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Abstract
The aim of this paper is to introduce and study an inertial hybrid iterative method for
solving generalized equilibrium problems involving Bregman relatively nonexpansive
mappings in Banach spaces. We study the strong convergence for the proposed
algorithm. Finally, we list some consequences and computational example to
emphasize the efficiency and relevancy of main result.
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1 Introduction
Throughout the paper, unless otherwise stated, let Y be a reflexive Banach space with Y ∗

its dual, let K �= ∅ be a closed convex subset of Y and denote by R the set of real numbers.
Consider the following generalized equilibrium problem (in short, GEP): Find u0 ∈ K such
that

G(u0, u) + b(u0, u) – b(u0, u0) ≥ 0, ∀u ∈ K , (1.1)

where G, b : K × K → R are bifunctions. We will write Sol(GEP(1.1)) for the solution of
(1.1). If b ≡ 0, then GEP(1.1) reduces to the equilibrium problem (in short, EP): Find u0 ∈ K
such that

G(u0, u) ≥ 0, ∀u ∈ K . (1.2)

It is known that equilibrium problems have a great impact and influence in the develop-
ment of several topics of science and engineering. It turned out that many well-known
problems could be fitted into the equilibrium problems. It has been shown that the the-
ory of equilibrium problems provides a natural, novel, and unified framework for sev-
eral problems arising in nonlinear analysis, optimization, economics, finance, game the-
ory, and engineering. The equilibrium problems include many mathematical problems
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as particular cases, for example, mathematical programming problem, variational in-
clusion problem, variational inequality problem, complementary problem, saddle point
problem, Nash equilibrium problem in noncooperative games, minimax inequality prob-
lem, minimization problem, and fixed point problem, see [1–3]. For example, if we set
G(u0, u) = 〈Du0, u – u0〉 and b(u0, u) = 0, ∀u0, u ∈ K , where D : K → Y ∗ is a nonlinear
mapping, then EP(1.2) reduces to the classical variational inequality problem (in short,
VIP): Find u0 ∈ K such that

〈Du0, u – u0〉 ≥ 0, ∀u ∈ K , (1.3)

which was introduced by Hartmann and Stampacchia [4]. The solution set of VIP(1.3) is
denoted by Sol(VIP(1.3)).

Korpelevich [5] originated the iterative method for VIP on Hilbert space H in 1976 as:

⎧
⎪⎪⎨

⎪⎪⎩

u0 ∈ C ⊆ H ,

vn = projC(un – σDun),

un+1 = projC(un – σDvn), n ≥ 0,

where σ > 0, projC denotes the projection of H onto C, and D is a monotone and Lipschitz
continuous mapping. This method is called the extragradient iterative method.

Nadezkhina et al. [6] proposed a hybrid extragradient algorithm involving nonexpansive
mapping T on C and in 2006 studied the convergence analysis of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 ∈ C ⊆ H ,

xn = projC(un – σnDun),

vn = αnun + (1 – αn)TprojC(un – σnDxn),

Cn = {z ∈ C : ‖vn – z‖2 ≤ ‖un – z‖2},
Dn = {z ∈ C : 〈un – z, u0 – un〉 ≥ 0},
un+1 = projCn∩Dn u0, n ≥ 0.

(1.4)

The iterative algorithm (1.4) has been extended by many authors; see [7–15] for details.
The idea considered in [6] has been generalized in [16] from a Hilbert space to a Banach
space Y as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 ∈ K ⊆ Y ,

vn = J–1(αnJun + (1 – αn)JTun),

Cn = {z ∈ K : �(z, vn) ≤ �(z, un)},
Dn = {z ∈ K : 〈un – z, Ju0 – Jun〉 ≥ 0},
un+1 =

∏
Cn∩Dn u0,

where �K denotes the generalized projection of Y onto K , � is the Lyapunov function
such that �(u, v) = ‖v‖2 – 2〈v, Ju〉 + ‖u‖2, ∀u, v ∈ Y , J : Y → 2Y∗ is the normalized duality
mapping, with J–1 denoting its inverse. For further work, see [17–20].
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In 1967, an important technique was discovered by Bregman [21] in the light of Bregman
distance function. This technique is very useful not only in the design and interpretation
the iterative method but also in solving optimization and feasibility problems and in ap-
proximating equilibria, FPP, VIP, etc.; for details, see [22–25].

In 2010, Reich [26] et al. introduced an iterative algorithm on Banach space involving
maximal monotone operators. In the light of Bregman projection, there were various it-
erative algorithms studied by researchers in this field, see, for instance, [27–31].

In 2008, Mainge [32] developed an inertial Krasnosel’skǐı–Mann algorithm as follows:

⎧
⎨

⎩

tn = un + θn(un – un–1),

un+1 = (1 – αn)tn + αnTtn.

The convergence of such an algorithm has been analyzed by various researchers and illus-
trated its importance on data analysis and some imaging problems, see [33–41] for details.
It is noticeable that the research on an inertial iterative algorithm is still unexplored on a
Banach space.

Inspired by the work in [20, 30, 32], we establish an inertial hybrid iterative algorithm in-
volving Bregman relatively nonexpansive mapping to find a common solution of GEP(1.1)
and fixed point problem in a Banach space. Moreover, we analyze its convergence for our
main result. At last, we list some consequences and a computational example to emphasize
the efficiency and relevancy of the main result.

2 Preliminaries
Assume g : Y → (–∞, +∞] is a proper, convex, and lower semicontinuous mapping, and
g∗ : Y ∗ → (–∞, +∞], Fenchel conjugate of g , is defined as

g∗(u0) = sup
{〈u0, u〉 – g(u) : u ∈ Y

}
, u0 ∈ Y ∗.

And for any w ∈ int(domg), the interior of the domain of g , and u ∈ Y , the right-hand
derivative of g at w in the direction u is

g0(w, u) = lim
λ→0+

g(w + λu) – g(w)
λ

.

A mapping g is called Gateaux differentiable at w if the above limit exists. So, g0(w, u)
agrees with ∇g(w), the value of the gradient of g at w. It is called Frechet differentiable at
w, if the limit is attained uniformly in u, ‖u‖ = 1. It is called uniformly Frechet differentiable
on K ⊆ Y , if the above limit is attained uniformly for w ∈ K and ‖u‖ = 1.

The mapping g is called Legendre if the following hold [22]:
(i) int(domg) �= ∅, g is Gateaux differentiable on int(domg), dom∇g = int(domg);

(ii) int(domg∗) �= ∅, g∗ is Gateaux differentiable on int(domg∗), dom∇g∗ = int(domg∗).
We have the following [22]:

(i) g is Legendre iff g∗ is Legendre mapping;
(ii) (∂g)–1 = ∂g∗;

(iii) ∇g = (∇g∗)–1, ran∇g = dom∇g∗ = int(domg∗), ran∇g∗ = dom∇g = int(domg);
(iv) the mappings g and g∗ are strictly convex on int(domg) and int(domg∗).
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Definition 2.1 ([21]) Let g : Y → (–∞, +∞] be Gateaux differentiable and convex and
Dg : domg × int(domg) → [0, +∞) such that

Dg(u, w) = g(u) – g(w) –
〈∇g(w), u – w

〉
, w ∈ int(domg), u ∈ domg,

is known as Bregman distance with respect to g .

