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Abstract 

The rise of artificial intelligence (AI) has brought breakthroughs in many areas of medicine. In ophthalmology, AI 
has delivered robust results in the screening and detection of diabetic retinopathy, age-related macular degenera-
tion, glaucoma, and retinopathy of prematurity. Cataract management is another field that can benefit from greater 
AI application. Cataract  is the leading cause of reversible visual impairment with a rising global clinical burden. 
Improved diagnosis, monitoring, and surgical management are necessary to address this challenge. In addition, 
patients in large developing countries often suffer from limited access to tertiary care, a problem further exacerbated 
by the ongoing COVID-19 pandemic. AI on the other hand, can help transform cataract management by improving 
automation, efficacy and overcoming geographical barriers. First, AI can be applied as a telediagnostic platform to 
screen and diagnose patients with cataract using slit-lamp and fundus photographs. This utilizes a deep-learning, 
convolutional neural network (CNN) to detect and classify referable cataracts appropriately. Second, some of the latest 
intraocular lens formulas have used AI to enhance prediction accuracy, achieving superior postoperative refractive 
results compared to traditional formulas. Third, AI can be used to augment cataract surgical skill training by identifying 
different phases of cataract surgery on video and to optimize operating theater workflows by accurately predicting 
the duration of surgical procedures. Fourth, some AI CNN models are able to effectively predict the progression of 
posterior capsule opacification and eventual need for YAG laser capsulotomy. These advances in AI could transform 
cataract management and enable delivery of efficient ophthalmic services. The key challenges include ethical man-
agement of data, ensuring data security and privacy, demonstrating clinically acceptable performance, improving the 
generalizability of AI models across heterogeneous populations, and improving the trust of end-users.
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Background
In recent years, artificial intelligence (AI) has had a pro-
found and increasing impact on ophthalmology. The field 
has evolved from the automation of manual tasks, such 
as processing of ophthalmic images, to machine learn-
ing (ML) and deep learning (DL). ML is a subset of AI 
that allows the automated system to learn from the avail-
able data by discovering the best parameters and weights 
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within a general model such as support vector machines 
(SVM) [1] or random forests [2]. DL on the other hand is 
a subset of ML that involves deep neural network archi-
tectures [3]. Multiple layers of network neurons perform 
feature extraction, enabling the model to learn high-level 
features in an incremental manner. This ability has led 
to a significant breakthrough in performance on various 
image classification tasks in ophthalmology [4, 5].

In the field of ophthalmology, cataract is the lead-
ing cause of treatable blindness, resulting in moderate 
or severe vision impairment in an estimated 52.6 mil-
lion people worldwide [6]. This burden is expected to 
increase substantially as a result of rapidly aging popu-
lations. Eyecare services, however, have been unable to 
expand in tandem, resulting in a shortfall that is becom-
ing increasingly difficult to address [7]. Furthermore, low 
to middle-income economies have a higher prevalence of 
cataract-related visual impairment compared to devel-
oped countries [6]. These populations are disadvantaged 
by low socioeconomic status, poor accessibility to health-
care, and other environmental factors [8]. Scalable eye-
care services will need to be devised for improving their 
accessibility to these under-privileged populations.

In this regard, several AI technologies have been devel-
oped to aid various aspects of cataract management. 
They range from screening and diagnosis [9–12] of both 
adult and pediatric cataracts, optimizing biometry and 
intraocular lens (IOL) power calculation [13–23], poten-
tial application in cataract surgery workflows and training 
[24–28], to the prediction of posterior capsule opacifica-
tion (PCO) progression [29, 30]. To date, cataracts are 
clinically diagnosed by ophthalmologists at the slit-lamp, 
requiring a face-to-face consultation. Therefore, undiag-
nosed cataracts remain a huge challenge for many devel-
oping countries and rural populations due to a lack of 
accessibility. An AI-assisted telemedicine platform for 
the preliminary diagnosis of cataract will overcome bar-
riers to accessibility, and thus alleviate healthcare burden. 
Timely diagnosis will be important, especially for pediat-
ric cataracts which can lead to irreversible amblyopia.

