
Advanced Composites Letters, Vol. 27, Iss.6, 2018                                                                                                                         266

1. INTRODUCTION
Bulk metallic glasses (BMGs) have many unique proper-
ties, e.g., exceptionally high strength, large elastic limit, 
high hardness, good corrosion resistance and reduced slid-
ing friction etc. and are, therefore, regarded as potential 
candidates for engineering materials [1-2]. However, their 
structural application is so far severely stymied by their 
limited intrinsic plasticity that is confined to narrow regions 
near dilute shear bands at room temperature [3]. Generally, 
introducing crystalline second phase precipitates or parti-
cles can effectively generate multiple shear-banding and 
impede rapid shear band propagation [4]. Therefore, BMG 
composites could effectively circumvent the poor damage 
tolerance of BMGs. Up to date, the drastic changes in the 
production method and material form have also resulted in 
significant extension of application fields of glassy alloys.

Despite the fact that a large number of investigations 
have already been performed and many qualitative con-
clusions were reached, we, however, are far away from a 
complete and thorough understanding of the fundamental 
synergic mechanisms governing the compatible defor-
mations between the soft and ductile second phase rein-
forcements and the hard and brittle matrix in BMG com-
posites. Analytical models are more efficient than those 
numerical methods, but lag far behind the experiments and 
simulations. Based on the principle of thermodynamics 
and free energy, Marandi et al. [5] developed an elastic-
viscoplastic, three-dimensional, finite deformation consti-
tutive model to describe the large deformation behaviour 
of BMG composite, but their model is fairly complicated 
and short of the micromechanics significance. Marandi et 
al. [6] established an elastic–viscoplastic, three-dimen-
sional, finite deformation constitutive model to describe 
the behaviour of La-based in-situ BMG composite (In-situ 
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composites are multiphase materials where the reinforcing 
phase is synthesized within the matrix during composite 
fabrication), within the super-cooled liquid region, at am-
bient pressure and a range of strain rates. Yang et al. [7] 
developed a constitutive model of BMG plasticity which 
accounts for finite deformation kinematics, the kinetics 
of free volume, strain hardening, thermal softening, rate-
dependency and non-Newtonian viscosity. The model has 
been validated against uniaxial compression test data; and 
against plate bending experiments. Qiao et al. [8] firstly 
gave a mathematical model to elucidate the work-hard-
ening behaviour of ductile dendrites and softening of the 
amorphous matrix, and could fatherly simulate the tensile 
response of BMG composites, yet the interaction between 
two phases was not well considered. Only quantitative re-
lations can further greatly improve the ductility/toughness 
of BMGs via efficiently tailoring the microstructures in an 
optimized manner. It is impeding to establish quantitative 
relations between microstructure parameters and material 
properties at the mesoscopic scale. Recently, Sun et al. [9] 
improved their previous micromechanics model to better 
predict the tensile behaviours of in-situ BMG composites 
based the in-situ measured data by the nano-indentation 
test.

Although a quantity of theoretical studies have been per-
formed and provided insight into the mechanical behav-
iours of BMG composites, an explicit micromechanics 
model to explain and describe their intriguing experimen-
tal results is still lacking. This paper develops an analytical 
model to describe the failure behaviour of BMG compos-
ites by introducing stochastic approaches and accounting 
for the roles of shear banding in the plastic deformation. 
A composite model is used to calculate the stress–strain 
responses, which are compared with the experiments that 
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are available in the published literatures, followed by the 
numerical analysis and discussion on the microstructure 
parameters.

2. MICROMECHANICAL COMPOSITE MODEL
BMGs exhibit brittle under unconstrained testing condi-
tions, such as uniaxial compression, tension and bending. 
However, they also present plastic deformation ability to 
a certain extent under multi-axial stress state. Many previ-
ous experiments [10-11] have already confirmed this con-
clusion, and correspondingly the mechanical behaviours 
under the multi-aixal stress state are largely different from 
those in the uniaixal stress state for BMGs. Therefore, the 
BMG matrix is also regarded as elastic-plastic phase that 
is similar to the ductile particles.