We have listed some important properties of Dg [42]: for u, u1, u2 ∈ (domg) and w1, w2 ∈
int(domg),

(i) Two point identity:

Dg(w1, w2) + Dg(w2, w1) =
〈∇g(w1) – ∇g(w2), w1 – w2

〉
;

(ii) Three point identity:

Dg(u, w1) + Dg(w1, w2) – Dg(u, w2) =
〈∇g(w2) – ∇g(w1), u – w1

〉
;

(iii) Four point identity:

Dg(u1, w1) – Dg(u1, w2) – Dg(u2, w1) + Dg(u2, w2) =
〈∇g(w2) – ∇g(w1), u1 – u2

〉
.

Definition 2.2 ([26, 28]) Let T : K → int(domg) be a mapping and F(T) = {u ∈ K : Tu =
u}, where F(T) is the set of fixed points of T . Then

(i) a point u0 ∈ K is called an asymptotic fixed point if K contains a sequence {un}
with un ⇀ u0 such that limn→∞ ‖Tun – un‖ = 0. We denote by F̂(T) the set of all
asymptotic fixed points of T ;

(ii) T is called Bregman quasinonexpansive if

F(T) �= ∅; Dg(u0, Tu) ≤ Dg(u0, u), ∀u ∈ K , u0 ∈ F(T);

(iii) T is called Bregman relatively nonexpansive if

F(T) = F̂(T) �= ∅; Dg(u0, Tu) ≤ Dg(u0, u), ∀u ∈ K , u0 ∈ F(T);

(iv) T is called Bregman firmly nonexpansive if ∀u1, u2 ∈ K ,

〈∇g(Tu1) – ∇g(Tu2), Tu1 – Tu2
〉 ≤ 〈∇g(u1) – ∇g(u2), Tu1 – Tu2

〉
,

or, correspondingly,

Dg(Tu1, Tu2) + Dg(Tu2, Tu1) + Dg(Tu1, u1) + Dg(Tu2, u2)

≤ Dg(Tu1, u2) + Dg(Tu2, u1).

Example 2.1 ([29]) Let A : Y → 2Y∗ be a maximal monotone mapping and Y be a real
reflexive Banach space. If A–1(0) �= ∅ and the Legendre function g : Y → (–∞, +∞] is
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bounded on bounded subsets of Y and uniformly Frechet differentiable then the resol-
vent with respect to A,

resg
A(u) = (∇g + A)–1 ◦ ∇g(u),

is a single-valued, closed, and Bregman relatively nonexpansive mapping from Y onto
D(A), and F(resg

A) = A–1(0).

Definition 2.3 ([21]) Let g : Y → (–∞, +∞] be a Gateaux differentiable and convex func-
tion. The Bregman projection of w ∈ int(domg) onto K , nonempty closed convex subset
of int(domg), is a unique vector projgK w ∈ K satisfies

Dg
(
projgK (w), w

)
= inf

{
Dg(u, w) : u ∈ K

}
.

Remark 2.2 ([27])
(i) If Y is a smooth Banach space and g(u) = 1

2‖u‖2, ∀u ∈ Y , then projgK (u) turns �K (u),
the generalized projection, [43] into

�
(
�K (u), u

)
= min

v∈K
�(v, u),

where � is the Lyapunov function such that �(u, v) = ‖v‖2 – 2〈v, Ju〉 + ‖u‖2,
∀u, v ∈ Y , J : Y → 2Y∗ is the normalized duality mapping;

(ii) If Y is a Hilbert space and g(u) = 1
2‖u‖2, ∀u ∈ Y , then projgK (u) turns into metric

projection.

Definition 2.4 ([23]) Let g : Y → (–∞, +∞] be a Gateaux differentiable and convex func-
tion. Then, g is called:

(i) totally convex at w ∈ int(domg) if its modulus of total convexity at u, i.e., the
mapping vg : int(domg) × [0, +∞) → [0, +∞) such that

vg(w, s) = inf
{

Dg(v, w) : v ∈ domg,‖v – w‖ = s
}

,

is positive for s > 0;
(ii) totally convex if it is totally convex at each point of w ∈ int(domg);

(iii) totally convex on bounded sets if vg : int(domg) × [0, +∞) → [0, +∞) such that

vg(B, s) = inf
{

vg(w, s) : w ∈ B ∩ domg
}

.

Definition 2.5 ([23, 26]) A mapping g : Y → (–∞, +∞] is called:
(i) coercive if lim‖u‖→+∞ g(u)

‖u‖ = +∞;
(ii) sequentially consistent if for any {un}, {vn} ⊆ Y with {un} bounded,

lim
n→∞ Dg(vn, un) = 0 ⇒ lim

n→∞‖vn – un‖ = 0.

Lemma 2.3 ([24]) If g : Y → (–∞, +∞] is a convex function with domain of at least two
points. Then, g is sequentially consistent iff it is totally convex on bounded sets.
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Lemma 2.4 ([44]) Let g : Y → (–∞, +∞] be uniformly Frechet differentiable and bounded
on K ⊆ Y , a bounded set. Then, g is uniformly continuous on K and ∇g is uniformly con-
tinuous on K from the strong topology of Y to the strong topology of Y ∗.

Lemma 2.5 ([26]) Let g : Y → (–∞, +∞] be a Gateaux differentiable and totally convex
function. If u0 ∈ Y and {Dg(un, u0)} is bounded, then {un} is also bounded.

Lemma 2.6 ([24]) Let g : Y → (–∞, +∞] be a Gateaux differentiable and totally convex
function on int(domg). Let w ∈ int(domg) and K ⊆ int(domg), a nonempty closed convex
set. If v ∈ K , then the following statements are equivalent:

(i) v ∈ K is the Bregman projection of w onto K with respect to g , i.e., v = projgK (w);
(ii) the vector v is the unique solution of the variational inequality

〈∇g(w) – ∇g(v), v – u
〉 ≥ 0, ∀u ∈ K ;

(iii) the vector v is the unique solution of the inequality

Dg(u, v) + Dg(v, w) ≤ Dg(u, w), ∀u ∈ K .

Lemma 2.7 ([28]) Let g : Y → (–∞, +∞] be Legendre and T : K → K be a Bregman quasi-
nonexpansive mapping with respect to g . Then, F(T) is closed and convex.