Considering that the COVID-19 pandemic has severely 
disrupted ophthalmic healthcare systems, redeployment 
of the workforce to service frontlines, suspension of face-
to-face clinic appointments, and cancellation of elective 
cataract surgeries have impeded the system’s ability to 
address eye care needs. For example, in 2019, 1.7 million 
residents in the US had cataract surgery [31] compared 
with the COVID-19-induced lockdown in 2020 result-
ing in a backlog of over 1 million cases, where 97% fewer 
cataracts surgeries were completed [32]. This was a famil-
iar phenomenon globally, with countries such as India 
experiencing a 95% drop in cataract surgeries performed 
after the onset of COVID-19 [33], creating unsustainable 

backlogs and prolonged surgical waiting times. Due to 
these unprecedented challenges, healthcare systems 
globally have begun to explore alternative models such 
as telemedicine and AI-assisted platforms for cataract 
management.

Therefore, this article aims to provide a comprehensive 
review on the application of AI in cataract management. 
The scope of this article includes screening and diagno-
sis in the community and outpatient settings, potential 
intraoperative care and operating theater workflow man-
agement, cataract surgical training, aspects of postopera-
tive care, as well as a discussion on future challenges and 
directions.

Main text
Adult cataracts
Epidemiology
Based on the Lancet Global Health [34] and WHO statis-
tics [35] in 2020, the global cataract burden is expected 
to increase, especially with the current COVID-19 
pandemic situation given the shortages in healthcare 
resources and limited access to medical centers.

While the COVID-19 situation may be unprecedented, 
the challenges regarding availability, accessibility, and 
affordability of eye care services in developing countries 
are longstanding. Studies have reported that cataract sur-
gery coverage was at least 40% lower in countries such 
as Vietnam, Yemen, and Malawi [36]. Moreover, scarce 
medical resources are primarily located in tertiary cent-
ers in urban regions [7], resulting in shortages in special-
ized ophthalmology services in rural regions [37].

Role of AI in cataracts
AI appears to be promising in this field due to its unique 
ability to internalize extensive data and analyze large 
quantities of parameters, even when parameters out-
number observations compared to traditional statisti-
cal methods. To date, AI models have been applied to 
screening and diagnosis of cataracts [9–12], optimization 
of IOL power calculation for cataract surgery [17–23, 38, 
39], classification of phases of cataract surgery from vid-
eos [24–27], prediction of surgical procedure timings to 
optimize operating theater workflows [28], and PCO risk 
prediction [29, 30] (Table 1, Fig. 1).

Screening and diagnosis in cataracts
Gao et  al. [9] in 2015 proposed a system to grade cata-
racts using a combination of convolutional neural net-
work (CNN), recurrent neural network (RNN), and 
support vector regression (SVR) using slit-lamp images. 
The algorithm achieved a 70.7% agreement ratio for 
detecting referable cataracts. On the other hand, Li 
et  al. [10] proposed to identify and annotate cataracts 
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Table 1  Summary of application of AI in the screening or diagnosis of cataract

Year Authors Imaging Sample size AI algorithms AUC​ Accuracy (%) Sensitivity (%) Specificity (%)

Adult cataract diagnosis (screening and grading)

