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Abstract 

Human oral bioavailability (HOB) is a key factor in determining the fate of new drugs in clinical trials. HOB is conven-
tionally measured using expensive and time-consuming experimental tests. The use of computational models to 
evaluate HOB before the synthesis of new drugs will be beneficial to the drug development process. In this study, 
a total of 1588 drug molecules with HOB data were collected from the literature for the development of a classify-
ing model that uses the consensus predictions of five random forest models. The consensus model shows excellent 
prediction accuracies on two independent test sets with two cutoffs of 20% and 50% for classification of molecules. 
The analysis of the importance of the input variables allowed the identification of the main molecular descriptors that 
affect the HOB class value. The model is available as a web server at www.​icdrug.​com/​ICDrug/​ADMET for quick assess-
ment of oral bioavailability for small molecules. The results from this study provide an accurate and easy-to-use tool 
for screening of drug candidates based on HOB, which may be used to reduce the risk of failure in late stage of drug 
development.
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Introduction
Poor pharmacokinetic properties, including absorp-
tion, distribution, metabolism, excretion, and toxicity 
(ADMET), are the key reasons of late-stage failures in 
drug development [1]. Therefore, ADMET assessments 
of candidate compounds during the early stages of drug 
discovery have become critical for improving the success 
rate of drug discovery and reducing the risk of late-stage 
attrition [2]. However, experimental testing of ADMET 
properties is time-consuming and costly. Thus, the accu-
rate prediction of these properties is becoming increas-
ingly important in drug discovery.

Among the ADMET properties, one of the most 
important pharmacokinetic characteristics of newly 
developed drugs is high oral bioavailability. Because 
oral administration is convenient and does not dam-
age the skin or mucous membranes, 80% of the world’s 
drugs are administered orally [3]. Human oral bioavail-
ability (HOB) is an important pharmacokinetic param-
eter that measures the amount of a drug that actually 
enters circulation within the body after ingestion. If 
intravenous administration is used, the human body 
can use the blood to deliver the drug to the site where 
it can exert pharmacological effects through the sys-
temic circulation. Higher oral availability of the drug 
can reduce the amount of administration required to 
achieve the expected pharmacological effect because it 
can reduce the side effects and toxicity risks brought by 
the drug. On the other hand, poor oral bioavailability 
can lead to inefficiency of drugs and high inter-indi-
vidual variability in the use of drugs, triggering some 
unpredictable drug reactions in the human body. In the 
actual drug development process, approximately 50% of 
candidate drugs fail due to low oral availability [4, 5]. 
Therefore, the level of oral availability is one of the key 

factors determining the success or failure of clinical tri-
als of new drugs.

Experimental measurements of drug HOB are not only 
expensive, but also particularly time-consuming. There-
fore, the development of a predictive model that can eval-
uate the HOB of a candidate compound before synthesis 
is of great help to drug discovery. Because the oral avail-
ability of a drug is affected by various biological, physical 
and chemical factors, such as the solubility of chemicals 
in the gastrointestinal tract, the permeability of the intes-
tinal membrane, and the first pass metabolism of the 
intestine and liver, it is a very difficult and challenging 
task to develop accurate models to predict HOB. None-
theless, a number of prediction models based on quanti-
tative structure property relationships (QSPR) have been 
published [6, 7]. For example, Falcón-Cano et  al. used 
1448 molecules and obtained a consensus model with an 
accuracy of 78% [8]. Yang et  al. used the random forest 
algorithm and 995 molecules to develop the admetSAR 
method with an accuracy of 69.7% [9]. On the basis of 
995 data points, Kim et al. obtained 76% accuracy using 
the logistic classifier method [10].

In this study, we collected an HOB dataset composed 
of 1588 molecules and proposed a new model for HOB 
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Table 1  Information of the training and test datasets

Cutoff Data sets Molecules Positive Negative

F = 50% Training set 1157 536 621

Test set 1 290 169 121

Test set 2 141 90 51

F = 20% Training set 1142 859 283

Test set 1 287 214 73

Test set 2 133 128 5
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prediction based on machine learning. Using random 
forest (RF) [11–13] and two cutoffs of 20% and 50% for 
classifying molecules, we developed consensus mod-
els with a state-of-the-art accuracy on two independent 
test sets. Moreover, the importance of input molecular 
features to the prediction results was analyzed using the 
SHapley Additive exPlanation (SHAP) algorithm [14], 
revealing key molecular properties that affect HOB.