Lemma 2.8 ([26]) Let g : Y → (–∞, +∞] be a Gateaux differentiable and totally convex
function, u0 ∈ Y and K ⊆ Y , a nonempty closed convex set. Suppose that {un} is bounded
and any weak subsequential limit of {un} belongs to K . If Dg(un, u0) ≤ Dg(projgK u0, u0) then
{un} strongly converges to projgK u0.

Assumption 2.1 Let G : K × K −→R satisfy:
(i) G(u, u) = 0, ∀u ∈ K ;

(ii) G is monotone, i.e., G(u1, u2) + G(u2, u1) ≤ 0, ∀u1, u2 ∈ K ;
(iii) for each u1, u2, u3 ∈ K , lim sups→0 G(su3 + (1 – s)u1, u2) ≤ G(u1, u2);
(iv) for each u ∈ K , v → G(u, v) is convex and lower semicontinuous.

Assumption 2.2 Let b : K × K →R satisfy:
(i) b is skew-symmetric, i.e., b(u1, u1) – b(u1, u2) – b(u2, u1) + b(u2, u2) ≥ 0, ∀u1, u2 ∈ K ;

(ii) b is convex in the second argument;
(iii) b is continuous.

3 Resolvent operator
The resolvent of G : K × K → R with respect to b is the operator resg

G,b : Y → 2K defined
as follows:

resg
G,b(u) =

{
u0 ∈ K : G(u0, v) +

〈∇g(u0) – ∇g(u), v – u0
〉

+ b(u0, v) – b(u0, u0) ≥ 0,∀v ∈ K
}

, ∀u ∈ Y . (3.1)

We obtain some properties of the resolvent operator resg
G,b.
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Lemma 3.1 Let g : Y → (–∞, +∞] be a Gateaux differentiable and coercive function. Let
G, b : K × K → R fulfil Assumptions 2.1 and 2.2, respectively, and let resg

G,b : Y → 2K be
defined by (3.1). Then, the following hold:

(i) dom(resg
G,b) = Y ;

(ii) resg
G,b is single-valued;

(iii) resg
G,b is a Bregman firmly nonexpansive type mapping, that is, ∀u, v ∈ Y ,

〈∇g
(
resg

G,bu
)

– ∇g
(
resg

G,bv
)
, resg

G,bu – resg
G,bv

〉

≤ 〈∇g(u) – ∇g(v), resg
G,bu – resg

G,by
〉
;

(iv) F(resg
G,b) = Sol(GEP(1.1)) is closed and convex;

(v) Dg(q, resg
G,bu) + Dg(resg

G,bu, u) ≤ Dg(q, u), ∀q ∈ F(resg
G,b);

(vi) resg
G,b is Bregman quasinonexpansive.

Proof (i) The proof follows the lines of the proof of Lemma 1 [30]. For the sake of com-
pleteness, we give the proof. First, we show that for any ξ ∈ Y ∗, there exists u ∈ C such
that

G(u, v) + b(u, v) – b(u, u) + g(v) – g(u) – 〈ξ , v – u〉 ≥ 0 (3.2)

for any v ∈ K . Since g is coercive, the function h : Y × Y → (–∞, +∞] defined by

h(u, v) = h(v) – h(u) – 〈ξ , v – u〉

satisfies

lim‖u–v‖→+∞
h(u, v)
‖u – v‖ = –∞,

for each fixed v ∈ K . Therefore, it follows from Theorem 1 in [1], together with Assump-
tions 2.1 and 2.2, that (3.2) holds. Now, we prove that (3.2) implies that

G(u, v) + b(u, v) – b(u, u) +
〈∇g(u), v – u

〉
– 〈ξ , v – u〉 ≥ 0 (3.3)

for any v ∈ K . We know that (3.2) holds for v = tu + (1 – t)v̄, where v̄ ∈ K and t ∈ (0, 1).
Hence

G
(
u, tu + (1 – t)v̄

)
+ b

(
u, tu + (1 – t)v̄

)
– b(u, u)

+ g
(
tu + (1 – t)v̄

)
– g(u) –

〈
ξ , tu + (1 – t)v̄ – u

〉 ≥ 0, ∀v̄ ∈ K . (3.4)

Since

g
(
tu + (1 – t)v̄

)
– g(u) ≤ 〈∇g

(
tu + (1 – t)v̄

)
, tu + (1 – t)v̄ – u

〉
,
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we get from (3.3), Assumption 2.1 (iv) and Assumption 2.2 (ii) that

tG(u, u) + (1 – t)G(u, v̄) + tb(u, u) + (1 – t)b(u, v̄) – b(u, u)

+
〈∇g

(
tu + (1 – t)v̄

)
, tu + (1 – t)v̄ – u

〉

–
〈
ξ , tu + (1 – t)v̄ – u

〉 ≥ 0, ∀v̄ ∈ K .

From Assumption 2.1 (i), we have

(1 – t)G(u, v̄) + (1 – t)b(u, v̄) – (1 – t)b(u, u)

+
〈∇g

(
tu + (1 – t)v̄

)
, (1 – t)(v̄ – u)

〉
–

〈
ξ , (1 – t)(v̄ – u)

〉 ≥ 0

and

(1 – t)
[
G(u, v̄) + b(u, v̄) – b(u, u) +

〈∇g
(
tu + (1 – t)v̄

)
, (v̄ – u)

〉
–

〈
ξ , (v̄ – u)

〉] ≥ 0.

Therefore

G(u, v̄) + b(u, v̄) – b(u, u) +
〈∇g

(
tu + (1 – t)v̄

)
, (v̄ – u)

〉
–

〈
ξ , (v̄ – u)

〉 ≥ 0, ∀v̄ ∈ K .

Since g is a Gateaux differentiable function, it follows that ∇g is norm-to-weak∗ continu-
ous. Therefore, letting t → 1–, we obtain that

G(u, v̄) + b(u, v̄) – b(u, u) +
〈∇g(u), (v̄ – u)

〉
–

〈
ξ , (v̄ – u)

〉 ≥ 0, ∀v̄ ∈ K .

Hence, for any u ∈ Y , taking ξ = ∇g(u), we obtain ū ∈ K such that

G(u, v̄) + b(u, v̄) – b(u, u) +
〈∇g(u), (v̄ – u)

〉
–

〈∇g(ū), (v̄ – u)
〉 ≥ 0, ∀v̄ ∈ K ,

i.e.,

G(u, v̄) + b(u, v̄) – b(u, u) +
〈∇g(u) – ∇g(ū), (v̄ – u)

〉 ≥ 0, ∀v̄ ∈ K ,

that is, u ∈ resg
G,b(u). Hence dom(resg

G,b) = Y .
(ii) For u ∈ Y , let z1, z2 ∈ F(resg

G,b). Then z1, z2 ∈ K and hence

G(z1, z2) +
〈∇g(z1) – ∇g(u), z2 – z1

〉
+ b(z1, z2) – b(z1, z1) ≥ 0

and

G(z2, z1) +
〈∇g(z2) – ∇g(u), z1 – z2

〉
+ b(z2, z1) – b(z2, z2) ≥ 0.