2020 Li et al. [10] SLP 1772 ResNet-CNN – D = 98.4–99.8 D = 99.4 D = 99.1

2019 Wu et al. [11] SLP 37,638 ResNet D = 0.90–1.00
G = 0.86–0.97

D = 84.2–99.5
G = 73.2–94.9

D 60.1–99.5
G = 63.2–92.1

D = 76.4–99.6
G = 63.2–92.1

2019 Xu et al. [12] FP 8030 AlexNet + VisualDN – D + G = 86.2 D + G = 79.8–
95.0

D + G = 83.3–88.4

2019 Zhang et al. [75] FP 1352 SVM + FCNN – G = 93.0 D = 99.4
G = 82.4–96.4

–

2017 Xiong et al. [76] FP 1355 BPNN + MCDA – D = 92.8
G = 81.1–83.8

D = 93.1 D = 92.1

2016 Yang et al. [77] FP 1239 Ensemble learning 
(SVM + BPNN)

– D = 92.0–93.2
G = 83.9–84.5

D = 91.4–94.2
G = 62.5–79.5

D = 91.5–92.5
G = 87.9–98.9

2015 Guo et al. [78] FP 445 MCDA – D = 90.9
G = 77.1

– –

2015 Gao et al. [9] SLP 5378 CRNN – G = 70.7 – –

2013 Xu et al. [79] SLP 5378 SVR – G = 69.0 (with up to 
98.9 for within 1-step 
error)

– –

2012 Gao et al. [80] SLP 434 – – D = 62.0 – –

2011 Cheung et al. 
[81]

SLP 5547 SVM D = 0.88–0.90 – D = 79.7–83.7 D = 79.5–81.9

2010 Acharya et al. 
[82]

SLP 140 BPNN – D = 93.3 D = 98.0 D = 100.0

Intraocular lens power calculation methods and biometry

2021 Ladas et al. [38] Data 1391 SVR, XGB, ANN – PE within 0.5 
D = 80.0 (SRK + SVR)
81.0 (SRK + XGB)
67.0 (SRK + ANN)
82.0 (Holladay 
I + SVR)
82.0 (Holladay 
I + XGB)
80.0 (Holladay 
I + ANN)
82.0 (LSF + SVR)
81.0 (LSF + XGB)
81.0 (LSF + ANN)
MAE = 0.325 
(SRK + SVR)
0.314 (SRK + XGB)
0.439 (SRK + ANN)
0.307 (Holladay 
I + SVR)
0.309 (Holladay 
I + XGB)
0.326 (Holladay 
I + ANN)
0.311 (LSF + SVR)
0.310 (LSF + XGB)
0.319 (LSF + ANN)

– –

2021 Debellemanière 
et al. (PEARL-
DGS) [39]

Data 6120 SVR, GBT, RM – PE within 0.50 
D = 87.4
MAE = 0.443 (short); 
0.240 (long)

– –

2020 Carmona et al. 
(Karmona) [23]

Data 260 SVM-RBF
MARS-SOP

– PE within 0.50 
D = 90.4
MAE = 0.240

– –
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in addition to other anterior segment pathologies with a 
proprietary model (Visionome) using slit-lamp images. 
The performance of Visionome was comparable to oph-
thalmologists while achieving superior performance 
compared to an ophthalmologist with 1  year of clinical 
experience (accuracy 79.47–99.22%).

Wu et  al. [11] constructed a ResNet DL algorithm 
with a 3-step sequence in diagnosing and referring cata-
racts. First, the algorithm recognized the different cap-
ture modes of slit-lamp photography and classified the 
pupil as mydriatic or non-mydriatic (area under receiver 
operating characteristic curve [AUC] > 0.99). It then dif-
ferentiated between a cataractous lens, IOL, or a normal 

crystalline lens (AUC > 0.99). This was followed by cata-
ract severity grading and determination of disposition 
(referable versus non-referable), achieving an AUC > 0.91. 
Wu and colleagues [11] also created a telemedicine plat-
form where patients can submit smartphone photos of 
their eyes. The algorithm determines if they would need 
to be referred to a healthcare facility. In another study, 
Xu et al. [12] designed a CNN-based ensemble algorithm 
(AlexNet and VisualDN) using fundus photos as input 
to detect and grade cataracts, achieving an accuracy of 
86.2%. This concept of using fundal photo clarity as an 
alternative to anterior segment imaging was mainly moti-
vated by the accessibility of fundus cameras. Through 

