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Abstract
In this paper, we consider a distributed optimization problem of minimizing sum of
convex functions over the intersection of fixed-point constraints. We propose a
distributed method for solving the problem. We prove the convergence of the
generated sequence to the solution of the problem under certain assumption. We
further discuss the convergence rate with an appropriate positive stepsize.
A numerical experiment is given to show the effectiveness of the obtained theoretical
result.
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1 Introduction
Let Rk be a Euclidean space with an inner product 〈·, ·〉 and with the associated norm ‖ · ‖.
Let f : Rk →R be a convex objective function. The convex optimization problem

minimize f (x),

subject to x ∈R
k ,

(1)

is to find a point x∗ ∈ R
k such that f (x∗) ≤ f (x) for all x ∈ R

k , and x∗ is called an optimal
solution of problem (1). The basic idea used to find the optimal solution of problem (1)
is generating a sequence in which it was expected that it would converge to the solution
under certain assumption. In the literature, the simplest iterative method for solving prob-
lem (1) is the well-known gradient method [5]. The method essentially has the form: for
given x1 ∈ R

k , calculate,

xn+1 = xn – γn∇f (xn) ∀n ∈N,

where ∇f (xn) is the gradient of f at xn and γn is a positive stepsize. Notice that, if the func-
tion f is nonsmooth, the gradient method cannot be practically applicable. To overcome
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the limitation, Martinet [17] proposed the so-called proximal method, which is defined
by the following form: for given x1 ∈R

k , calculate

xn+1 = argmin
u∈Rk

{
f (u) +

1
2γn

‖u – xn‖2
}

∀n ∈N,

where γn is a positive stepsize.
It is well known that many problems in practical situations concern constraints, in this

case the optimization problem (1) is nothing else than the constrained minimization prob-
lem:

minimize f (x),

subject to x ∈ C,
(2)

where C ⊂R
k is a nonempty closed convex set. To solve this problem, in 1961, Rosen [22]

proposed a gradient projection method. The method essentially has the form: for given
x1 ∈ C, calculate

xn+1 = PC
(
xn – γn∇f (xn)

) ∀n ∈N,

where PC : Rk → C is the metric projection onto C. For some specific separable objective
function and linear constrained set, one may consult [3, 4]. However, in many practical sit-
uations, the structure of C can be complicated, e.g., C =

⋂m
i=1 Ci, where Ci ⊂R

k is a closed
and convex set for all i = 1, 2, . . . , m, which makes PC difficult to evaluate, or perhaps im-
possible to compute explicitly. To overcome this limitation, Yamada [27] proposed the
method which essentially replaces the use of PC with an appropriate nonexpansive opera-
tor T . Actually, by interpreting C as the fixed-point set of T and considering the following
problem:

minimize f (x),

subject to x ∈ Fix T ,
(3)

where Fix T stands for the fixed-point set of the operator T . The method essentially has
the form: for given x1 ∈R

k , calculate

xn+1 = T
(
xn – γn∇f (xn)

) ∀n ∈ N.

Under some assumption of the function f , the convergence of iterates is guaranteed. Many
developments and applications related to Yamada’s methods are presented in the litera-
ture, for instance, [7, 8, 14, 15, 18–20, 24, 26, 28].

Denote I = {1, 2, . . . , m}. Let us focus on a networked system having m users, and each
user i ∈ I in the system is assumed to have its own private convex objective function fi and
nonlinear operator Ti. Moreover, we assume that each user can communicate with other
users. The main objective of this system is to deal with a distributed optimization prob-
lem of minimizing the additive objective function

∑
i∈I fi with the common intersection

constraint
⋂

i∈I FixTi, in which not only the system but also each user i ∈ I can reach an
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optimal solution without using the private information of other users in the system. It is
worth noting that, in this situation, the explicit forms of the function

∑
i∈I fi and the com-

mon constraint
⋂

i∈I FixTi are not known explicitly. This means that Yamada’s method
cannot be applicable for the problem. Many authors have investigated the solving of this
distributed optimization problem and tackled this limitation, for instance, [10, 23, 25].
Some practical applications of the distributed optimization problem are, for instance, in
network resource allocation [9, 11, 13] and in machine learning [12].

In this work, we also deal with this situation by considering the distributed optimization
problem with a common fixed point constraint as follows:

For every i ∈ I , assume that the following assumptions hold:
(A1) Ti : Rk →R

k is a ρi-strongly quasi-nonexpansive operator with Fix Ti �= ∅ and
ρi > 0;

(A2) fi : Rk →R is a convex function;
(A3) X0 ⊂R

k is a nonempty closed convex and bounded set.
We will solve the problem:

minimize F(x) :=
∑
i∈I

fi(x),

subject to x ∈ X := X0 ∩
⋂
i∈I

Fix Ti.
(4)

We denote the solution set of (4) by S and assume that it is a nonempty set. We will
propose a distributed method for solving problem (4) and show that, under some suitable
stepsize, the sequence generated by this method has a subsequence that converges to a
solution of problem (4). By assuming one of the objective functions to be strictly convex,
we can prove the convergence of the generated sequences to the unique solution of the
problem. Further, we also discuss the convergence rate of weighted averages of the gener-
ated sequences. Finally, we present a numerical example to demonstrate the convergence
of the proposed method.