Adding these two inequalities and using Assumption 2.1 (i), we have

〈∇g(z1) – ∇g(z2), z2 – z1
〉
+ b(z1, z2) – b(z1, z1) + b(z2, z1) – b(z2, z2) ≥ 0.
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Since b is skew-symmetric, we have

〈∇g(z1) – ∇g(z2), z2 – z1
〉 ≥ 0. (3.5)

By interchanging the position of z1 and z2, we have

〈∇g(z2) – ∇g(z1), z1 – z2
〉 ≥ 0. (3.6)

Adding (3.5) and (3.6), we have

2
〈∇g(z1) – ∇g(z2), z2 – z1

〉 ≥ 0.

This implies that

〈∇g(z2) – ∇g(z1), z2 – z1
〉 ≤ 0. (3.7)

Since g is convex and Gateaux differentiable, we have

〈∇g(z2) – ∇g(z1), z2 – z1
〉 ≥ 0. (3.8)

By (3.7) and (3.8), we have

〈∇g(z2) – ∇g(z1), z2 – z1
〉

= 0.

Since g is a Legendre function, z1 = z2. Hence, resg
G,b is single-valued.

(iii) For u, v ∈ K , we have

G
(
resg

G,bu, resg
G,bv

)
+

〈∇g
(
resg

G,bv
)

– ∇g(v), resg
G,bu – resg

G,bv
〉

+ b
(
resg

G,bv, resg
G,bu

)
– b

(
resg

G,bv, resg
G,bv

) ≥ 0

and

G
(
resg

G,bv, resg
G,bu

)
+

〈∇g
(
resg

G,bu
)

– ∇g(u), resg
G,bv – resg

G,bu
〉

+ b
(
resg

G,bu, resg
G,bv

)
– b

(
resg

G,bu, resg
G,bu

) ≥ 0.

Adding the above two inequalities, then using the skew symmetry of b and Assump-
tion 2.1(ii), we have

〈∇g
(
resg

G,bu
)

– ∇g(u) – ∇g
(
resg

G,bv
)

+ ∇g(v), resg
G,bv – resg

G,bu
〉 ≥ 0,

hence

〈∇g
(
resg

G,bu
)

– ∇g
(
resg

G,bv
)
, resg

G,b(u) – resg
G,b(v)

〉

≤ 〈∇g(u) – ∇g(v), resg
G,b(u) – resg

G,b(v)
〉
.

This means that resg
G,b is a Bregman firmly nonexpansive mapping.
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(iv) We now show that F(resg
G,b) = Sol(GEP(1.1)). We have

u ∈ F
(
resg

G,b
) ⇔ u ∈ resg

G,b(u)

⇔ G(u, v) +
〈∇g(u) – ∇g(u), v – u

〉
+ b(u, v) – b(u, u) ≥ 0, ∀v ∈ K

⇔ G(u, v) + b(u, v) – b(u, u) ≥ 0, ∀v ∈ K

⇔ u ∈ Sol(GEP(1.1)). (3.9)

Further, since resg
G,b is a Bregman firmly nonexpansive type mapping, it follows from [44,

Lemma 1.3.1] that F(resg
G,b) is a closed and convex subset of K . Therefore, from (3.9), we

obtain that Sol(GEP(1.1)) = F(resg
G,b) is closed and convex.

(v) Now, we prove that resg
G,b is a Bregman quasinonexpansive mapping.

For u, v ∈ K , from (b), we have

〈∇g
(
resg

G,bu
)

– ∇g
(
resg

G,bv
)
, resg

G,b(u) – resg
G,b(v)

〉

≤ 〈∇g(u) – ∇g(v), resg
G,b(u) – resg

G,b(v)
〉
.

Moreover, we have

Dg
(
resg

G,b(u), resg
G,b(v)

)
+ Dg

(
resg

G,b(v), resg
G,b(u)

)

≤ Dg
(
resg

G,b(u), v
)

– Dg
(
resg

G,b(u), u
)

+ Dg
(
resg

G,b(v), u
)

– Dg
(
resg

G,b(v), v
)
.

Taking v = q ∈ F(resg
G,b), we see that

Dg
(
resg

G,b(u), q
)

+ Dg
(
q, resg

G,b(u)
)

≤ Dg
(
resg

G,b(u), q
)

– Dg
(
resg

G,b(u), u
)

+ Dg(q, u) – Dg(q, q).

Hence

Dg
(
q, resg

G,b(u)
)

+ Dg
(
resg

G,b(u), u
) ≤ Dg(q, u). (3.10)

(vi) Equation (3.10) implies that resg
G,b is a Bregman quasinonexpansive mapping. �

4 Main result
We developed the strong convergence algorithm for the inertial iterative method to find
the common solution of GEP(1.1) and FPP for a Bregman relatively nonexpansive mapping
in a reflexive Banach space.

Theorem 4.1 Let K ⊆ Y with K ⊆ int(domg), where g : Y → (–∞, +∞] is a coercive Leg-
endre function which is bounded, uniformly Frechet differentiable, and totally convex on
bounded subsets of Y . Let G, b : K × K → R satisfy Assumptions 2.1 and 2.2, respectively.
Let T : K → K be a Bregman relatively nonexpansive mapping. Let � = Sol(GEP(1.1)) ∩
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F(T) �= ∅. Let {xn}, {zn} ⊆ K be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x–1 ∈ K ,

un = xn + θn(xn – xn–1),

vn = ∇g∗(αn∇g(un) + (1 – αn)∇g(Tun)),

wn = ∇g∗(βn∇g(Tun) + (1 – βn)∇g(vn)),

zn = resg
G,bwn,

Cn = {z ∈ C : Dg(z, zn) ≤ Dg(z, un)},
Qn = {z ∈ C : 〈∇g(x0) – ∇g(xn), z – xn〉 ≤ 0},
xn+1 = projgCn∩Qn x0, for all n ≥ 0,

(4.1)

where {θn} ⊆ (0, 1), {αn}, {βn} ⊆ [0, 1] with limn→∞ αn = 0. Then, {xn} converges strongly to
projg�x0.

Proof For convenience, we divide the proof into several steps:
Step I. � and Cn ∩ Qn are closed and convex, ∀n ≥ 0.
By Lemmas 2.7 and 3.1, � is closed and convex and therefore projg�x0 is well defined.
Obviously, Qn is closed and convex. Further, we prove that Cn is closed and convex,

∀n ≥ 0. We can easily show that Cn is closed and convex, ∀n. Thus, Cn ∩ Qn is closed and
convex, ∀n ≥ 0.