ADA= adaptive boost modelling; AI = artificial intelligence; ANN = artificial neural network; AUC​ =  area under the curve; BPNN = back propagation neural network; 
CNN =  convolutional recursive neural network; CRNN = convolutional recurrent neural network; D = diagnosis; DA =  discriminant analysis; DN = deconvolutional 
network; Dp =  diopters; ECPP =  error of corneal power prediction error; EM =  expectation–maximization; EN =  ensemble model; FCNN =  fully connected neural 
network; FP = fundus photography; G = grading; GBT = gradient boosted trees; LSF = line spread function; MAE =  mean absolute error; MARS = multivariate 
adaptive regression spline; MCDA = multi-class discriminant analysis; MLNN = multilayer neural network; PE = percentage of eyes; RBF = radial basis function; RF = 
random forrest; RM = regression model; RNN = recurrent neural network; SLP = slit-lamp photography; SOP = second order polynomials; SRK = formula created by 
John Retzlaff, Kraff and Sanders; SVM = support vector machine; SVR = support vector regression; XGB = extreme gradient boost

Table 1  (continued)

Year Authors Imaging Sample size AI algorithms AUC​ Accuracy (%) Sensitivity (%) Specificity (%)

2019 Connell et al. 
(Kane) [83]

Data 846 RM – PE within 0.50 
D = 77.9
MAE = 0.441 (short); 
0.322 (medium); 
0.326 (long)

– –

2019 Wan et al. (Hill-
RBF 2.0) [19]

Data 127 RM – PE within 0.50 
D = 86.6

– –

2019 Sramka et al. [17] Data 2194 SVM-RM and
MLNN-EM

– PE within 0.50 
D = 82.3–82.7

– –

2016 Koprowski et al. 
[48]

Data 173 CNN – ECPP 0.16 ± 0.14 Dp – –

Intraoperative tools

2020 Lanza et al. [28] Surgery 
factors

1229 DA – 68.4 – –

2020 Lecuyer et al. 
[26]

Cataract 
surgery 
videos

50 CNN (VGG19, Incep-
tionV3, ResNet50)

– 70.0–84.4 – –

2019 Yu et al. [24] Cataract 
surgery 
videos

100 SVM, RNN, CNN 
(SqueezeNet), CNN-
RNN

0.71–0.77 91.5–95.9 0.5–97.4 87.7–99.9

Postoperative assessment of posterior capsule opacification

2018 Jiang et al. [29] SLP 6090 TempSeq-Net 0.97 92.2 81.0 91.4

2012 Mohammadi 
et al. [30]

SLP 352 ANN 0.71 – 25 97

Pediatric cataract assessment

2020 Lin et al. [51] SLP 1738 RF
ADA

0.86 (RF)
0.85 (ADA)

86.0 (RF)
85.0 (ADA)

80.0 (RF)
77.0 (ADA)

91.0 (RF)
90.0 (ADA)

2019 Lin et al. [52] SLP 350 CNN – D = 87.4
G = 70.8–90.6

D = 89.7
G = 84.2–91.3

D = 86.4
G = 44.4–88.9

2017 Liu et al. [53] SLP 886 CNN D = 0.97
G = 0.96–0.99

D = 97.1
G = 89.0–92.7

D = 96.8
G = 90.8–93.9

D = 97.3
G = 82.7–91.1

2017 Long et al. [54] SLP 1349 CNN D = 0.92–1.00
G = 0.96–1.00

D = 92.5–98.9
G = 84.6–100

D = 98.8–100
G = 85.7–100

D = 71.4–99.0
G = 90.5–100

2020 Long et al. [55] HR 594 RF D = 0.94 D = 89.4–98.1 D = 84.9–98.9 D = 86.9–99.0
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this, automated cataract grading can be scaled without 
the need for an experienced operator.

IOL power calculation and biometry
Precise postsurgical refractive outcomes have been a 
long-standing endeavor of cataract surgeons. Yet despite 
significant advancement in IOL formulas, patients with 
a history of refractive surgery, extreme or atypical biom-
etry still present a challenging conundrum. In the event 
of a refractive surprise, further interventions such as IOL 
exchange may be required, which can be distressing for 
both the surgeon and the patient [40]. Furthermore, IOL 
exchange can be challenging and exposes the patient to 
additional surgical risks and complications. Thus, newer 
IOL formulas are constantly being developed to improve 
accuracy of predicted refractive outcomes.