2 Preliminaries
Throughout this paper, we denote by Rk a Euclidean space with the inner product 〈·, ·〉 and
its induced norm ‖ · ‖, and we denote by Id the identity operator on R

k . For an operator
T : Rk →R

k , Fix T := {x ∈R
k : Tx = x} denotes the set of fixed points of T .

An operator T : Rk →R
k with a fixed point is said to be ρ-strongly quasi-nonexpansive,

where ρ ≥ 0, if, for all x ∈R
k and z ∈ Fix T ,

‖Tx – z‖2 ≤ ∥∥x – z‖2 – ρ
∥∥Tx – x‖2.

If ρ = 0, then T is said to be quasi-nonexpansive. Note that if T : Rk → R
k is a quasi-

nonexpansive operator, then Fix T is closed and convex.
The operator T : Rk →R

k is said to satisfy the demi-closedness (DC) principle if T –Id is
demi-closed at 0, that is, for any sequence {xn}n∈N ⊂R

k , if xn → x ∈R
k and ‖(T –Id)xn‖ →

0, then x ∈ Fix T . It is well known that a nonexpansive operator satisfies the DC principle
according to [1, Corollary 4.28].

Let C be a nonempty closed convex set. For every x ∈R
k , there is a unique x∗ ∈ R

k such
that ‖x∗ – y‖ ≤ ‖x – y‖ for every y ∈ C [6, Theorem 1.2.3]. We call such x∗ a projection
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of x onto C, and denote it by PC(x). Note that PC is strongly quasi-nonexpansive with
Fix PC = C, see [6, Theorem 2.2.21].

Let C be a nonempty closed convex set. The normal cone to C at x ∈R
k is defined by

NC(x) =
{

y ∈R
k : 〈y, z – x〉 ≤ 0 for every z ∈ C

}
.

Proposition 2.1 ([6, Lemma 1.2.9]) For every x ∈ R
k , the following statements are equiv-

alent:
(i) y = PC(x);

(ii) y ∈ C and x – y ∈ NC(y).

Let f : Rk → (–∞,∞] be a function. We call the function f a proper function if there is
x ∈ C such that f (x) < ∞, and we call the set of such x the domain of f , and it is denoted
by domf := {x ∈R

k : f (x) < ∞}. Note that if f : Rk → R, then domf = R
k .

Let f : Rk → (–∞,∞] be a proper function. We call f a convex function if, for every
x, y ∈ domf and λ ∈ (0, 1), we have

f
(
(1 – λ)x + λy

) ≤ (1 – λ)f (x) + λf (y).

We call f strictly convex if the above inequality is strict for all x, y ∈ domf with x �= y and
λ ∈ (0, 1). If f is a convex function, then domf is a convex set. We call f a strongly convex
function if there is a constant β > 0 such that, for every x, y ∈ domf and λ ∈ (0, 1), we have

f
(
(1 – λ)x + λy

) ≤ (1 – λ)f (x) + λf (y) –
β

2
λ(1 – λ)‖x – y‖2.

We call the constant β a strongly convex parameter.

Proposition 2.2 ([1, Proposition 16.20]) If f : Rk → R is a real-valued convex function,
then f is Lipschitz continuous relative to every bounded subset of Rk .

Proposition 2.3 ([2, Lemma 5.20]) Let f : Rk → (–∞,∞] be a proper β-strongly convex
function and g : Rk → (–∞,∞] be a proper convex function, then f + g is a β-strongly
convex function.

Let f : Rk → (–∞,∞] be a proper function and x ∈ domf . We call z ∈ R
k a subgradient

of f at x if

f (y) ≥ 〈y – x, z〉 + f (x) for every y ∈R
k .

We denote the set of all subgradients of f at x by ∂f (x).

Proposition 2.4 ([1, Proposition 16.14]) If f : Rk → (–∞,∞] is a proper convex continu-
ous function and x ∈ domf , then ∂f (x) is nonempty.

Proposition 2.5 ([21, Theorem 3(b)]) Let f : Rk → (–∞,∞] be a proper convex function
and g : Rk →R be a real-valued convex function, then for every x ∈R

k , we have

∂(f + g)(x) = ∂f (x) + ∂g(x).
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Let C ⊂R
k be a nonempty closed convex set. The indicator function of C is denoted by

ıC : Rk → (–∞,∞] and defined by

ıC(x) =

⎧⎨
⎩

0 if x ∈ C,

∞ otherwise.

Note that ıC is a proper convex function.
Let f : Rk → R be a proper convex function and C ⊂ R

k be a nonempty closed convex
set, we denote the set of all minimizers of f over C by

argmin
x∈C

f (x) :=
{

z ∈ C : f (z) ≤ f (x) for all x ∈ C
}

.

Proposition 2.6 ([6, Theorem 1.3.1]) Let f : Rk → R be a real-valued function and C ⊂
R

k be a nonempty closed convex set. If f is strictly convex, then the minimizer is uniquely
determined. Furthermore, if f is strongly convex, then argminx∈C f (x) is a nonempty set.

Proposition 2.7 ([2, Proposition 4.7.2]) Let f : Rk → R be a convex function and C ⊂ R
k

be a nonempty closed convex set. The vector x∗ ∈ R
k is a minimizer of f over C if and only

if it holds that 0 ∈ ∂f (x∗) + NC(x∗).