Materials and methods
Classification of positive and negative data
The performance of a classifier strongly depends on how 
the positive and negative samples are defined. However, 
there is still no consensus criterion to define positive and 
negative samples in HOB prediction. In previous studies, 
four cutoff values have been used: 20% (if HOB ≥ 20%, 
then the molecule belongs to the positive class; other-
wise, it is a negative example) [15], 30% [16], 50% [17], 
and 80% [5] (Additional file 1: Table S1). We have there-
for used two cutoffs 50% and 20% for labeling molecules 
in this study, which are used in more recent methods.

Dataset preparation
The HOB training and test datasets from Falcón-Cano 
et  al. [8] were used in this study, which includes 1157 
training and 290 test molecules. The 290 test molecules 
(test set 1) were selected by randomly selecting 20% of all 
molecules. Three molecules in the test set 1 had wrong 
values and were manually corrected according to the 
relevant literatures [18–21]. An additional test set of 27 
molecules was collected from a number of publications 
[8] and was then combined with the HOB data from 
ChEMBL to form an additional test set of 141 molecules 

(Test set 2, Table 1). To ensure that molecules in test set 
2 do not overlap with the molecules in training set and 
test set 1, 2D structures were first generated and used 
to remove duplicates followed by deduplication using 
molecular fingerprints. Neither test set 1 nor test set 2 
was used during the training.

The labeling of molecules using the 50% cutoff was 
obtained directly from Falcón-Cano et  al. For the 20% 
cutoff, some molecules cannot be classified due to inac-
curate experimental values. These molecules were dis-
carded, leaving training set with 1142 molecules, test set 
1 with 287 molecules and test set 2 with 133 molecules 
(Table 1).

All molecules in the training and test sets were con-
verted to 3D structures using the RDKit package. How-
ever, the calculated 3D fingerprints and descriptors were 
not used during model training due to null value or small 
variance for many of the molecules.

To evaluate the similarity between the training set and 
the test sets, we calculated the max Tanimoto coefficient 
similarity of each molecule in the test sets with all mole-
cules in the training set. The similarity ranges from 0.1 to 
1 in test set 1 and 0.2 to 1 in test set 2 (Fig. 1). The aver-
age similarity between the test set 1 and the training set 
is 0.655, and the average similarity between the test set 2 
and the training set is 0.612.

Calculation of descriptors
We used Mordred [22] software to calculate 1614 molec-
ular descriptors and fingerprints (Additional file  1: 
Table S2). Descriptors that had zero values or zero vari-
ance for all compounds were removed, reducing the total 
number of descriptors to 1143. All these 1143 features 
were used for training RF models.

Evaluation of models
The performance of the individual and consensus models 
was evaluated by analyzing the sensitivity (SE), specificity 
(SP), accuracy of prediction (ACC), Matthew’s correla-
tion coefficient (MCC) [23] and F1_score.

ACC =
TP + TN

TP + FP + TN + FN

Fig. 1  Maximum similarity of each molecule in the test sets to the 
molecules in the training set. The similarity was calculated using the 
Tanimoto coefficient similarity on the topological fingerprints of the 
molecules

Table 2  Optimized parameters of the RF models from fivefold 
cross-validation on the training set when the cutoff is 50%

Parameters Parameters meaning Optimal value

n_estimators The number of trees in the forest 31

min_samples_leaf The minimum number of samples 
required to be at a leaf node

6
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Table 3  Performance of the RF models on the two test sets when the cutoff is 50%

Bold numbers refer to the maximum value (optimum value) obtained from the corresponding evaluation index

Data set Model SE SP ACC​ AUC​ MCC F1-score

Test set 1 Model 1 0.779 0.732 0.752 0.819 0.505 0.774

Model 2 0.746 0.786 0.769 0.826 0.529 0.798

Model 3 0.713 0.750 0.734 0.790 0.460 0.766

Model 4 0.745 0.732 0.738 0.801 0.473 0.764

Model 5 0.713 0.768 0.745 0.813 0.479 0.777

Consensus model 0.787 0.797 0.793 0.830 0.580 0.817
Test set 2 Model 1 0.673 0.899 0.816 0.839 0.596 0.860