Step II. � ⊂ Cn ∩ Qn, ∀n ≥ 0 and {xn} is well defined.
Let p ∈ �, then

Dg(p, zn) = Dg
(
p, resg

G,φwn
)

≤ Dg(p, wn)

= Dg(p,∇g∗(βn∇g(Tun) + (1 – βn)∇g(vn)
)

≤ βnDg(p, un) + (1 – βn)Dg(p, vn), (4.2)

and

Dg(p, vn) = Dg(p,∇g∗(αn∇g(un) + (1 – αn)∇g(Tun)
)

≤ αnDg(p, un) + (1 – αn)Dg(p, un)

= Dg(p, un). (4.3)

Substituting (4.3) into (4.2), we have

Dg(p, zn) ≤ Dg(p, un).

Thus, p ∈ Cn. Therefore, � ⊂ Cn, ∀n ≥ 0. Further, by induction we show that � ⊂ Cn ∩Qn,
n ≥ 0. As Q0 = C, we have � ⊂ C0 ∩ Q0. Suppose that � ⊂ Cm ∩ Qm, for some m > 0.
Then, ∃ xm+1 ∈ Cm ∩ Qm such that xm+1 = projgCm∩Qm x0. From the definition of xm+1, we get
〈∇g(x0) – ∇g(xm+1), xm+1 – z〉 ≥ 0, ∀z ∈ Ck ∩ Qm. Since � ⊂ Cm ∩ Qm, we have

〈∇g(x0) – ∇g(xm+1), p – xm+1
〉 ≤ 0, ∀p ∈ �
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which implies p ∈ Qm+1. Hence, � ⊂ Cm+1 ∩ Qm+1 implies � ⊂ Cn ∩ Qn, ∀n ≥ 0 and hence
xn+1 = projgCn∩Qn x0 is well defined, ∀n ≥ 0. Hence, {xn} is well defined.

Step III. The sequences {xn}, {un}, {vn}, {zn}, and {wn} are bounded.
Using the definition of Qn, we get xn = projgQn x0. From the fact that xn = projgQn x0, and

using Lemma 2.6 (iii), we obtain

Dg(xn, x0) = Dg
(
projgQn x0, x0

)

≤ Dg(u, x0) – Dg
(
u, projgQn x0

) ≤ Dg(u, x0), ∀u ∈ � ⊂ Qn. (4.4)

This implies that {Dg(xn, x0)} is bounded and hence {xn} is bounded by Lemma 2.5.
Now,

Dg(p, xn) = Dg
(
p, projgCn–1∩Qn–1

x0
) ≤ Dg(p, x0) – Dg(xn, x0)

implies that {Dg(p, xn)} is bounded. Using Dg(p, Txn) ≤ Dg(p, xn), ∀p ∈ �, yields that {Txn}
is bounded. Therefore, {un}, {vn}, {wn}, and {zn} are bounded.

Step IV. limn→∞ ‖xn+1 – xn‖ = 0; limn→∞ ‖xn – un‖ = 0; limn→∞ ‖zn – un‖ = 0;
limn→∞ ‖zn – wn‖ = 0; limn→∞ ‖un – wn‖ = 0, and limn→∞ ‖un – Tun‖ = 0.

Since xn+1 = projgCn∩Qn x0 ∈ Qn and xn ∈ projgQn x0, we get

Dg(xn, x0) ≤ Dg(xn+1, x0), ∀n ≥ 0,

which implies {Dg(xn, x0)} is nondecreasing. By the boundedness of {Dg(xn, x0)},
limn→∞ Dg(xn, x0) exists and is finite. Further,

Dg(xn+1, xn) = Dg
(
xn+1, projgQn x0

)

≤ Dg(xn+1, x0) – Dg
(
projgQn x0, x0

)

= Dg(xn+1, x0) – Dg(xn, x0)

which yields

lim
n→∞ Dg(xn+1, xn) = 0.

Using Lemma 2.3,

lim
n→∞‖xn+1 – xn‖ = 0. (4.5)

From the definition of un, ‖un – xn‖ = ‖θn(xn – xn–1)‖ ≤ ‖xn – xn–1‖, which implies by
(4.5) that

lim
n→∞‖un – xn‖ = 0. (4.6)

Since

‖un – xn+1‖ ≤ ‖un – xn‖ + ‖xn – xn+1‖,
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it follows from (4.5) and (4.6) that

lim
n→∞‖un – xn+1‖ = 0. (4.7)

Using Lemma 2.4 and the fact that g is uniformly Frechet differentiable, we get

lim
n→∞

∣
∣g(un) – g(xn+1)

∣
∣ = 0 (4.8)

and

lim
n→∞

∥
∥∇g(un) – ∇g(xn+1)

∥
∥ = 0.

By the definition of Dg , we get

Dg(xn+1, un) = g(xn+1) – g(un) –
〈∇g(un), xn+1 – un

〉
. (4.9)

We have that ∇g is bounded on bounded subsets of Y because g is bounded on Y . Since g
is uniformly Frechet differentiable, it is uniformly continuous on bounded subsets. Hence,
by (4.7)–(4.9),

lim
n→∞ Dg(xn+1, un) = 0. (4.10)

As xn+1 = projgCn∩Qn x0 ∈ Cn, we have

Dg(xn+1, zn) ≤ Dg(xn+1, un), (4.11)

and hence by (4.10) and (4.11),

lim
n→∞ Dg(xn+1, zn) = 0.

Thanks to Lemma 2.3,

lim
n→∞‖xn+1 – zn‖ = 0. (4.12)

Taking into account

‖zn – un‖ ≤ ‖zn – xn+1‖ + ‖xn+1 – un‖,

by (4.7) and (4.12), we get

lim
n→∞‖zn – un‖ = 0. (4.13)

By Lemma 2.4,

lim
n→∞

∣
∣g(zn) – g(un)

∣
∣ = 0 (4.14)
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and

lim
n→∞

∥
∥∇g(zn) – ∇g(un)

∥
∥ = 0. (4.15)

Next, we estimate the difference

Dg(p, un) – Dg(p, zn)

= g(p) – g(un) –
〈∇g(un), p – un

〉
– g(p) + g(zn) +

〈∇g(zn), p – zn
〉

= g(zn) – g(un) +
〈∇g(zn), p – zn

〉
–

〈∇g(un), p – un
〉

= g(zn) – g(un) +
〈∇g(zn), un – zn

〉
+

〈∇g(zn) – ∇g(un), p – un
〉
. (4.16)

Since {zn}, {un}, {∇g(zn)}, and {∇g(un)} are bounded, using (4.13)–(4.16), we get

lim
n→∞

∣
∣Dg(p, un) – Dg(p, zn)

∣
∣ = 0. (4.17)

Further, it follows from Lemma 3.1(v) that

Dg(zn, wn) ≤ Dg(p, wn) – Dg(p, zn)

≤ Dg
(
p,∇g∗(βn∇g(Tun) + (1 – βn)∇g(vn)

))
– Dg(p, zn)

≤ βnDg(p, Tun) + (1 – βn)Dg(p, un) – Dg(p, zn)

≤ Dg(p, un) – Dg(p, zn). (4.18)