The following proposition is a key tool for proving our main convergence analysis. The
proof can be found in [16, Lemma 3.1].

Proposition 2.8 Let {an}n∈N be a sequence of nonnegative real numbers such that there
exists a subsequence {anj}j∈N of {an}n∈N with anj < anj+1 for all j ∈ N, and define, for all
n ≥ n0,

τ (n) = max{k ∈N : n0 ≤ k ≤ n, ak < ak+1}.

Then {τ (n)}n≥n0 is nondecreasing, limn→∞ τ (n) = ∞, aτ (n) ≤ aτ (n)+1, and an ≤ aτ (n)+1 for all
n ≥ n0.

3 Algorithm and convergence result
In this section, we start with introducing the fixed-point distributed optimization method.
We consider a networked system with m users which can have a different weight and deals
with the problem of minimizing the sum of all the users’ convex objective functions over
the intersection of all the users’ fixed-point set of strongly quasi-nonexpansive mapping
with a closed convex and bounded set as a common constraint on a Euclidean space. This
enables us to consider the case in which the projection onto the constraint set cannot be
calculated efficiently.

Roughly speaking, the method is as follows: for given x1 ∈ X0, as user i ∈ I has its own
private objective function fi and operator Ti, each user i computes the estimate xn,i ∈ X0.
Since the users can communicate with each other, user i can receive all xn,i ∈ X0, and
hence, user i can compute the iterate xn+1 ∈ X0 in the convex hull of all user i’s estimate
xn,i ∈ X0, i ∈ I .

Some further important remarks relating to Algorithm 1 are in order.
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Algorithm 1: Fixed-point distributed optimization method

Initialization: Given the weight {ωi}i∈I ⊂ [0, 1] with
∑

i∈I ωi = 1 and a positive real
stepsize{γn}n∈N. Choose an initial point x1 ∈ X0 arbitrarily.
Iterative step: For a given current iterate xn ∈ X0 (n ∈N), compute the next iterate
xn+1 ∈ X0 as

xn,i = argmin
u∈X0

{
fi(u) +

1
2γn

‖u – Tixn‖2
}

, i ∈ I ,

and

xn+1 =
∑
i∈I

ωixn,i.

Update n := n + 1.

(i) To guarantee the well-definedness of Algorithm 1, we need to ensure that the
minimizer of the subproblem argminu∈X0{fi(u) + 1

2γn
‖u – Tixn‖2} is a singleton set.

Actually, since each objective function fi is a real-valued convex function and the
function 1

2γn
‖ · –Tixn‖2 is strongly convex, Proposition 2.3 ensures that the

objective function fi + 1
2γn

‖ · –Tixn‖2 of the subproblem is a real-valued strongly
convex, and subsequently, the existence of the unique minimizer of the subproblem
over the nonempty closed convex constraint X0 is guaranteed by Proposition 2.6.

(ii) As the estimate xn,i is the unique minimizer of the constrained subproblem, we can
ensure that xn,i ∈ X0 for all n ∈N and i ∈ I . This means that the sequences
{xn,i}n∈N, i ∈ I , are bounded. Furthermore, since the iterate xn belongs to the
convex hull of all estimates xn,i, i ∈ I , the boundedness of the sequence
{xn}n∈N ⊂ X0 is guaranteed.

(iii) Let us compare Algorithm 1 with the existing distributed optimization method.
Actually, the method in [23] is based on the fixed-point approximation method and
the proximal method like the proposed method. The difference is that, in such a
paper, each user i computes

yn,i = argmin
u∈Rk

{
f (u) +

1
2γn

‖u – xn‖2
}

,

and, subsequently, computes

xn,i = αnxn + (1 – αn)Tiyn,i,

where αn is a positive sequence. Moreover, it can be noted that the weight ωi = 1
m

and the constrained set X0 are omitted in such a paper. In order to prove the
convergence result, the assumption that the sequence {yn,i}n∈N is bounded for all
i ∈ I is needed in such a paper, whereas in this paper, the boundedness of the
generated sequences is neglected.
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To get started with the convergence result, we present an important property of the
iterates given in Algorithm 1.

Lemma 3.1 Let the sequence {xn}n∈N ⊂ X0 and the stepsize {γn}n∈N ⊂ (0, +∞) be given in
Algorithm 1. For every y ∈ X and n ∈N, we have

‖xn+1 – y‖2 ≤ ‖xn – y‖2 –
∑
i∈I

ωi
(
ρi‖Tixn – xn‖2 + ‖Tixn – xn,i‖2)

+ 2γn
∑
i∈I

ωi
(
fi(y) – fi(xn,i)

)
.

Proof Let y ∈ X and n ∈ N be given. For every i ∈ I , we note that

‖Tixn – y‖2 = ‖Tixn – xn,i‖2 + 2〈Tixn – xn,i, xn,i – y〉 + ‖xn,i – y‖2. (5)

By the definition of xn,i and Proposition 2.7, we have

0 ∈ ∂

(
fi +

1
2γn

‖ · –Tixn‖2
)

(xn,i) + NX0 (xn,i).