For a two-phase composite system, the particle phase will 
be referred as phase 1 and matrix as phase 0 throughout the 
paper, and those of the composite are denoted by symbols 
without any script. All the tensors and vectors are written 
in boldface letters. The volume fractions of the particles 
and matrix are denoted by f1 and f0, respectively, and sat-
isfy the relation f1+f0=1. The Ludwik equation is adopted 
for the constituents in terms of von Mises’ effective stress 
and plastic strain

                                                                                       (1)

in which 
 

( ) ( ) ( ) 1/ 2(3 / 2)r r r
eq ij ij       , 

 
( ) ( ) ( ) 1/ 2(2 / 3)p r p r p r

eq ij ij       
and then in terms of the effective strain the secant Young’s 
modulus and secant Poisson ratio of the r-th phase is writ-
ten as:

                                                                                       (2)

Correspondingly, the secant bulk and shear moduli of the 
r-th phase are written as follows to meet the isotropic rela-
tions,

                                                                                       (3)

Fig. 1 shows the schematic diagram showing the damage 
model that is adopted for describing the mechanical behav-
iours of BMG composites. At an arbitrary material point, 
the composite system constitutes of ductile particles, shear 
bands and BMG matrix. Suppose that the composite is sub-
ject to a uniform strain boundary displacement of  , based 
on the composite model developed by Weng [12], and later 
modified by Zhu [13], the constitutive relation between the 
hydrostatic and deviatoric strains of composite obeys:

                                                                                       (4)

Here:

                                                                                        (5)

          
                                                                                        (6)

In which, the 0
Sα  and 0

Sβ  are the components of Eshelby’s 
tensor for spherical inclusions following 0 0 0( , )S S SβS   , 
where:

                                                                                        (7)

3. SHEAR BANDING EFFECT
Experimental observations show that the shear bands 
would eventually evolve into micro-cracks with the local 
deformation increasing, and thus shear bands are equiva-
lent to micro-cracks. Because the micro-cracks generated 
during the shear banding are supposed to be randomly dis-
persed, the corresponding effective moduli are as follows 
[14]

                                                                                        (8)

                                                                                        (9)

                                                                                         
                                                                                         (10)

where ρ denotes the crack density in the representative 
volume element. For the ductile materials, the failure cri-
terion based on statistical probability is associated with 
strain. The strain-based Weibull distribution function is 
addressed to characterize the micro-crack-induced fracture 
as follows:

                                                                                        (11)

 
( ) ( ) ( )( ) rnr r p r

eq y r eqh      
 

 

( )

( ) ( )

1
1

( ) r

S
r p r

eq
nr p r

r y r eq

E

E h





  

, 1 1( )
2 2

S
S r
r r

r

Ev v
E

    

 

3(1 2 )

S
S r
r S

r

Eκ
v




, 
2(1 )

S
S r
r S

r

E
v

 


 

 

 

vv

u

u

Fig. 1: Plane strain computational multi-particle cell model and 
the corresponding boundary conditions.
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Where, E1=78.3 GPa, ν1=0.375, σ1=410 MPa, h1=125 
MPa, n1=0.13, E0=89.7 GPa, ν0=0.355, σ0=1737 MPa, 
h0=-1.2x105 MPa and n0=2. The present predictions are in 
agreement with the corresponding experimental results, 
which confirm the accuracy of the developed simulations. 
The proposed computational micromechanics model ap-
pears to be capable of capturing the constitutive behav-
iours of BMG composites.

5.2 Effect of Weibull modulus m and reference strain e0
To analyse the role of the Weibull modulus and reference 
strain on the mechanical performance, the stress–strain re-
sponse with different e0 is predicted and plotted in Fig. 4, 
which showed that the uniform elongation decreases with 
increasing referenced crack density. The variation of the 
elongation becomes remarkable as the reference strain is 

where εp is the plastic strain and ε0 is the reference strain. 
Then, the density of micro-cracks in the BMG composites 
can be rewritten as:

                                                                                      (12)

here, ρ0 denotes the saturate density of micro-cracks, and 
m is the Weibull modulus.

4. FEM SIMULATION
Generally, particles are randomly distributed in the BMG 
matrix, and therefore, FEM modelling is to be performed 
to obtain a clear snapshot of the micro-deformations 
process under tension as a necessary compliment to the 
above model. Since the main features of the shear banding 
mechanism are better revealed in two-dimensional plane-
strain calculations, and thus two dimensional models are 
adopted in the whole simulations. Multi-particle compu-
tation model as shown in Fig. 1 is meshed through 2D 
eight-node plain strain elements CPE4R, here quadrilater-
al, isoparametric elements are employed in the discretiza-
tion, and reduced integration is used. here 80 particles are 
introduced in the composite system with particle volume 
fraction 40%. Periodic boundary conditions are applied 
through the multi-point boundary method ‘equation’ in the 
ABAQUS code [15]. The periodical boundary conditions 
on the corresponding nodes at the surfaces are imposed by:
                                                                                      
                                                                                      (13)

                                                                                      (14)

where l1 and l2 are the applied displacement, the super-
scripts ‘  ’ denote the two opposite surfaces along a cer-
tain direction, and u and v denote the stretched displace-
ments along the x and y directions, respectively. According 
to the essential damage features of BMG, the shear dam-
age criterion is employed in characterizing the shear band-
ing evolution in BMG composites. The stiffness degrada-
tion in shear damage process is monitored to capturing the 
progressive shear banding.