Model 2 0.673 0.876 0.801 0.880 0.565 0.848

Model 3 0.577 0.854 0.752 0.840 0.452 0.813

Model 4 0.692 0.865 0.801 0.857 0.568 0.846

Model 5 0.673 0.831 0.773 0.862 0.509 0.822

Consensus model 0.692 0.899 0.823 0.872 0.612 0.865

Fig. 2  The AUCs of RF models on the two test sets when the cutoff is 50%

Table 4  Comparison with other prediction models on test set 1 when the cutoff is 50%

CART​ classification and regression trees; MLP multilayer perceptron; NB naive Bayes; GBT gradient boosted trees; SVM support vector machines
a Taken from respective references
b logK(%F) = log

(

%F

100−%F

)

Model Data set size Method ACC (test) AUC (test) Cut-off value

Current study 1588 RF 0.793 0.830 F = 50%

Falcón-Cano et al. [8] 1448 CART, MLP, NB, GBT, SVM 0.783a 0.800a F = 50%

admetSAR [9] 995 RF 0.697a 0.752a logK(%F)b = 0
(F = 50%)

Kim et al. [10] 995 RF, SVM-consensus CTG​ 0.76a NA F = 50%
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SE =
TP

TP + FN

SP =
TN

TN + FP

MCC =
TP × TN − FN × FP

√
(TP + FN )(TP + FN )(TN + FN )(TN + FP)

F1score = 2×
precision× recall

precision+ recall

where TP denotes true positive, FP is false positive, FN 
is false negative, and TN is true negative. In addition, the 
receiver operating characteristic (ROC) curve and the 
area under the curve (AUC) were also calculated.

We utilized the SHapley Additive exPlanation (SHAP) 
algorithm to explain the prediction model by providing 
consistent and locally accurate attribution values (SHAP 
values) for each feature within each prediction model 
[24]. The SHAP values evaluate the importance of the 
output resulting from the inclusion of a certain feature A 
for all combinations of features other than A.

Results
Performance of the models and comparison with previous 
methods
For the 50% cutoff, we first assembled a training set of 
1157 molecules and two independent test sets with 290 
and 146 molecules from the literature and public data-
bases (see Materials and methods). The input features 
of the models include 1143 2D descriptors calculated 
with the Mordred package (see Materials and methods 

Table 5  Comparison with admetSAR on test sets 1 and 2 when 
the cutoff is 50%

Bold numbers refer to the maximum value (optimum value) obtained from the 
corresponding evaluation index
a Test set 1 and 2 contain 168 and 66 molecules after removing the molecules 
used in the admetSAR training set

Data set Model SE SP ACC​ AUC​

Test set 1a Current Study 0.824 0.819 0.821 0.862
admetSAR 0.784 0.777 0.780 0.831

Test set 2a Current Study 0.692 0.825 0.773 0.849
admetSAR 0.769 0.725 0.742 0.787

Table 6  Optimized parameters of the RF models from fivefold 
cross-validation on the training set when the cutoff is 20%

Parameters Parameters meaning Optimal value

n_estimators The number of trees in the forest 10

min_samples_leaf The minimum number of samples 
required to be at a leaf node

6

Table 7  Performance of the RF models on the two test sets when the cutoff is 20%

Bold numbers refer to the maximum value (optimum value) obtained from the corresponding evaluation index

Data set Model SE SP ACC​ AUC​ MCC F1-score

Test set 1
(287)

Model 1 0.370 0.869 0.742 0.736 0.264 0.824

Model 2 0.479 0.864 0.767 0.767 0.360 0.847

Model 3 0.452 0.893 0.780 0.771 0.379 0.858

Model 4 0.452 0.856 0.746 0.759 0.308 0.832

Model 5 0.493 0.855 0.763 0.789 0.359 0.833

Consensus model 0.493 0.925 0.815 0.801 0.473 0.882
Test set 2
(133)