Applying Proposition 2.5, we obtain

0 ∈ ∂fi(xn,i) +
1
γn

(xn,i – Tixn) + NX0 (xn,i),

and then

1
γn

(Tixn – xn,i) ∈ ∂fi(xn,i) + NX0 (xn,i). (6)

By virtue of the above relation (6) and Proposition 2.5, we have, for every i ∈ I ,

1
γn

(Tixn – xn,i) ∈ ∂fi(xn,i) + ∂ıX0 (xn,i)

= ∂(fi + ıX0 )(xn,i).

The definitions of subgradient and indicator function of X0 yield for every i ∈ I that

〈
1
γn

(Tixn – xn,i), y – xn,i

〉
≤ (fi + ıX0 )(y) – (fi + ıX0 )(xn,i)

= fi(y) + ıX0 (y) – fi(xn,i) – ıX0 (xn,i)

= fi(y) – fi(xn,i). (7)

Now, by using equation (5) and inequality (7), we obtain for every i ∈ I that

‖xn,i – y‖2 ≤ ‖Tixn – y‖2 – ‖Tixn – xn,i‖2 + 2γn
(
fi(y) – fi(xn,i)

)
.

The strong quasi-nonexpansivity of Ti implies for every i ∈ I that

ωi‖xn,i – y‖2 ≤ ωi
[‖xn – y‖2 – ρi‖Tixn – xn‖2 – ‖Tixn – xn,i‖2 (8)
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+ 2γn
(
fi(y) – fi(xn,i)

)]
.

By summing up the above inequality for all i ∈ I and using the convexity of ‖·‖2, we obtain
that

‖xn+1 – y‖2 =
∥∥∥∥
∑
i∈I

ωixn,i – y
∥∥∥∥

2

≤
∑
i∈I

ωi‖xn,i – y‖2

≤
∑
i∈I

ωi
[‖xn – y‖2 – ρi‖Tixn – xn‖2 – ‖Tixn – xn,i‖2

+ 2γn
(
fi(y) – fi(xn,i)

)]

= ‖xn – y‖2 –
∑
i∈I

ωi
(
ρi‖Tixn – xn‖2 + ‖Tixn – xn,i‖2)

+ 2γn
∑
i∈I

ωi
(
fi(y) – fi(xn,i)

)
,

as desired. �

The following theorem indicates the existence of a convergence subsequence of the
generated sequence to the solution set. Note from the above lemma that the sequence
{‖xn – y‖2}n∈N is not necessarily decreasing, so we need to divide the proof of the follow-
ing theorem into two cases.

Theorem 3.2 Let the sequence {xn}n∈N ⊂ X0 and the stepsize {γn}n∈N ⊂ (0, +∞) be given
in Algorithm 1. Suppose that limn→+∞ γn = 0 and

∑
n∈N γn = +∞. If the operator Ti, i ∈ I ,

satisfies the DC principle, then the following statements hold:
(i) There exists a subsequence of the sequence {xn}n∈N that converges to a point x∗ in S .

(ii) For each user i ∈ I , there exists a subsequence of the sequence {xn,i}n∈N that converges
to x∗.

Proof Since {xn,i}n∈N is a bounded sequence, there exists M > 0 such that

‖y – xn,i‖ ≤ Mi ≤ M := max
i∈I

Mi

for every y ∈ X and for all i ∈ I . Moreover, since fi is Lipschitz continuous relative to every
bounded subset of Rk for all i ∈ I , there exists Li > 0 such that

∣∣fi(y) – fi(xn,i)
∣∣ ≤ Li‖y – xn,i‖,

and then

∑
i∈I

ωi
(
fi(y) – fi(xn,i)

) ≤ LM, (9)
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where L := maxi∈I Li. By using these two obtained results, the relation in Lemma 3.1 be-
comes

‖xn+1 – y‖2 ≤ ‖xn – y‖2

–
∑
i∈I

ωi
(
ρi‖Tixn – xn‖2 + ‖Tixn – xn,i‖2) + 2γnLM. (10)

In order to prove the convergence result, we will divide the proof into two cases accord-
ing to behavior of the sequence {‖xn – y‖2}n∈N.

Case 1. Assume that there exists n0 ∈ N such that ‖xn+1 – y‖2 ≤ ‖xn – y‖2 for all y ∈ X
and for all n ≥ n0. In this case, we have that the sequence {‖xn – y‖2}n∈N is decreasing and
bounded from below, hence limn→+∞ ‖xn – y‖2 exists. Now, we note from (10) that

∑
i∈I

ωi
(
ρi‖Tixn – xn‖2 + ‖Tixn – xn,i‖2) ≤ ‖xn – y‖2 – ‖xn+1 – y‖2 + 2γnLM,

and, by the convergence of {‖xn – y‖2}n∈N and the assumption that limn→+∞ γn = 0, we
obtain that

lim sup
n→+∞

∑
i∈I

ωi
(
ρi‖Tixn – xn‖2 + ‖Tixn – xn,i‖2) ≤ 0.

This implies that

lim
n→+∞‖Tixn – xn‖ = lim

n→+∞‖Tixn – xn,i‖ = 0 for all i ∈ I .