Since {Dg(p, un)} and {Dg(p, zn)} are bounded, by (4.17) and (4.18),

lim
n→∞ Dg(zn, wn) = 0,

and hence

lim
n→∞‖zn – wn‖ = 0. (4.19)

From (4.13) and (4.19), we get

lim
n→∞‖un – wn‖ = 0. (4.20)

Using uniform Frechet differentiability of g , Lemma 2.4, (4.19), and (4.20), we have

lim
n→∞

∥
∥∇g(zn) – ∇g(wn)

∥
∥ = 0, (4.21)

lim
n→∞

∥
∥∇g(un) – ∇g(wn)

∥
∥ = 0. (4.22)
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Note that
∥
∥∇g(un) – ∇g(wn)

∥
∥

=
∥
∥∇g(un) – ∇g

(∇g∗(βn∇g(Tun) + (1 – βn)∇g(vn)
))∥

∥

= ‖∇g(un) – βn∇g(Tun) – (1 – βn)∇g(vn))‖
=

∥
∥βn

(∇g(un) – ∇g(Tun)
)

+ (1 – βn)
(∇g(un) – ∇g(vn)

)∥
∥

=
∥
∥βn

(∇g(un) – ∇g(Tun)
)

+ (1 – βn)
(∇g(un) – ∇g

(∇g∗(αn∇g(un) + (1 – αn)∇g(Tun)
)))∥

∥

=
∥
∥βn

(∇g(un) – ∇g(Tun)
)

+ (1 – βn)(1 – αn)
(∇g(un) – ∇g(Tun)

)∥
∥

=
[
1 – αn(1 – βn)

]∥
∥∇g(un) – ∇g(Tun))

∥
∥. (4.23)

By (4.22), (4.23), and using limn→∞ αn = 0, we get

lim
n→∞

∥
∥∇g(un) – ∇g(Tun)

∥
∥ = 0. (4.24)

Moreover, we have from (4.24) that

lim
n→∞‖un – Tun‖ = 0. (4.25)

Step V. x̄ ∈ �.
First, we prove that x̄ ∈ F(T). As {xn} is bounded, there exists a subsequence {xnk } ⊆ {xn}

such that xnk ⇀ x̄ ∈ K as k → ∞. Due to (4.6), (4.13), (4.19), and (4.20), the sequences {xn},
{un}, {wn}, and {zn} have same asymptotic behavior and thus there exist subsequences {unk }
of {un}, {wnk } of {wn}, and {znk } of {zn} such that unk ⇀ x̄, wnk ⇀ x̄, and znk ⇀ x̄ as k → ∞.
Using unk ⇀ x̄ and (4.25) shows that

lim
k→∞

‖unk – Tunk ‖ = 0.

By the definition of T , x̄ ∈ F̂(T) = F(T).
Next, we prove that x̄ ∈ Sol(GEP(1.1)). As zn = resg

G,bwn, we have

G(znk , v) +
〈∇g(znk ) – ∇g(wnk ), v – znk

〉
+ b(v, znk ) – b(znk , znk ) ≥ 0, ∀v ∈ C.

Using Assumption 2.1, we have

〈∇g(znk ) – ∇g(wnk ), v – znk

〉 ≥ G(v, znk ) – b(v, znk ) + b(znk , znk ), ∀v ∈ C. (4.26)

Using the definition of G, φ, (4.21), and letting k → ∞ in (4.26), we obtain

0 ≥ G(v, x̄) – b(v, x̄) + b(x̄, x̄).

Consider vs := sv + (1 – s)x̄, ∀s ∈ (0, 1] and v ∈ K . Then, vs ∈ K and hence

G(vs, x̄) – b(vs, x̄) + b(x̄, x̄) ≤ 0.
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Now,

0 = G(vs, vs)

≤ sG(vs, v) + (1 – s)G(vs, x̄)

≤ sG(vs, v) + (1 – s)
[
b(vs, x̄) – b(x̄, x̄)

]

≤ sG(vs, v) + (1 – s)s
[
b(v, x̄) – b(x̄, x̄)

]
.

Thus we get

G(x̄, v) + b(v, x̄) – b(x̄, x̄) ≥ 0, ∀v ∈ K ,

which implies x̄ ∈ Sol(GEP(1.1)). Therefore, x̄ ∈ �.
Step VI. xn → x̄ = projg�x0.
Let ũ = projg�x0. As {xn} is weakly convergent, xn+1 = projg�x0 and projg�x0 ∈ � ⊂ Cn ∩Qn.

By (4.4) we see that

Dg(xn+1, x0) ≤ Dg
(
projg�x0, x0

)
.

Using Lemma 2.8, {xn} is strongly convergent to ũ = projg�x0. Hence, by the uniqueness of
the limit, {xn} converges strongly to x̄ = projg�x0. �

5 Consequences
If g(x) = 1

2‖x‖2, ∀x ∈ Y , a Bregman relatively nonexpansive becomes a relatively nonex-
pansive mapping.

Corollary 5.1 Let G, b : K × K → R be bifunctions satisfying Assumptions 2.1 and 2.2,
respectively. Let T be a relatively nonexpansive mapping on K . Let � = Sol(GEP(1.1)) ∩
F(T) �= ∅. Let {xn}, {zn} ⊆ K be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x–1 ∈ K ,

un = xn + θn(xn – xn–1),

vn = J–1(αnJ(un) + (1 – αn)J(Tun)),

wn = J–1(βnJ(Tun) + (1 – βn)J(vn)),

zn = resG,bwn,

Cn = {z ∈ K : �(z, zn) ≤ �(z, un)},
Qn = {z ∈ K : 〈J(x0) – J(xn), z – xn〉 ≤ 0},
xn+1 =

∏
Cn∩Qn x0, for all n ≥ 0,

where � is defined in Remark 2.2, {θn} ⊆ (0, 1), {αn}, {βn} ⊆ [0, 1] with limn→∞ αn = 0. Then,
{xn} converges strongly to

∏
�x0.

Also, if GEP(1.1) = K then Theorem 4.1 can be rewritten as
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Corollary 5.2 Let T be a relatively nonexpansive mapping on K with F(T) �= ∅. Let
{xn}, {zn} ⊆ K be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x–1 ∈ K ,

un = xn + θn(xn – xn–1),

vn = J–1(αnJ(un) + (1 – αn)J(Tun)),

zn = J–1(βnJ(Tun) + (1 – βn)J(vn)),

Cn = {z ∈ C : �(z, zn+1) ≤ �(z, un)},
Qn = {z ∈ C : 〈J(x0) – J(xn), z – xn〉 ≤ 0},
xn+1 =

∏
Cn∩Qn x0, for all n ≥ 0,

where � is defined in Remark 2.2, {θn} ⊆ (0, 1), {αn}, {βn} ⊆ [0, 1] with limn→∞ αn = 0. Then,
{xn} converges strongly to

∏
F(T)x0.

