 2) provides the elastic

tensor for each bundle (straight or twisted). Due

to the Hashin�s relations which give us rigorous

bounds [6], the results obtained are just an

interval with two limits called « + » for the

superior and « - » for the inferior. Hence the

step 2 calculation is completed two times, once

for the « + data » and once for the « - data » to

finally produce the results on the 3D composite

(table 2). The step 1 results are not presented

because of the lack of experimental data on the

bundles.

The general results are closer for the material

M2 than for M1. For M2 material, this obser-

vation for C
ii
 coefficients (i = 1,2,3) is due to

the extreme closeness of bundles Young�s modu-

lus to the rule of mixture. Another explanation

lies in the close values of transverse elastic prop-

erties of carbon fibres and carbon matrix, lead-
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ing to a very small difference between the « + »

and « - » bounds of bundles transverse proper-

ties given by Hashin. In the case of M1 mate-

rial the deviation of the bundles transverse prop-

erties produces the results observed (table 2).

For the shear elastic data (C
ii
  i=4,5,6), we

note that the experimental data are above the

model for M1 and below for M2. This effect is

probably due in the case of M2 to the imperfec-

tion of interfaces between bundles not consid-

ered in the model.

The experimental and model data comparison

is relevant as regards to experimental scatter-

ing. All the experimental data not strictly fall

between the model values, which could be an

effect of the bad knowledge of the basic con-

stituents elastic properties. In the model, the

matrix pockets are idealised as continuum ma-

terial, which is not the case in the two materials

studied because of the presence of large poros-

ity.

In spite of the sensibility of theoretical results

to constituent properties introduce in the model,

we still propose a parametric study in order to

exhibit the relative weight of both parameter.

Parametric study

The parametric study is based on M2 material

because of equivalence between the three

orthotropic axis that reduces the number of data

to be presented. The engineer data Young�s

modulus (E
X
) and shear modulus (G

XY
) of the

composite are used to present the effect of three

parameters. These variable parameters are cho-

sen to observe the effect of the impregnation

process and of the damage accumulation.

� the 1st parameter, is the volume fraction

of fibres in each bundle.

� the 2nd, related to the infiltration of the

matrix, is the volume fraction of the porosity in

the pockets.

� the 3rd is affiliated to transverse damage

in the Y and Z directions when the material is

loaded in the X direction. In this last case, the

symmetry of the material is affected and the data

presented are only valid for the X direction.

The evolution of composite moduli (E
X 

, G
XY

)

are computed using the « + » values of the

model and normalised with the M2 properties.

The arbitrary choice of the « + » values is effi-

cient due to the very close values observed in

table 2. The effects of these three parameters

are presented in fig. 6 and 7 and are discussed

here after.

Effect of fibre volume fraction

As it could be expected, the volume fraction of

fibres in the bundles greatly influences the

Young�s modulus (fig. 6-a). As regards to the

composite architecture, increasing V
f
  up to

100% in the bundles implies a maximum in-

crease of 38% of E
X
. Decreasing V

f
 down to 0

implies a decrease of E
X
 of 80%. So, E

X 
 is

equal to the matrix modulus.

In addition, for the same variation of V
f
, the
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evolution of G
XY 

is less prominent. It follows an

increase of about 5% and a decrease of about

20%. This less sensibility on the shear modulus

is due to the very close shear elastic properties
of the fibres and the matrix. These variations
imply that, even in a 3D tri-orthogonal compos-
ite, the property E

X
 and

 
G

XY
, are respectively con-

trolled by the fibres and the matrix.
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Fig. 6 : Evolution of E
x
 and G

XY
 as a function of different parameters : a) the volume fraction of fibres (V
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);  b) the

volume fraction of porosity in the matrix pockets (V
p
)
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Fig. 7 : Evolution of E
x
 as a function of a damage parameters (D).

Effect of the porosity in the matrix pockets

The above conclusion is confirmed by the effect
of the porosity in the matrix pockets (fig. 6-b).
Indeed, the normal modulus is not really affected
by the increase of porosity in the matrix pockets
whereas the shear modulus extremely decreases.
Consequently, a special attention has to be paid
to the matrix pockets porosity if shear rigidity is
specified. There is a way to highly improve or
decrease the shear rigidity by the impregnation
process.

Effect of the transverse cracks :transverse dam-

age accumulation in bundles

A transverse damage law was included in the Y
and Z bundles to artificially produce a decrease
of transverse modulus of these bundles. The re-
lation used to link the bundle transverse modu-
lus (E

2
=E

3
) to damage parameter (D) is the one

studied by Lebon [4]. This type of transverse
damage (Y and Z bundles) can occur when the
composite is loaded in the X direction. Because
we are not able to model the effect of this kind
of damage on the shear properties, only the Young
modulus (E

x
) is studied.

As shown by fig. 7, the evolution exhibits a light
decrease of Young�s modulus (E

X
) when the dam-

age increases. The value of E
X
 only decreases to

90% of its initial value when the Y and Z direc-
tions are totally cracked (D=1). This small de-
crease in the Young modulus of the X direction
indicates the very light influence of transverse
cracks in the Y and Z bundles.
Because they need Y and Z bundles completely
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cracked to see a decrease of 10% on the X direc-
tion modulus, the 3D tri-orthogonal composites
can be considered as nearly insensitive to trans-
verse cracking. More critical damage, like interfa-
cial debonding at bundle/bundle interfaces could

produce dramatic effect on elastic properties.

5.CONCLUSIONS

This paper intends to calculate the elastic tensor

of 3D composites. The analytical model

developed for this purpose is based on Kuo and

Pon works [2] for the C
ij
 with i,j=1, 2, 3 and

an extension to the shear coefficients is offered

here. This extension is an important results of

this study because we need the overall elastic

tensor for concrete applications. The model

respects the multi-scale geometry of the 3D tri-

orthogonal composites by processing in two

steps. The first one deals with the basic

constituents to produce straight or twisted

bundles (with a correction in eqn. 3 compared

to [7]) and the second one builds the 3D

composite with the bundles and matrix pockets

properties. Then, our scheme of calculation is

complete, from the fibre and the matrix to the

3D composite architecture and propose an

available correlation between model and

experimental data for two very different 3D

composites (carbon/carbon and silica/

polymeric). Some imperfections are mainly due

to the lack of knowledge of the basic constituents

properties, to the cracked bundle/bundle

interfaces which are not considered in the model

and to theoretical assumptions chosen for each

step of calculation.

The parametric study shows that even in 3D

composites the normal elastic properties are

governed by the fibres content and the shear

one by the matrix. We also note that the increase

of porosity in the matrix pockets only influences

the shear properties in an important amount and

that the 3D composites have small sensibility to

transverse cracking. Thus, other parametric

studies can be produced to optimise the definition
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