Observing that

‖xn – xn,i‖ ≤ ‖xn – Tixn‖ + ‖Tixn – xn,i‖ for all i ∈ I , (11)

it follows that

lim
n→+∞‖xn – xn,i‖ = 0 for all i ∈ I . (12)

On the other hand, since the sequences {xn}n∈N and {xn,i}n∈N, i ∈ I , are bounded, we also
have

∣∣fi(xn) – fi(xn,i)
∣∣ ≤ L‖xn – xn,i‖ for all i ∈ I .

Observe that

fi(y) – fi(xn,i) ≤ fi(y) – fi(xn) +
∣∣fi(xn) – fi(xn,i)

∣∣
≤ fi(y) – fi(xn) + L‖xn – xn,i‖ for all i ∈ I ,

which implies that

∑
i∈I

ωi
(
fi(y) – fi(xn,i)

) ≤ f (y) – f (xn) + L
∑
i∈I

ωi‖xn – xn,i‖.
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By applying Lemma 3.1 together with the above relation, we have

γn

(
f (xn) – f (y) – L

∑
i∈I

ωi‖xn – xn,i‖
)

≤ ‖xn – y‖2

2
–

‖xn+1 – y‖2

2
. (13)

Putting βn := f (xn) – f (y) – L
∑m

i=1 ωi‖xn – xn,i‖ for all n ≥ n0 and summing up the above
inequality (13) for n = n0 to infinity yield that

+∞∑
n=n0

γnβn ≤ ‖xn0 – y‖2

2
< +∞.

This implies that

∑
n∈N

γnβn < +∞.

We next show that lim infn→+∞ βn ≤ 0. Now, suppose to the contrary that there exist x ∈
X, n′ ∈N, and α > 0 in which βn ≥ α for all n ≥ n′. Note that

+∞ = α

+∞∑
n=n′

γn ≤
+∞∑
n=n′

γnβn < +∞,

which leads to a contradiction. Thus, we have

lim inf
n→+∞

(
f (xn) – f (y) – L

∑
i∈I

ωi‖xn – xn,i‖
)

≤ 0

for all y ∈ X. Since limn→+∞ ‖xn – xn,i‖ = 0 for all i ∈ I , we obtain that lim infn→+∞ f (xn) ≤
f (y). This means that there is a subsequence {xnp}p∈N of {xn}n∈N in which, for every y ∈ X,

lim
p→+∞ f (xnp ) = lim inf

n→+∞ f (xn) ≤ f (y). (14)

Since {xnp}p∈N is a bounded sequence, there exists a subsequence {xnpl
}l∈N of {xnp}n∈N

such that liml→+∞ xnpl
= x∗ ∈R

k . We know that liml→+∞ ‖Tixnpl
–xnpl

‖ = 0 for all i ∈ I , the
DC principle of Ti yields that x∗ ∈ Fix Ti for all i ∈ I , and hence x∗ ∈ ⋂

i∈I Fix Ti. Moreover,
since {xnpl

}l∈N ⊂ X0 which is a closed set, we also have x∗ ∈ X0. It follows that x∗ ∈ X. The
continuity of f together with inequality (14) imply that

f
(
x∗) ≤ lim

l→+∞
f (xnpl

) ≤ f (y),

that is, x∗ ∈ S .
Finally, it remains to show that xnp → x∗ ∈ S . By the boundedness of {xnp}n∈N, it suffices

to show that there is no subsequence {xnpr }r∈N of {xnp}n∈N such that limr→+∞ xnpr = x̄ ∈ S
and x∗ �= x̄. Indeed, if this is not true, the well-known Opial’s theorem yields

lim
n→+∞

∥∥xn – x∗∥∥ = lim
l→+∞

∥∥xnpl
– x∗∥∥ < lim

l→+∞
‖xnpl

– x̄‖

= lim
n→+∞‖xn – x̄‖
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= lim
r→+∞‖xnpr – x̄‖

< lim
r→+∞

∥∥xnpr – x∗∥∥ = lim
n→+∞

∥∥xn – x∗∥∥,

which leads to a contradiction. Therefore, the sequence {xnp}p∈N converges to a point x∗ ∈
S , which proves (i). Moreover, by using (12), we also obtain that limp→+∞ xnp ,i = x∗ ∈ S for
all i ∈ I , which means that (ii) holds.

Case 2. Assume that there exist a point y ∈ X and a subsequence {xnj}j∈N of {xn}n∈N such
that ‖xnj – y‖2 < ‖xnj+1 – y‖2 for all j ∈N.

Let the sequence {τ (n)}n≥n0 be defined as in Proposition 2.8, we have, for all n ≥ n0,

‖xτ (n) – y‖2 < ‖xτ (n)+1 – y‖2 (15)

and

‖xn – y‖2 < ‖xτ (n)+1 – y‖2. (16)

By applying (10) and (15), we note that

m∑
i=1

ωi
(
ρi‖Tixτ (n) – xτ (n)‖2 + ‖Tixτ (n) – xτ (n),i‖2) ≤ aτ (n) – aτ (n)+1 + 2γτ (n)LM

≤ 2γτ (n)LM,

and by using the assumption that limn→+∞ γn = 0, we obtain

lim sup
n→+∞

m∑
i=1

ωi
(
ρi‖Tixτ (n) – xτ (n)‖2 + ‖Tixτ (n) – xτ (n),i‖2) ≤ 0.