Model 1 0.8 0.891 0.887 0.973 0.384 0.938

Model 2 1 0.859 0.865 0.978 0.432 0.924

Model 3 0.8 0.883 0.880 0.939 0.371 0.933

Model 4 1 0.914 0.917 0.955 0.534 0.955
Model 5 1 0.898 0.902 0.973 0.499 0.946

Consensus model 1 0.906 0.910 0.981 0.516 0.951

Table 8  Comparison with ADMETlab on test sets 1 and 2 when 
the cutoff is 20%

Bold numbers refer to the maximum value (optimum value) obtained from the 
corresponding evaluation index

Data set Model SE SP ACC​ AUC​

Test set 1 Current study 0.493 0.925 0.815 0.801

ADMETlab 0.904 0.855 0.868 0.947
Test set 2 Current study 1 0.906 0.910 0.981

ADMETlab 0.8 0.844 0.842 0.902
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for details). Five individual RF models were first trained 
on the training set with fivefold cross-validation, using 
grid search and accuracy score (ACC) for hyperparam-
eter optimization to obtain the best n_estimators and 
min_samples_leaf values while leaving the remaining 
hyperparameters set to default values (Table 2). Restrict-
ing the number of tunable hyper-parameters may reduce 
the risk of overfitting. The accuracy of the our model is 
0.86–0.90 on the training set (Additional file  1: Tables 
S3, S4), and 0.74–0.77 on test set 1 (Table 3). The moder-
ate decrease of accuracy on the test set suggests that our 
model has certain extend of overfitting but not severe. 
We then combined the five RF models to obtain a vot-
ing model. The final bioavailability class is the result of 
voting from each classification model with equal weight. 
Individual models can usually identify different aspects 
of the relationship between independent variables and 
dependent variables, and the relationships between the 
variables identified by those models may be different. In 

certain cases, the usage of a consensus model can greatly 
reduce the prediction error [25–27]. The accuracy of 
the five individual models ranges from 0.742 to 0.808 on 
the two test sets (Table  3). The consensus model shows 
improvement in accuracy on test set 1 and test set 2. The 
AUC values of the consensus model were 0.830 and 0.878 
on the two test sets (Fig. 2). In addition, we merged the 
training set and test set 1, and used the same protocol to 
train five random forest models and obtained a consen-
sus model from fivefold cross-validation. This whole pro-
cess was repeated 50 times, and the average accuracy on 
test 2 was 0.826 with a standard deviation of 0.014, which 
was close to the accuracy of 0.823 when test set 1 is not 
included for training.  

To further estimate the accuracy of the models, the 
accuracy of our model on test set 1 was compared with 
those of previously published HOB models (Table 4). It 
should be noted that we used the same training and test 
sets as Falcón-Cano et  al., but the accuracies of other 
models are directly taken from the respective literature 
publications, which may use different data sets.

Among these reported models, only admetSAR and 
ADMETlab provide an online prediction server that 
enables a direct comparison with our method based on 
the same test data. However, ADMETlab used different 
cutoffs of 30% and 20%. Therefore, we compared our 
method with admetSAR, which also uses F = 50% as the 
cut-off value. For a fair comparison, the molecules in 
the admetSAR training set were removed from the two 
test sets. Our model is more accurate than admetSAR 
in terms of SP, ACC and AUC (Table 5).

For the F = 20% cutoff, we used the same method to 
build a consensus model (Table 6). The accuracy of the 
five individual models ranges from 0.739 to 0.932 on 
the two test sets (Table 7). The consensus model shows 

Fig. 3  The chemical space of the training set (blue), the test set 1 
(orange) and test set 2(green) using PCA factorization

Fig. 4  A Importance matrix plot of the consensus model when the cutoff is 50%. B A statistical graph of the number of occurrences of the top 20 
features that affect all models when the cutoff is 50%
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improvement in accuracy on test set 1 and test set 2. 
The AUC values of the consensus model were 0.804 and 
0.978 on the two test sets.

The performance of our model is compared with that of 
ADMETlab [16] on the two test sets (Table 8). Our model 
showed lower ACC and AUC on test set 1 but better per-
formance on test set 2. Because test set 1 comes from an 
earlier data set that was published before ADMETlab [8, 
10, 28–30], and has overlapping molecules with the train-
ing sets of several previous methods, it is likely that some 
molecules in test set 1 may be included in the training 
of ADMETlab (We were not able to obtain the training 
set of ADMETlab for removing of redundancy). On the 
other hand, the HOB data in test set 2 does not over-
lap with any published training sets and may server as a 
more objective testing of the two models.