Moreover, if GEP(1.1) = K then, using Example 2.1 for A : E → 2E∗ , maximal monotone
operator, we have

Corollary 5.3 Let K ⊆ Y with K ⊆ int(domg), where g : Y → (–∞, +∞] is a coercive Leg-
endre function which is bounded, uniformly Frechet differentiable, and totally convex on
bounded subsets of Y . Let A : E → 2E∗ be a maximal monotone operator with A–1(0) �= ∅.
Let {xn}, {zn} ⊆ K be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x–1 ∈ K ,

un = xn + αn(xn – xn–1),

vn = ∇g∗(αn∇g(un) + (1 – αn)∇g(resg
Aun)),

wn = ∇g∗(βn∇g(resg
Aun) + (1 – βn)∇g(vn)),

zn = resg
G,bwn,

Cn = {z ∈ C : Dg(z, zn) ≤ Dg(z, un)},
Qn = {z ∈ C : 〈∇g(x0) – ∇g(xn), z – xn〉 ≤ 0},
xn+1 = projgCn∩Qn x0, for all n ≥ 0,

where {θn} ⊆ (0, 1), {αn}, {βn} ⊆ [0, 1] with limn→∞ αn = 0. Then, {xn} converges strongly to
projA–1(0)x0.

6 Numerical example
Example 6.1 Let Y = R, K = [r1, r2], where r1, r2 ∈ R are arbitrary but fixed, and g : R →R

with g(u) = 2
3 u2. Obviously, g : R → R is a coercive Legendre function which is bounded,

uniformly Frechet differentiable, and totally convex on bounded subsets of R, and ∇g(u) =
4
3 u. As g∗(u∗) = sup{〈u∗, u〉 – g(u) : u ∈ R}, we get g∗(w) = 3

8 w2 and ∇g∗(w) = 3
4 w. Let G :

K × K → R with G(u, v) = (u – 1)(v – u),∀u, v ∈ K and let b : K × K → R be such that
b(u, v) = uv, ∀u, v ∈ K . Obviously, G and b satisfy Assumptions 2.1 and 2.2, respectively,
and Sol(GEP(1.1)) = { 1

2 } �= ∅. Let T : K → K be such that Tx = x+1
3 . Clearly, T is a Bregman

relatively nonexpansive mapping and F(T) = { 1
2 }. Thus, � = { 1

2 } �= ∅. Suppose {αn} = { 1
n3 },
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Figure 1 Convergence of sequences

Table 1 Values of xn and zn

No. of iterations xn zn xn zn
x0 = 1, x1 = 2 x0 = –1, x1 = –2

1 1.695000 1.200000 –1.374971 –0.533333
2 1.436308 0.900583 –0.906199 0.046971
3 1.229982 0.777508 –0.554620 0.137395
4 1.068285 0.707982 –0.290936 0.222908
5 0.942164 0.659502 –0.093173 0.290718
6 0.843949 0.623263 0.055150 0.342544
7 0.767517 0.595549 0.166392 0.381722
8 0.708055 0.574170 0.249823 0.411218
9 0.661802 0.557615 0.312396 0.433385
10 0.625829 0.544772 0.359326 0.450031
11 0.597852 0.534800 0.394524 0.462523
12 0.576094 0.527053 0.420922 0.471898
13 0.559174 0.521032 0.440721 0.478930
14 0.546016 0.516352 0.455570 0.484206
15 0.535783 0.512714 0.466707 0.488164
20 0.510175 0.503614 0.492188 0.497220
25 0.502893 0.501027 0.498235 0.499370
29 0.501058 0.500376 0.499522 0.499827
30 0.500823 0.500292 0.499670 0.499880

{βn} = { 1
n2 } and θn = 0.6. After simplification, the hybrid iterative scheme (4.1) becomes:

given x0, x1,

un = xn + θn(xn – xn–1),

vn = αnun + (1 – αn)
(

un + 1
3

)

,

wn = βn

(
un + 1

3

)

+ (1 – βn)vn; zn =
4wn + 3

10
,
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Cn = [en,∞), where en :=
zn + un

2
; Qn = [xn,∞);

xn+1 = projgCn∩Qn x0, ∀n ≥ 1.

Then, there are unique sequences {xn} and {zn} obtained by (4.1) converging to x̄ = { 1
2 } ∈ �.

7 Conclusion
The aim of this paper is to introduce and study an inertial hybrid iterative method to find
the common solution of GEP and FPP for a Bregman relatively nonexpansive mapping
in a Banach space. From a theoretical and application point of view, an inertial method
via Bregman relatively nonexpansive mapping has great importance for data analysis and
some imaging problems. It is worth mentioning that the convergence for inertial iterative
methods in the setting of Banach spaces is still unexplored.

Acknowledgements
This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No.
(FP-082-43). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Funding
The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia has funded this project
under grant No. (FP-082-43).

Abbreviations
GEP, Generalized equilibrium problem; EP, Equilibrium problem; VIP, Variational inequality problem; FPP, Fixed point
problem.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Author details
1King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. 2Department of Mathematics, Deanship of Educational
Services, Qassim University, 51452 Buraidah, Saudi Arabia. 3Department of Mathematics, Jamia Millia Islamia, 110025 New
Delhi, India.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 October 2021 Accepted: 28 December 2021

References
1. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 10, 123–145

(1994)
2. Daniele, P., Giannessi, F., Mougeri, A.E.: Equilibrium Problems and Variational Models. Nonconvex Optimization and Its

Application, vol. 68. Kluwer Academic Publications, Norwell (2003)
3. Moudafi, A.: Second order differential proximal methods for equilibrium problems. J. Inequal. Pure Appl. Math. 4(1),

Article ID 18 (2003)
4. Hartman, P., Stampacchia, G.: On some non-linear elliptic differential-functional equation. Acta Math. 115, 271–310

(1966)
5. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Matecon 12, 747–756

(1976)
6. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and

Lipschitz continuous monotone mapping. SIAM J. Optim. 16(40), 1230–1241 (2006)
7. Ceng, L.C., Guu, S.M., Yao, J.C.: Finding common solution of variational inequality, a general system of variational

inequalities and fixed point problem via a hybrid extragradient method. Fixed Point Theory Appl. 2011 Article ID
626159, (2011)



Alansari et al. Journal of Inequalities and Applications         (2022) 2022:11 Page 20 of 21

8. Ceng, L.C., Hadjisavvas, N., Wong, N.C.: Strong convergence theorem by a hybrid extragradient-like approximation
method for variational inequalities and fixed point problems. J. Glob. Optim. 46, 635–646 (2010)

9. Ceng, L.C., Wang, C.Y., Yao, J.C.: Strong convergence theorems by a relaxed extragradient method for a general
system of variational inequalities. Math. Methods Oper. Res. 67, 375–390 (2008)