Thus, for all i ∈ I ,

lim
n→+∞‖Tixτ (n) – xτ (n)‖ = lim

n→+∞‖Tixτ (n) – xτ (n),i‖ = 0.

Note that

‖xτ (n) – xτ (n),i‖ ≤ ‖xτ (n) – Tixτ (n)‖ + ‖Tixτ (n) – xτ (n),i‖,

which implies that

lim
n→+∞‖xτ (n) – xτ (n),i‖ = 0 for all i ∈ I . (17)

Again, by using (13), we have for all n ≥ n0

γτ (n)

(
f (xτ (n)) – f (y) – L

m∑
i=1

ωi‖xτ (n) – xτ (n),i‖
)

≤ aτ (n)

2
–

aτ (n)+1

2
,
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which together with (15) implies

f (xτ (n)) – f (y) – L
m∑

i=1

ωi‖xτ (n) – xτ (n),i‖ ≤ 0 for all n ≥ n0.

Subsequently, by using (17) together with the above relation, we obtain that

lim sup
n→+∞

f (xτ (n)) ≤ f (y). (18)

Thus, there exists a subsequence {xτ (nq)}q∈N of {xτ (n)}n≥n0 such that

lim sup
q→+∞

f (xτ (nq)) ≤ lim sup
n→+∞

f (xτ (n)). (19)

Since the sequence {xτ (nq)}q∈N is bounded, there exists a subsequence {xτ (nql )}l∈N of
{xτ (nq)}q∈N such that liml→+∞ xτ (nql ) = x∗ ∈R

k . Moreover, we also have liml→+∞ ‖Tixτ (nql
) –

xτ (nql
)‖ = 0. By the DC principle of Ti, i ∈ I , we have x∗ ∈ Fix Ti for all i ∈ I ; consequently,

x∗ ∈ ⋂
i∈I Fix Ti. Moreover, we also know that {xτ (nql )}l∈N ⊂ X0, which is a closed set, it

follows that x∗ ∈ X0, and hence x∗ ∈ X. Invoking (18) and (19), we obtain that

f
(
x∗) ≤ lim inf

l→+∞
f (xτ (nql )) ≤ lim sup

l→+∞
f (xτ (nql )) ≤ f (y),

which implies that x∗ ∈ S .
By using (17), we note that liml→+∞ xτ (nql ),i = x∗ for all i ∈ I .
Since liml→+∞ ‖xτ (nql ) – x∗‖ = 0, in view of (16), we note that

0 ≤ lim inf
l→+∞

∥∥xnql
– x∗∥∥ ≤ lim sup

l→+∞

∥∥xnql
– x∗∥∥ ≤ lim sup

l→+∞

∥∥xτ (nql ) – x∗∥∥ = 0,

which yields that liml→+∞ xnql
= x∗ ∈ S . Similarly, we have liml→+∞ xnql ,i = x∗ ∈ S for all

i ∈ I . From Cases 1 and 2, there exist a subsequence of {xn}n∈N and {xn,i}n∈N for all i ∈ I
that converge to a point in S . �

By assuming at least one of the objective functions fi to be strictly convex, we obtain the
convergence of the whole sequences as the following theorem.

Theorem 3.3 Let the sequence {xn}n∈N ⊂ X0 and the stepsize {γn}n∈N ⊂ (0, +∞) be given
in Algorithm 1. Suppose that limn→+∞ γn = 0 and

∑
n∈N γn = +∞. If the operator Ti, i ∈

I , satisfies the DC principle and at least function fi is strictly convex, then the sequences
{xn}n∈N and {xn,i}n∈N, i ∈ I , converge to the unique point solution to problem (4).

Proof Note that, since the objective function f :=
∑m

i=1 fi is strictly convex, we have that
the solution set to problem (4) consists of at most one point, denoted by x∗. To this end,
we also consider the proof in two cases in the same manner as the lines of the proof of
Theorem 3.2.

In case 1, we obtain that there is a subsequence {xnp}p∈N of the sequence {xn}n∈N that
converges to a point x∗ ∈ S . However, in the context of strict convexity of f , we have S =
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{x∗}. These imply that the sequence {xn}n∈N converges to x∗. Moreover, by using (12), we
also obtain that the sequences {xn,i}n∈N, i ∈ I , also converge to x∗.

In case 2, we obtain that there is a subsequence {xτ (nql )}l∈N of {xτ (n)}n≥n0 that converges to
x∗, which yields that the sequence {xτ (n)}n∈N converges to x∗, that is, limn→∞ ‖xτ (n) – x∗‖ =
0. Since it holds that ‖xn – x∗‖ ≤ ‖xτ (n)+1 – x∗‖ for all n ≥ n0, which implies that

lim sup
n→∞

∥∥xn – x∗∥∥ ≤ lim
n→∞

∥∥xτ (n)+1 – x∗∥∥ = 0,

which is nothing else than the whole sequence {xn}n∈N converging to x∗. It is akin as above,
we also obtain that the sequences {xn,i}n∈N, i ∈ I , also converge to x∗. This completes the
proof. �

In the next theorem, we provide an error bound for the feasibility error of iterates per
iteration. Actually, we first find the error bound of the weighted averages of distance of the
iterates xn to the common fixed point sets.