Today, with DL, IOL formulas are taking advantage of 
AI to enhance prediction outcomes. The SVM regression 
model and multilayer neural network ensemble model 
(MLNN-EM) evaluated by Sramka et al. [17] showed that 
both ML algorithms achieved better prediction accu-
racy than conventional clinical methods. Ladas et  al. 
[38] looked at using AI to improve existing IOL formu-
lae (SRK, Holladay I, and Ladas Super formula), where 
supervised learning algorithms (SVR, extreme gradient 
boost [XGB], and ANN) were combined with the above 
existing formulae to refine the predicted refractive out-
come. The hybrid-AI formulas significantly improved the 
mean absolute error and percentage of eyes within 0.5 D 
for each of the IOL formulae tested (e.g., SRK with XGB 

increased the percentage of eyes within 0.5 D to 81% 
compared to SRK alone [61%]).

Additionally, new formulas have been developed 
that are either AI-based or utilize AI-incorporated ele-
ments. These AI formulas have a promising future, as 
many have shown high prediction accuracy compa-
rable to established formulas (Table  1). The Kane for-
mula is based on theoretical optics and incorporates 
both regression and AI components to refine predic-
tions [18]. It has emerged as one of the best perform-
ing formulas in comparison studies, exceeding Barrett 
Universal II, Haigis, Olsen, and other third-generation 
formulas [13–15, 41]. It has consistently been a top 3 
performer even amongst newer generation formulas, 
and these results were also applicable to both extremes 
of axial lengths [13–15].

The Hill-radial basis function (RBF) is an ANN IOL 
calculator that uses regression analysis with a big data-
set of refractive outcomes. It employs pattern recognition 
and data interpolation to predict refractive outcomes 
[19]. Hill-RBF 2.0 performed better than traditional for-
mulas but was less accurate than the modern formulas 
(Kane, Evo 2.0, Barrett Universal II, VRF-G) [13]. Hill-
RBF 3.0 was recently released with its database signifi-
cantly expanded to include extremes of axial lengths, 
while increasing the number of parameters used for IOL 
power selection. It subsequently showed excellent predic-
tion accuracies similar to new generation formulas (Bar-
rett Universal II, Evo 2.0, and Kane) [20].

The PEARL-DGS formula uses ML modeling and out-
put linearization to predict effective lens position and 

Fig. 1  Workflow of Artificial Intelligence in the different stages of cataract treatment. Summary of current and potential AI applications in different 
stages of cataract management: For screening and diagnosis of cataracts in primary care, slit-lamp images or ocular fundus images are used in 
algorithms to detect and classify cataracts as well as generate a clinical decision for patient disposition. With regards to intraoperative care, AI 
models currently use cataract surgery videos to classify the different phases of cataract surgery, which can be applied to predict complications 
and optimizing surgical workflows. Lastly, for postoperative care, slit-lamp images and health-record data were used to predict PCO progression 
requiring YAG capsulotomy. CNN, convolutional neural network; RNN, recurrent neural network; OT, operation theater; HRD, health record data; 
TempSeq-Net, end temporal sequence network; PCO, posterior capsule opacification
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adjust for extreme biometric values. In a comparison 
study across 13 formulas [13], it achieved an overall good 
result, although it was ranked behind the latest genera-
tion formulas (Kane, Evo 2.0, VRF-G, and Barrett Uni-
versal II). However, when given precise IOL geometric 
information by the IOL manufacturer, the PEARL-DGS 
formula outperformed the Evo 2.0, Barrett Universal II, 
and Olsen formulas [39].

The Ladas Super formula [42] is an IOL formula aggre-
gator that incorporates SRK/T, Hoffer Q, Holladay I, Hol-
laday I with Koch adjustment, and Haigis formulas to 
create a “super formula”. The super formula comprises 
ideal portions of the existing formulas derived from a 
3-D “super surface”, which was a graphical representa-
tion of the most accurate output portions of each IOL 
formula. Initial results showed that this super formula 
failed to yield more accurate predictions than the Barrett 
Universal II or Holladay I [21]. A Ladas Super formula 2.0 
is currently being developed that incorporates AI using 
the big-data approach and will be applicable in the near 
future [22].