10. Rouhani, B.D., Kazmi, K.R., Rizvi, S.H.: A hybrid-extragradient-convex approximation method for a system of unrelated
mixed equilibrium problems. Trans. Math. Program. Appl. 1(8), 82–95 (2013)

11. Farid, M.: The subgradient extragradient method for solving mixed equilibrium problems and fixed point problems in
Hilbert spaces. J. Appl. Numer. Optim. 1, 335–345 (2019)

12. Yao, Y., Li, H., Postolache, M.: Iterative algorithms for split equilibrium problems of monotone operators and fixed
point problems of pseudo-contractions, Optimization (2020) https://doi.org/10.1080/02331934.2020.1857757

13. Zhang, C., Zhu, Z., Yao, Y., Liu, Q.: Homotopy method for solving mathematical programs with bounded
box-constrained variational inequalities. Optimization 68 (2019)

14. Zhao, X., Kobis, M.A., Yao, Y., Yao, J.C.: A projected subgradient method for nondifferentiable quasiconvex
multiobjective optimization problems. J. Optim. Theory Appl. 190 (2021)

15. Zhu, L.J., Yao, Y., Postolache, M.: Projection methods with line search technique for pseudomonotone equilibrium
problems and fixed point problems. UPB Sci. Bull., Ser. A 83(1), 3–14 (2021)

16. Matsushita, S., Takahashi, W.: A strong convergence theorem for relatively nonexpansive mappings in a Banach space.
J. Approx. Theory 134, 257–266 (2005)

17. Dung, N.V., Hieu, N.T.: A new hybrid projection algorithm for equilibrium problems and asymptotically
quasi-φ-nonexpansive mappings in Banach spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 2017–2035
(2019)

18. Kazmi, K.R., Ali, R.: Common solution to an equilibrium problem and a fixed point problem for an asymptotically
quasi-φ-nonexpansive mapping in intermediate sense. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 111, 877–889
(2017)

19. Kazmi, K.R., Farid, M.: Some iterative schemes for generalized vector equilibrium problems and relatively
nonexpansive mappings in Banach spaces. Math. Sci. 7, 19 (2013)

20. Takahashi, W., Zembayashi, K.: Strong and weak convergence theorem for equilibrium problems and relatively
nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45–57 (2009)

21. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution
of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

22. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre function
in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

23. Butnairu, D., Iusem, A.N.: Totally convex functions for fixed points computation and and infinite dimensional
optimization. In: Applied Optimization, p. 40. Springer, Dordrecht (2000)

24. Butnairu, D., Resmerita, E.: Bregman distances, totally convex functions, and a method for solving operator equations
in Banach spaces. Abstr. Appl. Anal. 2006 (2006) 39 pages

25. Huang, Y.Y., Jeng, J.C., Kuo, T.Y., Hong, C.C.: Fixed point and weak convergence theorems for point-dependent
λ-hybrid mappings in Banach spaces. Fixed Point Theory Appl. 2011, 105 (2011)

26. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer.
Funct. Anal. Optim. 31, 22–44 (2010)

27. Agarwal, R.P., Chen, J.W., Cho, Y.J.: Strong convergence theorems for equilibrium problems and weak Bregman
relatively nonexpansive mappings in Banach spaces. J. Inequal. Appl. 2013, 119 (2013)

28. Chen, J.W., Wan, Z.P., Yuan, L.Y., Zheng, Y.: Approximation of fixed points of weak Bregman relatively nonexpansive
mappings in Banach spaces. Int. J. Math. Math. Sci. 2011 (2011) 23 pages

29. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach
spaces. SIAM J. Optim. 21, 1319–1344 (2011)

30. Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive
Banach spaces. Nonlinear Anal. 73, 122–135 (2010)

31. Suantai, S., Cho, Y.J., Cholamjiak, P.: Halpern’s iteration for Bregman strongly nonexpansive mappings in reflexive
Banach space. Comput. Math. Appl. 64, 489–499 (2012)

32. Maingé, P.E.: Convergence theorem for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)
33. Alansari, M., Ali, R., Farid, M.: Strong convergence of an inertial iterative algorithm for variational inequality problem,

generalized equilibrium problem, and fixed point problem in a Banach space. J. Inequal. Appl. 2020, 42 (2020)
https://doi.org/10.1186/s13660-020-02313-z

34. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math.
Comput. 256, 472–487 (2015)

35. Dong, Q.L., Kazmi, K.R., Ali, R., Li, X.H.: Inertial Krasnoselskii–Mann type hybrid algorithms for solving hierarchical fixed
point problems. J. Fixed Point Theory Appl. 21, 57 (2019)

36. Dong, Q.L., Peng, Y., Yao, Y.: Alternated inertial projection methods for the split equality problem. J. Nonlinear Convex
Anal. 22, 53–67 (2021)

37. Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, T.M.: Modified inertial Mann algorithm and inertial CQ-algorithm for
nonexpansive mappings. Optim. Lett. 12(1), 87–102 (2018)

38. Farid, M., Cholamjiak, W., Ali, R., Kazmi, K.R.: A new shrinking projection algorithm for a generalized mixed
variational-like inequality problem and asymptotically quasi-φ-nonexpansive mapping in a Banach space. Rev. R.
Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115, 114 (2021)

39. Khan, S.A., Suantai, S., Cholamjiak, W.: Shrinking projection methods involving inertial forward-backward splitting
methods for inclusion problems. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(2), 645–656 (2019)

40. Liu, L., Cho, S.Y., Yao, J.C.: Convergence analysis of an inertial Tseng’s extragradient algorithm for solving
pseudomonotone variational inequalities and applications. J. Nonlinear Var. Anal. 5, 627–644 (2021)

41. Ogbuisi, F.U., Iyiola, O.S., Ngnotchouye, J.M.T., Shumba, T.M.M.: On inertial type self-adaptive iterative algorithms for
solving pseudomonotone equilibrium problems and fixed point problems. J. Nonlinear Funct. Anal. 2021, Article ID 4
(2021)

https://doi.org/10.1080/02331934.2020.1857757
https://doi.org/10.1186/s13660-020-02313-z


Alansari et al. Journal of Inequalities and Applications         (2022) 2022:11 Page 21 of 21

42. Reich, S., Sabach, S.: A projection method for solving nonlinear problems in reflexive Banach spaces. J. Fixed Point
Theory Appl. 9(1), 101–116 (2011)

43. Alber, Y.I.: Metric and generalized projection operators in Banach spaces. In: Properties and Applications. Lect. Notes
Pure Appl. Math. (1996)

44. Reich, S., Sabach, S.: A strong convergence theorem for a proximal-type algorithm in reflexive Banach space. J.
Nonlinear Convex Anal. 10, 471–485 (2009)


	An inertial iterative algorithm for generalized equilibrium problems and Bregman relatively nonexpansive mappings in Banach spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Resolvent operator
	Main result
	Consequences
	Numerical example
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