Theorem 3.4 Let the sequence {xn}n∈N ⊂ X0 and the stepsize {γn}n∈N ⊂ (0, +∞) be given in
Algorithm 1. Suppose that {γn}n∈N is a sequence such that γn = a

nb , where a > 0 and 0 < b < 1.
Then, for every n ∈N, we have

∑
i∈I

ωi

(∑n
k=1 ‖Tixk – xk‖2

n

)
≤

(
ρ–1d2

S (x1) +
4ρ–1aLDX0

1 – b

)
1
nb ,

where dS (x) := infy∈S ‖x – y‖, DX0 := maxx,y∈X0 ‖x – y‖ < +∞, ρ := mini∈I ρi, and L :=
maxi∈I Li, in which Li is the Lipschitz constant relative to every bounded subset of Rk of
each function fi.

Proof Since {xn,i}n∈N is a bounded sequence, there exists M > 0 such that

∥∥PS (x1) – xn,i
∥∥ ≤ ∥∥PS (x1)

∥∥ + ‖xn,i‖ ≤ 2DX0

and for all i ∈ I . Moreover, since fi is Lipschitz continuous relative to every bounded subset
of Rk , for all i ∈ I , there exists Li > 0 such that

∣∣fi
(
PS (x1)

)
– fi(xn,i)

∣∣ ≤ Li
∥∥PS (x1) – xn,i

∥∥,

and then

∑
i∈I

ωi
(
fi
(
PS (x1)

)
– fi(xn,i)

) ≤ 2LDX0 , (20)

where L := maxi∈I Li. By invoking the relation in (10), we have, for each n ∈N,

∑
i∈I

ωi

n∑
k=1

(
ρi‖Tixk – xk‖2 + ‖Tixk – xk,i‖2) ≤ ∥∥x1 – PS (x1)

∥∥2 + 4LDX0

n∑
k=1

γk ,
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which in turn implies that

min
i∈I

ρi
∑
i∈I

ωi

(∑n
k=1 ‖Tixk – xk‖2

n

)
≤ 1

n
∑
i∈I

ωi

n∑
k=1

(‖Tixk – xk‖2 + ‖Tixk – xk,i‖2)

≤ d2
S (x1)

n
+

4LDX0

n

n∑
k=1

γk ,

and then

∑
i∈I

ωi

(∑n
k=1 ‖Tixk – xk‖2

n

)
≤ ρ–1d2

S (x1)
n

+
4ρ–1LDX0

n

n∑
k=1

γk .

Now, let us note that

1
n

n∑
k=1

γk =
1
n

n∑
k=1

a
kb ≤ a

n

∫ t=n

t=1

1
tb dt =

a
n

[
n1–b

1 – b
–

1
1 – b

]
≤ a

1 – b
1
nb ,

which implies that

∑
i∈I

ωi

(∑n
k=1 ‖Tixk – xk‖2

n

)
≤

(
ρ–1d2

S (x1) +
4ρ–1aLDX0

1 – b

)
1
nb ,

as desired. �

The above theorem provides an upper bound on the rate of convergence in which the
weighted average sequence

∑
i∈I ωi(

∑n
k=1 ‖Tixk –xk‖2

n ) of the distance of the sequence xn to
the fixed point set Fix Ti converges to 0. It can be seen that the weighted average of the
distance is bounded above by a constant factor of 1

nb , where n is the iteration index and
0 < b < 1. In this situation, we can also say that the distance converges to 0 with a rate of
O( 1

nb ). Moreover, if the weight is identical, that is, ωi = 1/m, we obtain the error bound

∑
i∈I

(∑n
k=1 ‖Tixk – xk‖2

n

)
≤

(
ρ–1d2

S (x1) +
4ρ–1aLDX0

1 – b

)
m
nb .

4 Numerical example
In this section, we present a numerical example for solving the minimal distance to given
points over a finite number of half-space constraints with box constraint.

Actually, let ai ∈ R
k , ci ∈ R

k , and bi ≥ 0 be given for all i = 1, 2, . . . , m, we consider the
following minimization problem:

minimize
m∑

i=1

1
2
‖x – ci‖2,

subject to 〈ai, x〉 ≤ bi, i = 1, 2, . . . , m, and x ∈ [u, v]k ,

(21)

where u, v ∈ R with u ≤ v. Note that the function fi := 1
2‖ · –ci‖2 is strictly convex, the

constrained set Ci := {x ∈ R
k : 〈ai, x〉 ≤ bi}, i = 1, 2, . . . , m, and the box X0 := [u, v]k are
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nonempty closed and convex sets. By putting Ti = PCi , for all i = 1, 2, . . . , m, we have Ti

is strongly quasi-nonexpansive and satisfies the DC principle with FixTi = Ci. Thus, the
considered problem (21) is nothing else than the particular situation of problem (4), and
the sequence generated by Algorithm 1 can be applied for solving the problem.

Observe that Algorithm 1 requires the computation of estimate xn,i for all i = 1, 2, . . . , m,
which is a solution of the minimization problem

xn,i = argmin
u∈X0

{
fi(u) +

1
2γn

‖u – Tixn‖2
}

, i = 1, 2, . . . , m.