Another new data-driven IOL power calculation 
method is the designated Karmona [23]. It uses different 
ML models (e.g., K-Nearest Neighbor, ANN, SVM and 
random forest) with specific preoperative parameters to 
predict IOL power. Although it used a small dataset of 
260 eyes, it had promising results with superior predic-
tion accuracy compared to the Barrett Universal II and 
other third-generation formulas.

Apart from those with extremes of biometry, patients 
who have undergone refractive surgery are at increased 
risk of refractive surprise as well [43]. Postrefractive 
surgery alters the normal keratometric index, and thus 
leads to inaccurate estimation of the effective lens posi-
tion [44, 45]. As such, much development has been made 
to precisely measure corneal refractive power. Recently, 
a new parameter called total keratometry (TK), which is 
measured using swept-source optical coherence tomog-
raphy technology on the IOLMaster 700 version 1.70 
(Carl Zeiss Meditect AG, Jena, Germany) [46], has been 
shown to significantly increase prediction accuracy when 
combined with current IOL formulas [47]. However, fur-
ther improvement will be beneficial for this increasing 
segment of patients with high visual demands. AI can 
therefore be used to augment the evaluation of corneal 
power. In a study by Koprowski et al. [48], they utilized 
ANN with error backpropagation on 172 patients who 
had undergone myopic refractive surgery to predict pre-
operative corneal power from Pentacam parameters, 
with a reported low error of 0.16 ± 0.14 D. Through this, 
AI can be a promising aid in determining accurate cor-
neal power and prediction outcomes for postrefractive 
surgery patients.

Pediatric cataracts
Epidemiology
Pediatric cataracts are responsible for 5–20% of pediatric 
blindness worldwide [49]. It is the second cause of visual 
impairment in those under 18  years old in low-income 
countries and the third cause of visual impairment in 
children in high-income countries [50].

Screening and diagnosis
Visually significant pediatric cataracts should be treated 
promptly to avoid irreversible amblyopia. Pediatric 
patients with cataracts face similar accessibility issues as 
adults due to the need for detailed slit-lamp examination. 
As such, diagnosis is often delayed for patients who do not 
have easy access to specialist centers. The time-sensitive 
nature of the treatment of pediatric cataracts further con-
tributes to the importance of timely detection and pre-
vention. In this respect, recent developments in AI have 
shown promising results and can help address these issues.

Lin et al. [51] developed a novel AI screening model to 
identify infants with a high risk of developing congeni-
tal cataracts (CC). A set of 11 non-imaging risk factors 
(e.g., family history and preterm delivery) were analyzed 
using random forest and adaptive boosting algorithms to 
identify predictive factors. The CC identification model 
showed good discriminatory ability to identify cases 
with CC (AUC 0.94–0.96), demonstrating the potential 
to serve as a complementary screening tool, especially in 
under-developed and remote areas.

Concerning diagnosis, a highly accurate ML platform 
named “CC cruiser” was developed by Zhongshan Oph-
thalmic Center [52–54], capable of diagnosing, grading, 
and initiating therapeutic decisions to manage pediatric 
cataracts. “CC cruiser” uses a CNN algorithm to grade 
and diagnose cataracts on slit-lamp images [53] and was 
previously validated using specific datasets with high 
diagnostic accuracy of 98% [54]. In a multicenter rand-
omized controlled trial [52], “CC cruiser” achieved a 
reasonable accuracy for cataract diagnosis (87.4%) and 
treatment determination (70.8%) although it was lower 
than experienced pediatric ophthalmologists (99.1% and 
96.7%, respectively). However, the time to diagnosis from 
“CC cruiser” was about three times shorter compared 
with pediatric ophthalmologists, and it achieved a high 
level of patient satisfaction from reduced waiting time. 
Hence, AI technology can provide an alternative model 
of care that reduces workload and provide time- and 
cost-effective management.