Diversity distribution of HOB data
In this study, 1157, 290 and 141 molecules that have 
human oral availability data were collected for model 
construction. To examine the diversity of these molecules 
and provide a possible way to access the applicability of 
our model, we carried out principal component analy-
sis (PCA) of these molecules. The 1143 fingerprints and 
descriptors mentioned above for model training were 
used to generate PCA for all compounds. We selected 
the two most important components to create a chemi-
cal space for characterizing training set, test set 1, and 
test set 2 (Fig.  3). The results suggest that the chemical 

space of the two test sets is roughly within the space of 
the training set, therefore it is sensible to use the pre-
diction model trained by the training set to predict the 
HOB values for the test sets. In addition, after removing 
an outlier in test set 1 (circled points in Fig.  3) that are 
outside the PCA space of the training set, the accuracy 

Table 9  Description of the important features in the consensus model when the cutoff is 50%

Descriptor category Feature name |shap value| Description

Estate SsOH 0.0239 Sum of sOH

TopoPSA TopoPSA(NO) 0.0178 Topological polar surface area (use only nitrogen and oxygen)

Autocorrelation ATSC0c 0.0172 Centered Moreau–Broto autocorrelation of lag 0 weighted by Gasteiger charge

Autocorrelation GATS1Z 0.0169 Moreau–Broto autocorrelation of lag 1 weighted by atomic number

Autocorrelation ATS5pe 0.0167 Moreau–Broto autocorrelation of lag 5 weighted by Pauling EN

TopoPSA TopoPSA 0.0161 Topological polar surface area

Autocorrelation ATS5se 0.0160 Moreau–Broto autocorrelation of lag 5 weighted by Sanderson EN

Autocorrelation ATS4p 0.0150 Moreau–Broto autocorrelation of lag 4 weighted by polarizability

Autocorrelation ATS4i 0.0144 Moreau–Broto autocorrelation of lag 4 weighted by ionization potential

Autocorrelation GATS1are 0.0131 Geary coefficient of lag 1 weighted by Allred–Rocow EN

Autocorrelation GATS1pe 0.0126 Geary coefficient of lag 1 weighted by Pauling EN

MoeType VSA_EState3 0.0122 VSA EState Descriptor 3 (5.00 ≤ x < 5.41)

Autocorrelation ATS5are 0.0122 Moreau–Broto autocorrelation of lag 5 weighted by Allred–Rocow EN

Autocorrelation GATS1m 0.0122 Geary coefficient of lag 1 weighted by mass

Autocorrelation ATSC1are 0.0115 Centered Moreau–Broto autocorrelation of lag 1 weighted by Allred–Rocow EN

Autocorrelation ATSC1c 0.0112 Centered Moreau–Broto autocorrelation of lag 1 weighted by Gasteiger charge

InformationContent BIC0 0.0111 0-ordered bonding information content

Autocorrelation GATS2Z 0.0110 Geary coefficient of lag 2 weighted by atomic number

AtomCount nAtom 0.0109 Molecular ID on O atoms

Fig. 5  SHAP dependence plot of the top 20 features of the 
consensus model when the cutoff is 50%
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remains unchanged on test set 2 with 50% and 20% cut-
off. Moreover, the PCA analysis can be used to determine 
the applicability of our model to new molecules. When 
the projection of a new molecule is within the range of 
the training molecules, it is considered as “inside” the 
application domain, indicating a more reliable prediction.

Diversity evaluation of base learners
Diversity is very important in combining base learners. 
The Q-value approach is one way to measure the diver-
sity of two classifiers [31]. It ranges between − 1 and 1, 
and is 0 if two classifiers are independent. The larger the 
Q value, the smaller the difference between the predic-
tions of two classifiers. We used Q-value to measure the 
difference between the decision trees in each model. The 
average Q-value for individual trees in the five random 
forest models when the cutoff is 50% was 0.207, 0.233, 
0.27, 0.241, and 0.267. When the cutoff is 20%, the Q-val-
ues were 0.235, 0.269, 0.288, 0.293, and 0.275, which sug-
gest that these trees have high diversity.