Of course, the solution cannot be computed explicitly in a closed-form expression. In this
situation, we need to solve the following strongly convex optimization problem:

minimize
1
2
‖u – ci‖2 +

1
2γn

‖u – PCi xn‖2,

subject to u ∈ X0.

Note that the objective function 1
2‖u – ci‖2 + 1

2γn
‖u – PCi xn‖2 is strongly convex function

with modulus 1 + 1
γn

and Lipschitz continuous gradient with Lipschitz constant 1 + 1
γn

.
In our experiment, we basically make use of the classical gradient projection method by
performing the inner loop: pick an arbitrary initial point y1 ∈ X0 and compute

yl+1 = PX0

(
yl – αl

[
(yl – ci) +

1
γn

(
yl – PCi xn

)])
∀l ∈N,

where αl is a positive stepsize.
All the experiments were performed under MATLAB 9.9 (R2020b) running on a per-

sonal laptop with an AMD Ryzen 7 4800H with Radeon Graphics 2.90 GHz processor and
8GB memory. All CPU times are given in seconds. We generate vectors ai and ci in R

k by
uniformly distributed random generating between (–1, 1). We choose the box constraint
with boundaries u = 0 and v = 1. We choose the starting point for every inner loop to be
a vector whose coordinates are uniformly distributed randomly chosen from the interval
(0, 1). An example of a sequence {xn}n∈N generated by Algorithm 1 and its behavior in the
simple case of k = 2 and m = 10, all bi = 0, i = 1, 2, . . . , m, the stopping criterion for inner
loop is 1000 iterations, and the initial point x1 = (1, 0.7)� are illustrated in Fig. 1.

In Fig. 1, we observe from both upper figures that the values of iterates xn and all
xn,i for all i = 1, . . . , 10 converge to the same point, which is coherent with the asser-
tions in Theorem 3.3. Moreover, we can see from the lower left that the feasibility er-
ror

∑
i∈I(

∑n
k=1 ‖Tixk –xk‖2

n ) is bounded by the error bound (ρ–1d2
S (x1) + 4ρ–1aLDX0

1–b ) m
nb , with

a = 1, b = 0.9, which conforms to the result in Theorem 3.4. For the lower right, we present
the convergence behavior of the sequence {xn}n∈N which is converging to the solution
point (0, 0)� of the minimizing distance to the reference points ci (blue dots).

In the next experiment, we consider behavior of the sequence {xn}n∈N generated by Al-
gorithm 1 for various problem’s dimensions for two stopping criteria of inner loops. We
generate vectors ai and ci as above, and bi is normally distributed randomly chosen in
(1, 2). We choose the initial point to be a vector whose all coordinates are uniformly dis-
tributed randomly chosen in (0, 1). We manually choose the best choices of the involved
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Figure 1 Behavior of a sequence {xn}n∈N generated by Algorithm 1

Table 1 Behavior of Algorithm 1 for different dimensions (k) and different number of nodes (m)

m #(Inner) k = 10 k = 20 k = 50 k = 100

#(Iters) Time #(Iters) Time #(Iters) Time #(Iters) Time

3 1000 844 1.29 926 1.58 1050 2.34 1073 3.49
10,000 853 12.69 944 15.87 990 22.16 1163 39.82

5 1000 954 2.40 980 2.796 1303 5.37 1332 7.54
10,000 1104 27.11 1022 28.56 1150 45.68 1354 76.21

10 1000 1105 5.72 1291 7.51 1492 11.26 1568 17.27
10,000 1197 59.30 1180 67.16 1454 107.54 1604 172.26

20 1000 1307 13.51 1389 16.03 1656 25.09 1842 40.80
10,000 1215 121.72 1470 165.16 1695 251.56 1870 399.37

50 1000 1452 37.36 1660 47.37 1898 71.47 >10,000 >563.18
10,000 1423 350.78 1605 445.74 1945 714.88 2184 1178.37

100 1000 1506 77.37 1756 100.30 9192 721.27 >10,000 >1124.05
10,000 1521 753.69 1732 966.71 2164 1591.41 2422 2604.74

stepsizes, that is, γn = 1.8/n and αl = 1.6/l. We terminate Algorithm 1 by the stopping crite-
ria ‖xn+1–xn‖

‖xn‖+1 ≤ 10–6. We performed 10 independent tests for any collections of dimensions
k = 10, 20, 50, and 100 and the number of nodes m = 3, 5, 10, 20, 50, and 100. The results
are presented in Table 1, where the average number of iterations and the average compu-
tational runtime for any collection of k and m are presented.

We have presented in Table 1 the number of iterations (k) (#(Iters)), the computational
time (Time) in seconds, where the number of inner iterations (#(Inner)) is 1000 and 10,000
when the stopping criteria of Algorithm 1 were met. It can be observed that larger k and m
require a larger number of iterations and computational runtime. Moreover, for the case
when m = 3, 5, 10, and 20, we observe that the number of inner iterations 1000 is sufficient
enough for the convergence of Algorithm 1 with less than about 10 times comparing with
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the case when the number of inner iterations is 10,000 in computational runtime. Never-
theless, for the very large dimension with k = 100 and m = 50, 100, the number of inner
iterations 1000 may not be sufficient for the convergence of Algorithm 1.
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