Follow‑up for pediatric cataracts
It has been recognized that postoperative care of CC 
requires long-term follow-up to review complications 
such as aphakic glaucoma and visual axis opacification. 
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This places a burden on traveling with incremental costs 
incurred by the patients. Long et  al. [55] used Bayesian 
and DL algorithms to create “CC-guardian”, an AI plat-
form that comprises a prediction module to first identify 
patients at high risk of postoperative complications then 
schedules a follow-up visit at a primary care center based 
on the risk stratification, and finally, utilizes a telehealth 
computing module to make a clinical decision regarding 
treatment options (referral to a specialized care center 
versus continual primary care follow-up). The model 
achieved a high level of specificity and sensitivity and 
marks a breakthrough in the way ophthalmic care can be 
delivered. If AI prediction models and telehealth com-
puting can eventually achieve clinical implementation, 
it can free up scarce medical resources and reduce travel 
burden and healthcare costs.

Intraoperative
Similarly, AI can augment cataract surgery training, 
intraoperative decision-making, and provide postsurgi-
cal analysis to enhance surgical approaches.

In a recent study, an AI algorithm was able to appro-
priately classify the different phases of cataract opera-
tions [25]. Phase classification evolved from automated 
surgical tool detection [27] to automated phase detec-
tion on cataract surgery videos [26]. Yu et al. [24] found 
that the best accuracy for the automated identification 
of phases in cataract surgery was to model instrument 
labels (alone or with video images) rather than with 
video images alone using either CNN, RNN, or SVM 
algorithms. The detection of different phases of cata-
ract surgery (e.g., capsulorrhexis, cortical removal, lens 
insertion) can potentially translate into phase-specific 
assessments of surgical technical skills and enable 
procedure-tracking during surgery. This will allow 
real-time feedback and augment intraoperative deci-
sion-making [56].

AI may be applied to predict the risk of intraopera-
tive complications and optimize surgical workflows. 
Lanza et  al. [28] customized an AI model analyzing 
1229 surgeries with 73 missteps to detect risk factors 
for intraoperative complications and predict overall 
surgical duration. Diaglinear discriminant analysis was 
used to identify the main risk factors associated with 
intraoperative complications in a particular hospital 
unit. These initial findings support upcoming devel-
opment of customized AI models to predict surgical 
complications. Regarding the prediction of surgical 
timings, neural networks were used with backpropa-
gations. There was no statistically significant differ-
ence between the predicted and actual mean surgical 
time in the study population (with an error of < 6 min). 
In the future, these models can be refined to facilitate 

scheduling or resource distribution in order to maxi-
mize operating theater efficiency.

AI and virtual reality can be used in tandem to 
develop intelligent teaching systems for cataract sur-
gical training. The viability of such an approach for 
microsurgical training has already been assessed in 
the neurosurgical discipline. Mirchi et  al. [57] created 
a virtual training platform (using SVM) where train-
ees were assessed on a virtual neurosurgical procedure 
against experienced surgeons. During the training, the 
trainees were guided using targeted verbal and video-
based feedback. Similarly, commercially available oph-
thalmological simulation-based training machines, 
such as Eyesi (Haag-Streit, Köniz, Switzerland) [58], 
can harness AI in a similar fashion to provide a com-
prehensive training experience, allowing trainees to 
gain proficiency before actual patient exposure.

Postoperative
Among cataract surgery complications, PCO is the 
most common and visually significant [59, 60]. Moham-
madi et  al. [30] first proposed a prototype ANN by 
selecting ten input variables to construct a decision tree 
that predicted PCO requiring capsulotomy with rea-
sonable accuracy (87%) and AUC (0.71). Jiang et al. [29] 
later demonstrated a more effective prediction of PCO 
progression requiring YAG laser capsulotomy (AUC 
0.97, accuracy 92.2%) by using an end-to-end temporal 
sequence network (TempSeq-Net) that employs CNN 
and long short term memory (LSTM), based on 6090 
slit-lamp images. This can potentially guide treatment 
planning by identifying at-risk individuals, thereby 
avoiding unnecessary visual compromise.