5. RESULTS AND DISCUSSION
5.1 Comparison with experiment on stress–strain rela-
tions
Two set of experimental results are used to verify the cor-
rectness of the developed model. Fig. 2 shows the first 
comparisons between the numerical prediction and experi-
ments for BMG composite with dendrite volume fraction 
of fP=43% [16], where two sets of experimental results 
are listed. Here, E0=132 GPa, ν0=0.3, σ0=1860 MPa, h0=-
2.0x105 MPa, n0=2 and E1=86 GPa, ν1=0.27, σ1=480 MPa, 
h1=180 MPa, n1=0.15. Fig. 3 shows the second compari-
sons of stress–strain relations between the theoretical pre-
diction and experiments for BMG composite with various 
dendrite volume fractions [17] with 33%, 49% and 58%. 
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Fig. 2: Comparisons between the numerical prediction and 
experiments for BMG composite with dendrite volume fraction 
of fP=43% [1], where two sets of experimental results are listed.

Fig. 3: Comparisons of stress–strain relations between the theo-
retical prediction and experiments for BMG composite with 

various dendrite volume fractions [3].
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less than 0.1, while the elongation decreases asymptoti-
cally as the reference strain increases to a large value. Fur-
thermore, Fig. 5 shows the calculated stress–strain rela-
tions as the Weibull modulus m increase from 3 to 28 with 
the constant reference strain 0.1. As the volume fraction of 
constituents is unchanged, these results reveal that the duc-
tility decreases with decreasing Weibull modulus m. This 
is consistent with the definition of the Weibull modulus. In 
the statistical analysis, Weibull modulus should be an im-
portant parameter in all the analytical models, and greatly 
influences the deformation responses of the materials. The 
specific value of Weibull modulus relies on many micro-
structure parameters, such as particle size, morphology, 
dispersion state, interface properties and so on. The rel-
evant studies and the detailed roles in the damage process 
have been also analysed [18-21]. Numerical results show 
that increasing both e0 and m all remarkably improve the 
plastic deformability of BMG composites.
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Fig. 4: Stress–strain response of BMG composites with differ-
ent reference strain e0.

Fig. 5: Stress–strain response of BMG composites with differ-
ent Weibull modulus m.

5.3 Comparison between FEM simulation and analyti-
cal model
Besides the preceding predictions from micromechanics, 
FEM modelling is performed to illustrate the shear band-
ing propagation as a necessary complement. Fig. 6 shows 
the comparison between the stress-strain curves predicted 
by the developed analytical model and FEM simulation, 
and the snapshot of shear banding at the final failure is also 
attached. It should be noticed that the shear band initiates 
at the interface between particles and BMG matrix due to 
the stress concentration effect. Correspondingly, the shear 
bands will interact with each other, and form an intersect-
ing network. It should be noted that ductile particles within 
shear band domains deformed seriously, and thus experi-
ence a phase transition in the actual composites. This is 
also confirmed by some experimental observations. These 
interplays among them would undoubtedly increase the 
plastic deformation zone, and thus remarkably improve 
the tensile ductility of composite system.

6. CONCLUSIONS
A simple analytical model was developed for predicting 
the tensile stress-strain relations of BMG composites with 
the help of Weng’s theoretical frame for dual-ductile com-
posites. Here, BMG matrix exhibits the elastic-plastic de-
form response as well as the dendrite phases during the 
deformation, and furthermore the shear bands are regarded 
as Mode-I cracks by which the strain-softening stage in 
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Fig. 6: Comparison between the stress-strain curves predicted 
by the present analytical model and FEM simulation, and the 

contour of shear banding at the final failure.
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the stress-strain curves can be well reflected. The present 
model could catch the main features of the mechanical re-
sponse of BMG composites, and the effect of some coef-
ficients on the stress–strain curves is also discussed.
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