Importance of the input features
The analysis of important descriptors and fingerprints 
for prediction provides more information to fully under-
stand these models. To this end, we used the SHapley 
Additive exPlanation (SHAP) algorithm to calculate the 
importance score of the input descriptor and fingerprints 
[14]. SHAP (SHapley Additive exPlanations) is a game 
theory method used to explain the output of a machine 
learning model. It uses the classical Shapley value from 
game theory and its related extension to link the optimal 
credit allocation with local explanation.

We used the same method to analyze the contri-
bution of each descriptor in the RF models when the 
cutoff is 50%, and the top 20 most important variables 
that contributed to the model were obtained through 
importance matrix plots (Additional file  1: Figs. S1–
S5). The importance matrix plot for the consensus 
method was calculated by averaging the value in each 
model (Fig. 4A), which depicts the importance of each 
input feature in the development of the final predic-
tive model. SsOH (number of all atoms) which is an 
atom type e-state descriptor contributes the most to 
predictive power, followed by the topological struc-
ture descriptor ATS5i and polar surface area descriptor 
TopoPSA (NO). In addition, we also counted the num-
ber of appearances of the features in the five individ-
ual models (Fig. 4B). SsOH, ATS4p and TopoPSA(NO) 
appear three times among the 20 most important 
descriptors of the five models. In the two methods of 
quantifying feature importance, the specific informa-
tion of the top 20 features is sorted in Table 9.

The SHAP dependence plot is further used to under-
stand how a single feature affects the output of the pre-
diction models, where the color bar indicates the actual 
values of the features, and the SHAP values are plotted 
on the x-axis. The dependence plot of the consensus 
model when the cutoff is 50% was obtained by averag-
ing the contributions of the individual models (Fig.  5, 
Additional file 1: Figs. S6–10). For each feature, a dot is 
created for each molecule, and positive SHAP values for 
a specific feature represent an increase in the predicted 
HOB value. For example, TopoPSA (NO) (topological 
polar surface area, using only nitrogen and oxygen) is 
an important feature that is overall negatively corre-
lated with HOB (Fig.  5), i.e., a higher TopoPSA(NO) 
value will reduce the predicted HOB value. This is con-
sistent with the finding that reducing the polar surface 
area increases the permeation rate of a molecule [32]. 
Similarly, the TopoPSA descriptor which calculates the 
entire polar surface area is also negatively correlated 
with the HOB value.

In addition, SsOH which is the total number of OH 
bonds also significantly affects the prediction of HOB. 
The blue dots are mainly concentrated in the area where 
the SHAP is greater than 0, therefore a small SsOH 
value will increase the HOB value. Decreasing the num-
ber of OH groups will increase the hydrophobicity and 
membrane absorption of a molecule, therefore leading 
to higher HOB. This is in line with the Lipinski’s ‘Rule-
of-Five’ [33]: if the number of hydrogen bond donors 
exceeds 5, the absorption or permeability may be poor 
[34].

It is believed that the charge state of molecules exerts a 
key influence on the perception of biomolecules (includ-
ing membranes, enzymes and transporters) [35]. Several 
features that have great influence in the consensus model, 
such as RPCG in RF1, ATSC0c in RF2 and RNCG in RF4 
are charge related descriptors.

Using the same method, we also analyzed the model 
obtained with the 20% cutoff, and obtained importance 
matrix plots (Additional file  1: Figs. S11–S15, S21) and 
the dependence plots (Additional file  1: Figs. S16–S20, 
S22) of the individual and the consensus models. The 
important features from the models trained with the two 
cutoffs are overall consistent, e.g., TopoPSA (NO), SsOH 
and Autocorrelation also have a significant impact on the 
F = 20% consensus model as that on the F = 50% model.

Discussion and conclusions
On the basis of a comprehensive data sets collected in 
this study, accurate RF models for prediction of HOB 
were developed. Moreover, we also analyzed the impor-
tance of the features, and found that the number of OH 
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bonds and polar surface area of a molecule are negatively 
correlated with the HOB value, which is consistent with 
molecular characteristics that affect the oral drug bioa-
vailability. The model is available as a web server at www.​
icdrug.​com/​ICDrug/​ADMET, which provides research-
ers with an accurate tool to quickly and automatically 
predict the HOB of new molecules without any machine 
learning or statistical modeling knowledge.
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