Challenges and future directions
AI has the potential to be a useful adjunctive tool for 
cataract management. However, several challenges 
and concerns will need to be addressed for success-
ful translation. The datasets involved should ideally be 
heterogeneous to achieve a robust degree of generaliz-
ability. The significance of this was illustrated by Ting 
et  al. [5] in a study for diabetic retinopathy detection. 
The model was trained using data from a multiethnic 
cohort, achieving a clinical performance compara-
ble to human graders (AUC = 0.93) [5]. However, this 
often requires sharing of sensitive medical data which 
contravenes regulations, such as the General Data Pro-
tection Regulation (GDPR) in Europe and the Health 
Insurance Portability and Accountability Act (HIPAA) 
in the US. Additionally, data security is a common 
concern during the development of AI models. Aggre-
gation of large amounts of sensitive medical data can 
constitute a single source of failure. Currently, medical 
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data is a frequent target for hackers [61], particularly 
in Europe and the US [62], with healthcare continu-
ing to incur the highest average breach costs of US$7.1 
million [63]. Adversarial attacks may also exploit these 
models, either by injecting compromised data during 
training (data poisoning) [64] or altering input images, 
to induce large-scale misclassification of the AI model 
[65]. Furthermore, trust of end-users (physicians and 
patients) in these models is critical to achieve success-
ful clinical translation. This requires improvements 
to the explainability of the AI models, including clear 
demonstration of the decision-making process.

Various approaches have therefore been proposed 
to address these issues. Firstly, federated learning is 
increasingly being employed to allow cross-institution 
or cross-border AI training without data sharing. This 
is a privacy-preserving technique that exposes the 
model to heterogenous non-independent and iden-
tically distributed data [66]. An extension known as 
swarm learning [67] can allow the AI model parame-
ters to be further decentralized, thereby aiding in the 
development of a generalizable model. Secondly, these 
datasets can be further expanded using generative 
adversarial networks, especially for rarer diseases [68] 
such as CC. To increase the explainability of these AI 
models, methods include saliency heatmaps highlight-
ing regions of interest together with estimates of the 
uncertainty involved [69] as well as predefined models 
or feature extractions [70, 71].

In addition, apart from biometry and certain cataract 
and PCO screening models [11, 29, 51], many AI mod-
els have not achieved a level of accuracy that is clini-
cally acceptable, and further development is needed. 
Moreover, most of the intraoperative AI reports dis-
cussed have focused on emerging technologies without 
clear clinical application, and much of its use is still 
hypothetical. However, it is still possible that upcoming 
developments can deliver practical applications that are 
not immediately apparent.

Furthermore, we recognize that there still exists 
significant challenges in the implementation of AI, 
particularly in developing countries due to poor 
infrastructure, lack of data availability, funding, and 
technical expertise [72, 73]. There is also a need for 
proper screening programs to be first implemented 
to ensure a wide catchment for the population, with-
out which, AI triaging applications will see limited 
uptake. Therefore, obtaining governmental support 
in setting new regulations and policies, and applying 
low-cost approaches to acquiring and analyzing data 
sources will be key to establishing AI initiatives in 
these countries.

Finally, the new technology requires compliance 
to open standards to ensure transparency and com-
pleteness. It can be achieved through strict adherence 
to recently introduced protocols such as the CON-
SORT-AI (Consolidated Standards of Reporting Tri-
als for AI) and SPIRIT-AI (Standard Protocol Items: 
Recommendations for Interventional Trials—Arti-
ficial Intelligence) [74]. Their objective is to give AI 
interventions a common ground to evaluate effective-
ness by regulatory authorities and the broader medi-
cal community.

Conclusions
The advent of AI can potentially transform the man-
agement of cataract in terms of assessment and moni-
toring, IOL calculation, intraoperative feedback, and 
postoperative care. AI has been utilized clinically for 
IOL calculations, achieving superior results compared 
to conventional methods. Successful clinical transla-
tion can deliver long-term benefits especially for low-
income populations, including healthcare efficiency, 
accessibility, scalability as well as reduced expendi-
ture. To achieve this, several challenges will need to 
be addressed, including ethical management of data, 
guaranteeing security and privacy, demonstrating clini-
cally acceptable performance, improving generalizabil-
ity across heterogeneous populations, and increasing 
user-acceptance.
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